TECHNOLOGY AND THE CHANGING FAMILY*

by

Jeremy Greenwood, Nezih Guner, Georgi Kocharkov and Cezar Santos†

Abstract

Marriage has declined since 1960. The drop is bigger for non-college educated individuals versus college educated ones. Divorce has increased. More so for the non-college educated vis à vis the college educated. Additionally, assortative mating has risen. People are more likely to marry someone of the same education level today than in the past. A model of marriage and divorce is calibrated/estimated to fit the postwar U.S. data. The contribution of different factors, such as skilled-biased technological progress in the market, labor-saving technological progress in the home, and the narrowing of the gender gap, to explaining these facts is gauged.

Keywords: Assortative mating, education, female labor supply, household production, marriage and divorce, minimum distance estimation

*Comments are welcome. Please direct correspondence to Nezih Guner: nezih.guner@movebarcelona.eu
†Affiliations: University of Pennsylvania; ICREA-MOVE, Universitat Autonoma de Barcelona and Barcelona GSE; Universidad Carlos III de Madrid; and University of Pennsylvania. Guner acknowledges support from ERC Grant 263600.
1 Introduction

1.1 Facts

The shape of the American household has changed dramatically over the last 50 years. Some salient features of this transformation are:

1. *The Decline in Marriage.* The fraction of the population that is ever married has fallen dramatically since 1960. At that time, about 86 percent of college-educated individuals and 92 percent of non-college educated ones between ages 25 and 54 were married (or had been married)—see Figure 1.\(^1\) Today, only 79 percent are. Note that the fall in the fraction of the population that is married is greatest for non-college educated people. Part of the decline in marriage is due to a delay in age of marriage. Part is due to a rise in the rate of divorce. In 1960 the rate of divorce, measured as the ratio of divorced population to ever married population, for non-college educated (college-educated) was 3 (2) percent. Today, it is close to 17 (11) percent. Again, observe that the rate of divorce has risen more for the non-college educated vis-à-vis the college educated. The fact that the decline in marriage and rise in divorce has affected college-educated and non-college educated people differentially has been noted by sociologists, Martin (2006), and economists, Stevenson and Wolfers (2007).

2. *The Rise in Assortative Mating.* When individuals marry today they are more likely, as opposed to yesterday, to pair with an individual from the same socioeconomic class. To see this split the world into two socioeconomic classes, viz non-college educated and college educated, and compare the two contingency tables below.

\(^1\) Date sources for this and other figures are provided in the Appendix.
Figure 1: Marriage and Divorce by Education

Table 1: Assortative Mating, age 25-54

<table>
<thead>
<tr>
<th>Husband</th>
<th>Wife</th>
<th>1960</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>< College</td>
<td>College</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< College</td>
<td>0.856 (0.823)</td>
<td>0.024 (0.056)</td>
<td>0.565 (0.450)</td>
</tr>
<tr>
<td>College</td>
<td>0.080 (0.113)</td>
<td>0.040 (0.008)</td>
<td>0.103 (0.218)</td>
</tr>
<tr>
<td>(\chi^2 = 40,567)</td>
<td>(\rho = 0.41)</td>
<td>(n = 241,488)</td>
<td>(\chi^2 = 93,446)</td>
</tr>
</tbody>
</table>

The number in a cell shows the fraction of all matches that occur in the specified category. The number in parenthesis provides the fraction that would occur if matching occurred randomly. First, note that there is positive assortative mating. The hypothesis of random matching is rejected by the \(\chi^2 \) statistics. Second, the extent of positive assortative mating has become stronger over time. This is shown by the Pearson correlation coefficient, \(\rho \), which measures the degree of association between the female and male skill categories.

To further illustrate the rise in assortative mating, consider running a regression for
married couples of the form

\[e^w_t = \alpha + \sum_{j \in J} \beta_t e^h_j d_{j,t} + \sum_{j \in J} \gamma_t d_{j,t} + \varepsilon_t, \text{ for } t \in T \text{ and } \varepsilon_t \sim N(0, \sigma_t), \]

(1)

where: \(e^w_t \in \{0, 1\} \) is the observed level of the wife’s education in period \(t \) and takes value of one if the woman completed college and a value of zero otherwise; \(e^h_t \in \{0, 1\} \) is the husband’s education; \(d_{j,t} \) is a dummy variable such that \(d_{j,t} = 1 \) if \(j = t \) and \(d_{j,t} = 0 \) if \(j \neq t \); \(J = \{1970, 1980, 1990, 2000, 2005\} \) and \(T = \{1960\} \cup J \). The coefficient \(\beta_t \) will measure the period-\(t \) impact of a husband’s education on his wife’s. Note that the regression includes a separate dummy variable for each year in \(J \). This will control for the impact of a secular rise in female educational attainment, among other things. So, how does \(\beta_t \) change over time? Figure 2 plots the rise in the \(\beta_t \) over time. As can be seen, \(\beta_t \) steadily rises over time. This coefficient is always significant at the 99 percent confidence level. The same finding obtains if instead logits or probits are run. The rise in assortative mating has been noted before by sociologists Schwartz and Mare (2005).
3. The Increase in Education and Labor-Force Participation by Females. Labor-force participation by married females has increased dramatically over the last 50 years. This is true for both college-educated and non-college educated women. In 1960 a minority of both classes of women worked. Now, the majority do. At the same time, the number of women choosing to educate themselves has risen sharply. This may have been stimulated by a rise in the college premium, shown in Figure 4. Note that college-educated women have always worked more than non-college educated ones. As female labor-force participation rose so did married women’s contribution to family income—Figure 3.

1.2 The Hypothesis

What are the economic forces behind this dramatic shift in household characteristics? In a nutshell the idea is this. People marry for both economic and noneconomic reasons: love and material well-being. On the material side of things, a woman’s labor is important for both home production and market production. Over time the value of a woman’s labor in household production has declined. Therefore, love and the value of a woman’s labor on the
Figure 4: The Rise in Female Educational Attainment, the College Premium and the Narrowing of the Gender Gap

market have come to play more important roles, relative to the value of a woman’s labor in home production, in the decision about whether or not to get married and whom to marry.

The hypothesis here is that technological progress at home and in the market drove this transformation. What are the channels through which these effects operate? They are delineated as follows:

1. Economies of scale in household maintenance.
2. Substitutability of labor and intermediate goods in household production.
3. Diminishing returns in the production of household goods vis-à-vis market ones.
4. Rising living standards.
5. Skilled-biased technological progress in the market.

An economic motive for marriage is provided for by Point 1. For example, suppose there is a fixed cost in terms of market goods of maintaining a household. Then, two-person households will be better off than single-person ones. As incomes grow in line with Point 4
such fixed costs will be easier to cover. Therefore, a trend to smaller households will emerge. This will be reflected in a lower marriage rate and a higher divorce rate. One would expect that this consideration will bite harder for poorer people than for richer ones. Hence, at low stages of development the theory suggests that non-college educated people will be more likely to marry. They will also experience a larger drop in their marriage rate and bigger rise in their divorce rate as incomes grow.

Point 2 implies that labor will be released from the home if the price of intermediate goods drops due to technological advance in the home sector. This promotes a rise in female labor-force participation. Now, single households will benefit from this the most if Point 3 holds. This is because at the margin they will be the most intensive users of home production; i.e., while the economically better off married couple (due to economies of scale) will consume more of all goods relative to a single person they will not consume twice as much home goods because they will prefer to shift their larger consumption bundle toward market ones. Therefore, technological progress in the home operates to reduce household size.

Skilled-biased technological progress results in skilled labor becoming more valuable relative to unskilled labor. This leads to an upward movement in the college premium. As a consequence, more males will complete college. More females should finish college too. If female labor isn’t required at home, due to Point 2, then the return for a college-educated female rises, just like for males. Additionally, having a college degree will make a person more attractive on the marriage market, because of the extra income it generates. The return from finding a better partner on the marriage market, in and of itself, will provide an extra return for men and women to invest in college. These forces should cause people to become pickier about their mate, causing a decline in marriage and a rise in divorce. If female labor is required at home, more women may still go to college. A college degree increases the income earned when single. Young women work before they marry. This extra income means that can afford to be choosier when selecting a husband. The same reasoning applies to being single because of a divorce. The fact there are more college educated men around implies that there may be a bigger incentive for women to invest in college educations in order to become more desirable on the marriage market. A decline in the gender gap (Point 6) will reinforce women’s incentives. This will be true if males want to match
with females with similar educational backgrounds, or vice versa. Hence, one would expect
a rise in assortative mating due to Point 5.

1.3 Relationship to the Literature

The framework developed here resembles, in some aspects, Greenwood and Guner (2009)
who study the fall in marriage and the rise in divorce. The focus of the current research
is on addressing: (1) the increase in assortative mating; (2) the differences in the fall in
marriage and the rise in divorce that occurred across the college-educated and non-college
educated populaces. Addressing these questions involves introducing heterogeneity in both
females and males, something absent in the Greenwood and Guner (2009) framework, where
individuals only differ by their marital status. Plus, a schooling decision needs to be intro-
duced. This is important given the rise in college attainment for both females and males.
These factors complicate the analysis.

Another related paper is by Regalia and Ríos-Rull (2001), which was ahead of its time.
While in their marriage model there is heterogeneity in both females and males, the focus
is on accounting for the rise in the number of single mothers. They stress market forces,
such as a movement in gender gap, as explaining this rise. A mechanism for studying the
rise in assortative mating appears to be absent. The framework is not set up to analyze
the trend in female labor supply; specifically, a woman splits her time between working and
investing in her child’s human capital formation. The current research studies the role that
technological progress in the household sector, in conjunction with market forces, played in
transforming the American household. It tries to provide a unified explanation for the above
set of stylized facts.

Parts of the picture have been addressed before elsewhere, in various ways. For exam-
ple, Galor and Weil (1996) argue that technological progress in the market sector led to a
change in the nature of jobs (from brawn to brain so to speak) that was favorable to women’s
analyze the importance of technological progress in the home sector (labor-saving devices
in the home and advances in maternal and pediatric care). Independent empirical work by
Cavalcanti and Tavares (2008) and Coen-Pirani, Leon, and Lugauer (2010) suggests that
labor-saving household products have increased married female labor supply. The importance of the narrowing gender gap, also shown in Figure 4, is stressed by Jones, Manuelli and McGrattan (2003). [Changes in societal norms, a factor out of the purview of the current analysis, have been addressed by Fernandez, Fogli and Olivetti (2004)].

The fact that high skill premiums are associated with more positive assortative mating has been noted by Fernandez, Guner and Knowles (2005). Chiappori, Iyigun and Weiss (2009) discuss how positive assortative mating provides a marriage market return for female educational investment, in addition to the traditional labor market one. Focusing on the fact that more educated females are less likely to divorce than less educated ones in recent years, Neeman, Newman and Olivetti (2008) argue that college-educated working females might be more selective in the marriage market and as result their marriages might be more stable. Households with a working wife might also be able to cope better with income shocks and as a result might be less likely to experience a divorce. Restuccia and Vandenbroucke (2009) provide a quantitative model of the recent rise in education attainment.

1.4 Findings

The unified framework developed here is matched with the U.S. data using a minimum distance estimation procedure. The procedure targets a collection of stylized facts concerning educational attainment, marriage and divorce, and married female labor-force participation. The framework fits the data well. The structural parameter values obtained also look reasonable, and are tightly estimated. The findings suggest that technological progress in the household sector plays a significant role in explaining the rise in female-labor force participation. It also has a conspicuous effect in explaining the fall in marriage and the rise in divorce by education level. Changes in the structure of wages are important drivers for the rise in educational attainment and the increase in assortative mating.
2 Model

To address the above issues three things are required. First, a model of marriage and divorce is needed. Second, the framework must include a decision about whether or not married females should work. Third, the structure should incorporate an education decision. This motivates the following setup.

2.1 Setup

Imagine an economy that is populated by equal numbers of females \(f \) and males \(m \). Some females and males are college-educated, while others are non-college educated. Some (non-)college-educated individuals of each gender will be married, the rest either divorced or never married. A person faces a constant probability of dying, \(\delta \), each period. Upon death an individual is replaced by a young doppelganger who is about to begin his or her adult life.

A person enters adult life with an ability level \(a \in \mathcal{A} \). The initial ability is distributed across the population in line with the distribution function \(A(a) \). It will be assumed that \(a \) is log normally distributed so that \(\ln a \sim N(\bar{a}, \sigma^2_a) \), where \(\bar{a} \) and \(\sigma_a^2 \) denote the mean and variance of this distribution. The first decision that a young adult makes is whether or not to acquire an education. An uneducated male will earn the amount \(w_0a \) for each unit of effort supplied on the labor supply, while an educated one earns \(w_1a \), where \(w_1 > w_0 \). A female earns the fraction \(\phi \in [0, 1] \) of what a comparable male does. This reflects the gender gap in labor income. Acquiring an education has an up-front utility cost of \(C(a) \), where

\[
C(a) = \varepsilon/a^\omega.
\]

The idea here is that the cost of learning is inversely related to a person’s ability. Let \(e \in \mathcal{E} = \{0, 1\} \) represent whether \((e = 1) \) or not \((e = 0) \) a person has acquired an education.

At the beginning of each period people must decide how much they will work in the period. Each person has one unit of time per period, which can be used for market or home production. Let \(h_m \) and \(h_f \) denote the hours worked by a male and a female in the market,
respectively. Household goods are produced according to

\[n = \left[\theta d^\lambda + (1 - \theta)(z - h_T)^\lambda \right]^{1/\lambda}, \quad 0 < \lambda < 1, \tag{2} \]

where \(d \) is the amount of the household inputs, \(h_T \) is the total amount of time spent on market work, and \(z \in \{1, 2\} \) is the household size.

Household inputs, \(d \), can be purchased at the price \(p \) in terms of the market good. People can choose to work or not. This is reflected in the two possible values that \(h \) can take, \(h \in \mathcal{H} \equiv \{0, h\} \). Suppose single agents always work full-time, allocating \(h \) to market and \(1 - h \) to household work. It is assumed that in marriage only the wife chooses \(h \); the husband always works full-time. This assumption may seem inaccurate for marriages in which the wife is much more productive than the husband, however, there is a mechanism through which females in such situation get around housework and participate fully in the market. Very productive wives can substitute housework for more amounts of \(d \).

At the end of each period a single person will meet someone else of the opposite sex, with ability level \(a^* \). The couple will then draw two shocks. The first is a match-specific shock \(b \in \mathcal{B} \), taken from the distribution \(F(b) \). In particular, \(b \) will be normally distributed so that \(b \sim N(\bar{b}_s, \sigma^2_{b,s}) \), where \(\bar{b}_s \) and \(\sigma^2_s \) denote the mean and variance of this singles distribution. The second shock, \(k \in \mathcal{K} = \{k_l, k_h\} \), measures the cost for a married woman of going to work. Without loss of generality, assume that \(k_l < k_h \). Some families may place a greater value on the woman staying at home; perhaps they are more likely to have children, a factor abstracted away from here. The \(k \) shock is drawn from the distribution \(K(k) \), which is assumed to be uniform, i.e., there is an equal probability of drawing either of these two values for the shock \(k \). This shock is assumed to be permanent and hence does not change over time.\(^2\) The couple then decides whether or not to marry. This decision will be based upon both economic and noneconomic considerations.

The noneconomic factors consist of the value of \(b \), the value of \(k \), and a measure of how compatible a couple is. For a couple with education levels \(e \) and \(e^* \), this compatibility is

\(^2\) Gurer, Kaygusuz and Ventura (2010) employ a similar strategy to model female labor force participation.
represented by function $M(e, e^*)$, where

$$M(e, e^*) = \mu_0 (1 - e)(1 - e^*) + \mu_1 (ee^*).$$

If neither person went to college then this function returns a value of μ_0 since $e = e^* = 0$, while if both are college educated then it gives a value of μ_1. It yields 0 for all other cases. The economic factors are based upon each person’s ability and educational attainment; that is, their (a, e) pair.

A married person must decide whether or not to remain with their current partner. In a marriage the bliss shock evolves according to the distribution $G(b'|b)$. Specifically, the bliss shock is assumed to follow the autoregressive process $b' = (1 - \rho_{b,m})b_m + \rho_{b,m}b + \sigma_{b,m}\sqrt{1-\rho_{b,m}^2}\varepsilon$, with $\varepsilon \sim N(0, 1)$. Here b_m and $\sigma_{b,m}^2$ represent the long-run mean and variance of this process, while $\rho_{b,m}$ is the coefficient of autocorrelation.

Last, let all people discount the future at the rate $\beta = \tilde{\beta}(1 - \delta)$, where $\tilde{\beta}$ is the subjective discount factor. Assume that in marriage the utility derived from consumption and love is a public good. Suppose for singles that tastes over the consumption of market goods, c, and nonmarket ones, n, are represented by

$$T_s(c, n) = \frac{1}{1 - \zeta} (c - c)^{1 - \zeta} + \frac{\alpha}{1 - \xi} n^{1 - \xi},$$

where ζ is a fixed cost in terms of market goods. Momentary utility for a married household will then be

$$T_m(c, n) = \frac{1}{1 - \zeta} \left(\frac{c - c}{1 + \chi} \right)^{1 - \zeta} + \frac{\alpha}{1 - \xi} \left(\frac{n}{1 + \chi} \right)^{1 - \xi},$$

where $\chi < 1$ is the adult equivalence scale.

To complete the description of the setting, the timing of events within a period is illustrated in Figure 5.

2.2 Singles

Consider the consumption decision facing a single. This is a purely static problem. For a single person of gender $g \in \{f, m\}$ with ability a and educational attainment $e \in \{0, 1\}$, the
The problem is given by

$$U_{s}^{g}(a, e) \equiv \max_{c,n,d} T_{s}(c, n),$$ \quad (3)$$

subject to

$$c = \begin{cases} w_{e}a\bar{h} - pd, & \text{if } g = f, \\ w_{e}a\bar{h} - pd, & \text{if } g = m, \end{cases}$$

and

$$n = [\theta d^{\lambda} + (1 - \theta)(1 - \bar{h})^{\lambda}]^{1/\lambda}.$$

Next, turn to the marriage decision. Consider a single person of gender $g \in \{f, m\}$ with ability a and educational attainment e. Suppose that this individual meets someone of the opposite gender, $\sim g$, who has ability a^* and education attainment e^*. Will they get married? To answer this question, let $V_{s}^{g}(a, e)$ and $V_{s}^{\sim g}(a^*, e^*)$ represent the expected lifetime utilities that both parties will realize if they remain single in the current period. Likewise, denote the expected lifetime utility that is associated with a marriage in the current period by
A marriage will occur if and only if

\[V_m^g(a, e, a^*, e^*, b, k) \geq V_s^g(a, e) \text{ and } V_m^g(a^*, e^*, a, e, b, k) \geq V_s^g(a^*, e^*). \]

Observe that for a marriage to happen it must be the first choice for both parties. Let the indicator function \(1^g(a, e, a^*, e^*, b, k) \) take a value of 1 if both people in the match want it and value of zero otherwise. Thus,

\[1^g(a, e, a^*, e^*, b, k) = \begin{cases} 1, & \text{if (4) holds}, \\ 0, & \text{otherwise}. \end{cases} \]

The value of being single in the current period will depend on the distribution of potential future mates on the marriage market. Each mate is indexed by their \((a^*, e^*)\) combination. But, note that \(e^*\) will be chosen at the beginning of adult life as a function of \(a^*\). Thus, one can write \(e^* = E^{-g}(a^*)\), so that this distribution is actually just one dimensional. The function \(E^{-g}\) will be discussed later. Thus, the distribution of potential mates from the opposite gender can be represented by \(\hat{S}^{-g}(a^*)\). This too will be elaborated on later. The value function for a single person of gender \(g\) with ability \(a\) and educational attainment \(e\) can now be expressed as

\[V_s^g(a, e) = U_s^g(a, e) + \beta \int_B \int_A \left\{ 1^g(a, e, a^*, E^{-g}(a^*), b, k) V_m^g(a, e, a^*, E^{-g}(a^*), b, k) \\
+ [1 - 1^g(a, e, a^*, E^{-g}(a^*), b, k)] V_s^g(a, e) \right\} d\hat{S}^{-g}(a^*) dF(b) dK(k), \]

for \(g = f, m\).

Embedded in the above dynamic programming problem is the assumption that one will draw a mate next period with an ability level less than \(a^*\) with probability \(\hat{S}^{-g}(a^*)\). Other matching processes could be envisaged, such as the Gale and Shapley algorithm employed by Del Boca and Flinn (2006).
2.3 Couples

The static consumption problem for a married couple is

\[U^g_m(a, e, a^*, e^*, k) \equiv \max_{c, n, d, h^f \in \{0, 1\}} T_m(c, n) - h^f k, \]

subject to

\[c = \begin{cases}
 w_e a^* \bar{h} + w_e \phi a^* \bar{h} h^f - pd, & \text{if } g = f, \\
 w_e a h + w_e \phi a^* \bar{h} h^f - pd, & \text{if } g = m,
\end{cases} \]

and

\[n = [\theta d^\lambda + (1 - \theta)(2 - \bar{h} - \bar{h} h^f)^\lambda]^{1/\lambda}, \]

Recall that husbands are assumed to work full-time. Working in the market takes away the fraction \(\bar{h} \) of a person’s time endowment. The variable \(h^f \in \{0, 1\} \) represents the wife’s participation decision. It takes a value of 1 when the woman works and a value of 0 if she doesn’t.

A divorce will occur if and only if

\[V^g_s(a, e) \geq V^g_m(a, e, a^*, e^*, b, k) \quad \text{or} \quad V^c_s(a^*, e^*) \geq V^c_m(a, e, a^*, e^*, b, k). \]

Therefore, the indicator function \(1^g(a, e, a^*, e^*, b, k) \), specified by (5), will return a value of one if both the husband and wife want to remain married and will give a value of zero if one of them desires a divorce. Given this, the value function for a married person reads

\[V^g_m(a, e, a^*, e^*, b, k) = U^g_m(a, e, a^*, e^*, k) + b + M(e, e^*) \]

\[+ \beta \left\{ \int_B [1^g(a, e, a^*, e^*, b', k) V^g_m(a, e, a^*, e^*, b', k) \right. \]

\[+ [1 - 1^g(a, e, a^*, e^*, b', k)] V^c_s(a, e) dG(b' | b) \} , \quad \text{for } g = f, m. \]

This value function is used in equations (6) and (8); likewise, (6) is employed in (8) and (9).
2.4 Education Choice

People choose their education level at the beginning of adult life. They do this based on their ability, a, and gender, g. The problem they face is

$$\max_{e \in \{0,1\}} \{V^g_s(a, e) - eC(a)\}, \quad (10)$$

where V^g_s is defined by (6). The decision rule stemming from this problem will be represented by $e = E^g(a)$. This function is characterized by a simple threshold rule.

Condition 1 $\bar{A} = \{a \in \mathbb{R}_+: V^g_s(a, 1) - C(a) = V^g_s(a, 0)\}$ is non-empty.

Lemma 1 The set \bar{A} is singleton and the decision rule for education is given by

$$E^g(a) = \begin{cases} 1 & \text{if } a \geq \bar{a}^g \\ 0 & \text{if } a < \bar{a}^g \end{cases}, \quad (11)$$

where \bar{a}^g is the threshold ability level for education for gender g.

Proof. Under Condition 1, \bar{A} is singleton because $V^g_s(a, \cdot)$ is continuous and strictly increasing in a. □

2.5 Steady-State Equilibrium

The dynamic programming problem for a single person, or (6), depends upon knowing the solution to one for a married person, as given by (9), and vice versa. Furthermore, to solve the single’s problem requires knowing the steady-state distribution of potential mates in the marriage market, $S^g(a)$. The non-normalized steady-state distribution for singles is

$$S^g(a') = (1 - \delta) \int_{K} \int_{B} \int_{A} [1 - \mathbf{1}^g(a, E^g(a), a^*, E^{-g}(a^*), b, k)] dS^g(a) d\hat{S}^{-g}(a^*) dF(b) dK(k)$$

$$+(1 - \delta) \int_{K} \int_{B} \int_{A} [1 - \mathbf{1}^g(a, E^g(a), a^*, E^{-g}(a^*), b, k)] dM^g(a, a^*, b_{-1}, k) dG(b|b_{-1})$$

$$+ \delta A(a), \text{ for } g = f, m. \quad (12)$$
In the above recursion, \(M^g(a, a^*, b, k) \) represents the steady-state distribution over married people and \(\hat{S}^g(a^*) \) denotes the normalized distribution for singles of the opposite gender and defined by

\[
\hat{S}^g(a^*) \equiv \frac{S^g(a^*)}{\int dS^g(a^*)}.
\]

(13)

The first term in (12) counts those singles who failed to match in the current period. The second term enumerates the flow into the pool of singles from failed marriages. The last term represents the arrival of new adults.

In similar fashion, the distribution of married men and women is defined by

\[
M^g(a_0, a_0^*, b_0, k_0) = (1 - \delta) \int_k^{k'} \int_b^{b'} \int_{a'}^{a''} \int_a^{a'} 1^g(a, E^g(a), a^*, E^g(a^*), b, k) \\
\times d\hat{S}_s^g(a^*) dS^g(a) dF(b) dK(k) \\
+ (1 - \delta) \int_k^{k'} \int_b^{b'} \int_{a'}^{a''} \int_a^{a'} 1^g(a, E^g(a), a^*, E^g(a^*), b, k) \\
\times dM^g(a, a^*, b_{-1}, k) dG(b|b_{-1}), \text{ for } g = f, m.
\]

(14)

To compute a steady-state solution for the model will amount to solving a fixed problem, as the following definition of equilibrium should make clear. [Note that \(M^g(a, a^*, b, k) = M_s^g(a^*, a, b, k) \).]

Definition 1 A stationary matching equilibrium is a set of value functions for singles and marrieds, \(V^g_s(a, e) \) and \(V^g_m(a, e, a^*, e^*, b, k) \), an education decision rule for singles, \(e_s^g = E^g(a) \), a matching rule for singles and married couples, \(1^g(a, a^*, e^*, b, k) \), and stationary distributions for singles and married couples, \(S^g(a) \) and \(M^g(a, a^*, b_{-1}, k) \), all for \(g = f, m \), such that:

1. The value function \(V^g_s(a, e) \) solves the single’s recursion (6), taking as given her/his indirect utility function, \(U^g_s(a, e) \), from problem (3), the value function for a married person, \(V^g_m(a, e, a^*, e^*, b, k) \), and the normalized distribution for singles, \(\hat{S}^g(a) \), defined by (13).

2. The value function \(V^g_m(a, e, a^*, e^*, b, k) \) solves a married person’s recursion (9), taking as given her/his indirect utility function, \(U^g_m(a, e, a^*, e^*, k) \), from problem (7), and the
value function for a single, $V_g^s(a, e)$.

3. The decision rule $e_s^g = E^g(a)$ solves a single’s education problem (10), taking as given $V_g^s(a, e)$ from (6).

4. The matching rule $1_g^g(a, e, a^*, e^*, a, b, k)$ is determined in line with (5), taking as given the value functions $V_g^s(a, e)$ and $V_m^g(a, e, a^*, e^*, b, k)$.

5. The stationary distributions $S_g^a(a)$ and $M_g^a(a, a^*, b_{-1}, k)$ solve (12) and (14), taking as given the decision rule for an education, $e^g = E^g(a)$, and the matching rule $1_g^g(a, e, a^*, e^*, b, k)$.

3 Findings

The goal of the analysis is to see whether the above framework can explain: (i) the rise in assortative mating; (ii) the decline in marriage and the increase in divorce, which has impacted on non-college educated individuals more than college educated ones. Ideally, this should be done while simultaneously explaining the increase in college education and the rise in married female labor-force participation. The analysis will focus on two years in the U.S. data, viz 1960 and 2005. A steady state for the model will be solved for each of these two years. The questions of interest are (i) how well can the two simulated steady states for the model match the set of stylized facts computed for these two years and (ii) what are the main driving forces for each of these changes.

3.1 Calibration/Estimation

Simulating the model requires assigning values to its parameters. A few are easy to choose and can be assigned on the basis of a priori information, while most will be fitted using a minimum distance estimation procedure.

3.1.1 A Priori Information

The easy ones will be done first. The length of period is one year. Let $\tilde{\beta}$ (subjective discount factor) be 0.96. If one assumes an operational lifespan of 30 years then the survival
probability is $1 - \delta = 0.97$. This would dictate a value for the discount factor of $\beta = 0.960 \times 0.97$. Assigning a value for the work week, \bar{h}, is straightforward. Assume a 40 hour work week. Since there are 112 non-sleeping hours in a week let $\bar{h} = 40/112 = 0.36$. Last, the household production parameters, θ and λ, have been estimated by McGrattan, Rogerson and Wright (1997). Their numbers are used here.

How should wages be inputted into the model? Take males first. Wages are needed for non-college and college educated males for 1960 and 2005; viz, $w_{0,1960}$, $w_{1,1960}$, $w_{0,2005}$ and $w_{1,2005}$. Normalize the wage rate for a non-college educated male in 1960 to be one, so that $w_{0,1960} = 1$. Turn to the wage rate rate for a college educated male in 1960? The college premium was 1.34 in 1960. This is the average ratio of wages for a college educated male to a non-college educated one. Recall that \tilde{a}^m is the threshold level of ability that determines whether the male goes to college or not – see (11). The college premium for the model reads $(w_{1,1960}\bar{\pi}_{1,1960}^m)/(w_{0,1960}\bar{\pi}_{0,1960}^m)$, where the average abilities for non-college educated and college educated males are defined by $\bar{\pi}_{0,1960}^m \equiv \int_{\tilde{a}_{1960}^m} \bar{a}^m \text{d}A(a)/A(\bar{a}_{1960}^m)$ and $\bar{\pi}_{1,1960}^m \equiv \int_{\tilde{a}_{1960}^m} \bar{a}^m \text{d}A(a)/[1 - A(\bar{a}_{1960}^m)]$. This is an endogenous variable, because young single males decide whether or not to go to school. Set \tilde{a}_{1960}^m, given the assumed ability distribution, so that the number of college educated males, $1 - A(\tilde{a}_{1960}^m)$, will match the data for the year 1960. This ties down $\bar{\pi}_{0,1960}^m$ and $\bar{\pi}_{1,1960}^m$. Then, let $w_{1,1960}$ be specified by the relationship $w_{1,1960} = 1.34 \times w_{0,1960}(\bar{\pi}_{0,1960}^m/\bar{\pi}_{1,1960}^m)$.

Move onto 2005. A non-college educated male earned 1.14 times as much as in 1960. Suppose that the calibration procedure yields the correct number of college educated males for 2005. This pins down $\bar{\pi}_{0,2005}^m$ and $\bar{\pi}_{1,2005}^m$, by the above argument. Set $w_{0,2005} = 1.14 \times w_{0,1960}(\bar{\pi}_{0,1960}^m/\bar{\pi}_{0,2005}^m)$. Last, the college premium in 2005 was 1.76. This dictates that $w_{1,2005} = 1.76 \times w_{0,2005}(\bar{\pi}_{0,2005}^m/\bar{\pi}_{1,2005}^m)$. Observe that if the calibration procedure matches the U.S. educational decisions for males for the years 1960 and 2005 then it will replicate the observed wage structure by construction.

What about females? Values for the two gender gap parameters, ϕ_{1960} and ϕ_{2005}, need to be assigned. This is done by estimating a wage regression using the Heckman correction.
procedure. Specifically, the following regression is run

$$\ln w = \text{constant} + \alpha \times \text{education} + \beta \times \text{age} + \delta \times \text{age}^2 + \phi \times \text{gender} + \varepsilon.$$

Here education is a dummy variable returning a value of one if the person is college educated and zero otherwise. Likewise, gender is another dummy variable assigning a value of one when the respondent is female. A selection equation for labor-force participation is also estimated as part of the statistical model. It also includes dummy variables for the marital status of the person and whether or not s/he has children. After estimating this statistical model, the gender gaps for 1960 and 2005 can be recovered: $\phi_{1960} = \exp(\phi_{1960}) = 0.59$ and $\phi_{2005} = \exp(\phi_{2005}) = 0.83$. The parameter values picked on the basis of a priori information are displayed in Table 2.

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter Values</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td>$\beta = 0.96 \times (1 - \delta), \chi = 0.70$</td>
<td>A priori information</td>
</tr>
<tr>
<td>Household Technology</td>
<td>$\theta = 0.21, \lambda = 0.19$</td>
<td>McGrattan et al (1997)</td>
</tr>
<tr>
<td>Life span</td>
<td>$1/\delta = 30$</td>
<td>A priori information</td>
</tr>
<tr>
<td>Wages</td>
<td>$w_{0,1960} = 1, w_{1,1960} = 1.062$</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>$w_{0,2005} = 1.180, w_{1,2005} = 1.694$</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>$\phi_{1960} = 0.59, \phi_{2005} = 0.83$ (gender gap)</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td>$\bar{h} = 0.36$</td>
<td>Data</td>
</tr>
</tbody>
</table>

3.1.2 Minimum Distance Estimation

The rest of the parameters are chosen so that the model matches, as closely as is possible, a set of data moments for the years 1960 and 2005. Let DATA represent a vector of moments that are calculated from the U.S. data for the years 1960 and 2005. This data vector contains variables such as the fraction of males and females that went to college, the fraction that have ever-been married, the fraction of college-educated males (females) that marry college-educated females (males), the fraction of married females that work, etc., for the years 1960 and 2005. A vector of the analogous moments can be obtained from a steady state of the model for both years. The results obtained from the model will be a function of the parameters to be estimated, of course. Therefore, represent this vector of moments by $\mathcal{M}(\omega)$
where \(\omega \) denotes the vector of parameters to be estimated. Define the vector of deviations between the data and the model by \(G(\omega) \equiv \text{DATA} - \mathcal{M}(\omega) \).

Minimum distance estimation picks the parameter vector, \(\omega \), to minimize a weighted sum of the squared deviations between the data and the model. Specifically,

\[
\hat{\omega} = \arg \max G(\omega)'WG(\omega),
\]

where \(W \) is some positive semi-definite matrix. The estimation assumes that the model is a true description of the world, for some value of the parameter vector, \(\omega \). The estimator, \(\hat{\omega} \), is consistent for any weighting matrix. The vector of standard errors for the estimator, \(\hat{\omega} \), is given by

\[
\text{se}(\hat{\omega}) = \text{diag}\left\{ \frac{[J(\hat{\omega})'WJ(\hat{\omega})]^{-1}J(\hat{\omega})'W\Sigma WJ(\hat{\omega})[J(\hat{\omega})'WJ(\hat{\omega})]^{-1}}{n} \right\},
\]

where \(J(\hat{\omega}) \equiv \partial \mathcal{M}(\hat{\omega})/\partial \hat{\omega} \), \(\Sigma \equiv \text{DATA}'\cdot\text{DATA} \), and \(n \) is the total number of observations.

The data moments derive from multiple data sets. The moments are independent across data sets. Therefore, \(\Sigma \) is block diagonal, with a block corresponding to a data set. Each block is weighted by the number of observations in the block relative to the total number of observations. We set \(W = I \), where \(I \) is the identity matrix. Table 3 reports the parameter estimates and their associated standard errors.

The fitted parameter values look reasonable and are tightly estimated, for the most part. The price of home inputs is estimated to decline at 7 percent annually. The 95 percent confidence interval is [6.1; 7.9]. This in accord with the quality-adjusted price declines reported by Gordon (1983) for consumer durables. The estimate of the degree of curvature in the utility function for market goods (\(\zeta = 1.82 \)) is in line with the macroeconomics literature, which typically uses a coefficient of relative aversion of either 1 or 2. Note that market goods have a weight of about 0.43 in utility (when \(\alpha = 1.5 \)), which looks appropriate. The utility function for nonmarket goods is slightly more concave (\(\xi = 2.74 \)). As was mentioned in the introduction, this implies that a household will tilt its allocation towards market goods as
it gets wealthier. Therefore, single households gain the most from labor-saving household inputs, because a larger fraction of their consumption is devoted to nonmarket goods. This implies that innovation in the home sector will favor the establishment of single households. A household spends about 12.3 percent of its market consumption on covering the fixed costs of a home (when $c = 0.04$) in 1960. This number declines to 7.9 percent in 2005. Last, an educated person realizes 0.80 utils (μ_1) from marrying a similarly educated person. This compares to the mean level of bliss in a marriage of 0.91 in 1960 and 1.2 in 2005.

<table>
<thead>
<tr>
<th>Table 3: Parameters – Estimated (Minimum Distance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
<tr>
<td>Preferences</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ability Shocks</td>
</tr>
<tr>
<td>Matching Shocks</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Home Shocks</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Prices</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cost of Education</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3.2 U.S. Stylized Facts and Benchmark Model Results

The set of stylized facts regarding American households and the corresponding results for the benchmark model are displayed in Table 4. All data variables are targets (but note that the fraction of people who are single or married and the correlation between a husband’s and wife’s education level derive from the other statistics.) Overall the model does a good job matching the set of stylized facts presented for the years 1960 and 2005. First, it predicts a
rise in education over this time period for both males and females. In 1960 more males (11.6 percent) went to college than females (6.7 percent) in the U.S. This situation had reversed by 2005 (28.4 percent versus 30.1). This reversal is generated by the framework. (For males it increases from 9.8 to 28.3 percent and for females from 8.6 to 28.3 percent).

Second, marriage became less important over this period. Specifically, the fraction of the population that is single more than doubled in the data (from 12.6 to 34.8 percent). The model generates a similar increase (18.9 to 34.7 percent). The rise in the number singles and the fall in the fraction of marrieds is due to both a decline in the rate of marriage and an increase in the rate of divorce. This feature of the data is also matched. In the data the increase in divorce is greater for non-college educated people (3.4 percent to 17.2) vis-à-vis educated ones (2.4 percent to 10.6). The model has no trouble generating the differential increase in divorce rates. The divorce rate increases by 10.7 percentage points for non-college educated people and only by 9 for college educated ones. The model yields, however, higher divorce rates in 1960, 4.5 percent in the model versus 2.4 percent in the data for college educated people and 5.9 percent in the model versus 3.4 percent in the data for non-college educated ones. As a result, proportion of singles in the model is also higher than the data in 1960.

Third, the framework has no trouble generating a rise in assortative mating. In fact, the mechanism in the model is too strong. The correlation between a husband’s and wife’s education level for 1960 is lower in the model (0.41 in the data compared with 0.107 in the model) but is very close for 2005 (0.519 in data as compared with the model’s 0.521). Note also that, for both years, the contingency tables generated by the model are also very close to their data counterparts.

Finally, the model does a great job replicating the increase in labor-force participation by married females (from 31.5 to 71.0 percent in the data and 27.3 to 71.1 percent in the model). Note that the model is also consistent with the relative labor-force participation by education levels: for females with less than college, this statistic increases from 30.9 to 68.4 percent in the data versus 25.3 to 68.6 percent in the model. For college educated females, it
rises from 41.4 to 76.3 percent in the data and from 47.7 to 77.7 percent in the model. The model also explains well the upward movement in the share of family income that working wives provide (15.7 to 33.7 percent in the data versus 11.3 to 33.4 percent for the model).

<table>
<thead>
<tr>
<th>Table 4: Data and Benchmark Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>Fem</td>
</tr>
<tr>
<td>0.067</td>
</tr>
<tr>
<td>Marriage</td>
</tr>
<tr>
<td>0.126</td>
</tr>
<tr>
<td>Rates</td>
</tr>
<tr>
<td>0.917</td>
</tr>
<tr>
<td>–Marriage</td>
</tr>
<tr>
<td>–Divorce</td>
</tr>
<tr>
<td>0.856</td>
</tr>
<tr>
<td>Coll</td>
</tr>
<tr>
<td>Corr, educ</td>
</tr>
</tbody>
</table>

Sorting	Wife	Wife	Wife	Wife
Husband	< Coll	Coll		
< Coll	0.315	0.313	0.710	0.711
Coll	0.309	0.253	0.684	0.686
Participation, All	0.414	0.477	0.763	0.777
Participation, < Coll	0.157	0.132	0.337	0.326

| **3.3 Under the Hood** |

The forces underlying the rise in education, the decline in marriage, the increase in assortative mating, and the upswing in married female labor-force participation will now be inspected. These forces are labor-saving technological progress in the home, a rise in the general level of wages, a widening in the college premium, and a narrowing of the gender gap. Two experiments are considered here. First, technological advance in the household sector will be shut down. Hence, there are only changes in the wage structure in this experiment.
Second, shifts in the wage structure are turned off. Now there is only technological progress in the home.

3.3.1 No Technological Progress in the Home (Change in Wage Structure Only)

To begin with, consider shutting down technological progress in the home. Thus, only changes in the wage structure are operational. Specifically, fix the 2005 price of household inputs, p, at the 1960 level. The results of this experiment are shown in Table 5. Think about this experiment as representing a comparative statics exercise, one done numerically as opposed to the more traditional qualitative analysis that uses pencil and paper techniques. As can be seen from the table, technological progress in the household sector is vital for promoting married female labor-force participation. Without it very few married women would work. In fact, a lower fraction of educated females would work in 2005 than in 1960. This is because households are richer in 2005 than in 1960, due to a rise in wages. The associated income effect leads to more women staying at home. Producing home goods is labor intensive. Married households are better disposed to undertake household production relative to single ones, because they have a larger endowment of time. As can be seen, marriage is higher and divorce is lower in 2005 when there is no technological progress in the home. This establishes the fact that technological progress in the home is important for marriage and divorce. In particular, without technological progress in the home, the model is not able to deliver a rise in the divorce rates for singles and misses the differential trends in divorce by education that we observe in the data.

There is still a rise in educational attainment. Surprisingly, slightly more males and females go to school in 2005 than in the benchmark model. This is because households are poorer than in the benchmark model. Agents can go to college to make up for this, in part. They can’t increase their labor supply, given the assumption of a fixed workweek. The number of females going to college more increases, even though very few of them work. This is interesting. Women value a college education because it increases the income they earn when single. Young women are single for a time before they get married. Having a college degree allows them to live better. Because of this they can be pickier about the husband they will marry. Having a college degree will also mitigate the impact of a divorce. There
is still a large increase in assortative mating. Having a college degree is also beneficial to female because it is attractive for a college-educated male.

Table 5: No Technological Progress in the Home (Change in Wage Structure Only)

<table>
<thead>
<tr>
<th></th>
<th>1960</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fem Males</td>
<td>0.067 0.116</td>
<td>0.086 0.098</td>
</tr>
<tr>
<td>Fem Males</td>
<td>0.301 0.301</td>
<td>0.283 0.283</td>
</tr>
<tr>
<td>Marriage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sing Marr</td>
<td>0.126 0.874</td>
<td>0.189 0.811</td>
</tr>
<tr>
<td>Sing Marr</td>
<td>0.224 0.776</td>
<td>0.347 0.653</td>
</tr>
<tr>
<td>< Coll Coll</td>
<td>0.917 0.856</td>
<td>0.860 0.870</td>
</tr>
<tr>
<td>< Coll Coll</td>
<td>0.834 0.838</td>
<td>0.773 0.780</td>
</tr>
<tr>
<td>< Coll Coll</td>
<td>0.034 0.024</td>
<td>0.059 0.045</td>
</tr>
<tr>
<td>< Coll Coll</td>
<td>0.079 0.053</td>
<td>0.166 0.135</td>
</tr>
<tr>
<td>Sorting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wife</td>
<td>0.410</td>
<td>0.107</td>
</tr>
<tr>
<td>Wife</td>
<td>0.602</td>
<td>0.521</td>
</tr>
<tr>
<td>Corr, educ</td>
<td>0.080 0.040</td>
<td>0.085 0.018</td>
</tr>
<tr>
<td>Corr, educ</td>
<td>0.098 0.228</td>
<td>0.114 0.193</td>
</tr>
<tr>
<td>Work, Marr Fem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation, All</td>
<td>0.315</td>
<td>0.313</td>
</tr>
<tr>
<td>Participation, < Coll</td>
<td>0.309</td>
<td>0.253</td>
</tr>
<tr>
<td>Participation, Coll</td>
<td>0.414</td>
<td>0.477</td>
</tr>
<tr>
<td>Income, fraction</td>
<td>0.157</td>
<td>0.132</td>
</tr>
<tr>
<td>Income, fraction</td>
<td>0.190</td>
<td>0.326</td>
</tr>
</tbody>
</table>

The absence of technological progress in the home leads to a large drop in female labor supply. One might think that the equilibrium level of wages will rise in response. This would operate to dampen the withdrawal of labor effort by women. The structure employed here assumes that production is linear in male and female work effort, so such an effect is precluded. Consider relaxing this, somewhat.

In particular, imagine an aggregate production function of the form

\[o = k^\kappa h^{1-\kappa}, \]
where o is aggregate output, k is the capital stock, h is the total stock of labor measured in efficiency units, and z is total factor productivity. Let $k = 1$. The problem with using this production function is the introduction of capital. In particular, are people able to buy or trade capital? To keep things simple, this needs to be ruled out. Suppose that there is a government in the economy. It owns this capital stock. It rents it out at the rental rate r. The proceeds from this rental income are used to finance government spending, g. This government spending could be entered into the utility function in a separable way. This assumption implies that there is no need to think about capital income. Workers will only earn their wages, as before. The wage rate for a unit of raw unskilled labor, w_0, is given by

$$w_0 = (1 - \kappa)z h^{-\kappa}.$$

Note that h is simply the sum of labor effort across all individuals, where each type of labor is weighted by their 2005 efficiency level in production; i.e., a college educated woman of ability level a is weighted by $\phi_{2005}(w_{1,2005}/w_{0,2005})a$.

The results are shown in the Table below. Somewhat surprisingly, married female labor-force participation drops even further. Why? It is true that the general level of wages does rise when married female labor-force participation drops. But, when there is no technological progress in the household sector, female labor is greatly valued at home. The rise in the general level of wages makes households better off, ceteris paribus, because males now earn more. The positive income effect associated with the increase in husbands’ incomes induces more wives to stay at home.

<table>
<thead>
<tr>
<th>Experiment/G.E. Effects</th>
<th>Experiment/No G.E. Effects</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>0.344</td>
<td>0.391</td>
</tr>
</tbody>
</table>

3.3.2 No Change in Wage Structure (Technological Progress in the Home Only)

Compare this to the situation where there is no change in wages. In particular, set wages for both females and males at the levels they had in 1960; i.e., $w_{0,2005} = w_{0,1960}$, $w_{1,2005} = w_{1,1960}$, and $\phi_{2005} = \phi_{1960}$. The results of this comparative statics experiment are shown in Table
7. Observe that the number of married women that work in 2005 is actually higher than in the benchmark model. Therefore, increases in wages are not the important drivers of the rise in married female labor-force participation. Technological progress in the household sector is. More women work relative to the benchmark, because households are less wealthy due to the fact that wages are fixed. This also raises the rate of marriage and lowers the rate of divorce vis-à-vis the benchmark. Still, wages play an important role in the analysis. The table illustrates that the increase in educational attainment for both women and men is influenced by the rise in the college premium. Educational attainment for males and females without this essentially remain constant. There are also more marriages. Finally, degree of assortative mating declines, instead of increases, when the wage structure remains fixed.

<table>
<thead>
<tr>
<th>Table 7: No Change in Wage Structure (Technological Progress in the Home Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>Fem</td>
</tr>
<tr>
<td>0.067</td>
</tr>
<tr>
<td>Marriage</td>
</tr>
<tr>
<td>Sing</td>
</tr>
<tr>
<td>0.126</td>
</tr>
<tr>
<td>Rates</td>
</tr>
<tr>
<td>< Coll</td>
</tr>
<tr>
<td>0.917</td>
</tr>
<tr>
<td>Sorting</td>
</tr>
<tr>
<td>Wife</td>
</tr>
<tr>
<td>Husband</td>
</tr>
<tr>
<td>< Coll</td>
</tr>
<tr>
<td>0.856</td>
</tr>
<tr>
<td>Coll</td>
</tr>
<tr>
<td>Corr, educ</td>
</tr>
<tr>
<td>Work, Marr Fem</td>
</tr>
<tr>
<td>Participation, All</td>
</tr>
<tr>
<td>Participation, < Coll</td>
</tr>
<tr>
<td>Participation, Coll</td>
</tr>
<tr>
<td>Income, fraction</td>
</tr>
</tbody>
</table>
Taking stock of the results from the above two comparative statics exercises suggests that technological progress in the household sector plays an important role in stimulating labor-force participation by married females. It also contributes greatly to the decline in marriage and the rise in divorce. The widening in the college premium and the narrowing of the gender gap are instrumental in motivating females and males to go to college. This leads to an increase in assortative mating.

4 Conclusions

People today are more likely to marry someone of the same socioeconomic class than in the past. At the same time the prevalence of marriage has fallen and the rate of divorce has risen, especially for people without a college education. Women are much more likely to go to college now. Married ones work more. This led to a dramatic transformation of the American household.

To address these facts a model of marriage and divorce is developed. It fits the stylized facts describing the transformation of U.S. households well, although like almost everything in life there is still room for improvement. In the framework developed, individuals marry for both economic and noneconomic reasons. The noneconomic reasons are companionship and love. The economic ones are the values of a spouses’ labor at home and in the market. Technological progress in the household sector erodes the value of labor in the home. This reduces the importance for a marriage of the labor used in household production. As a result married women enter the labor market. Love becomes a more important determinant in marriage. An individual can now afford to delay marriage and wait to find a mate that makes him or her happy. This leads to a decline in marriage and a rise in divorce. Increases in the college premium provide an incentive for both young men and women to go to college. A college educated person earns more in both married and single life. The fact that men now desire women that make a good income provides a extra incentive for a young woman to go to college, or vice versa. An additional motivation may be that people like to marry others with the same educational background.

The structural model developed is fitted to the U.S. data using a minimum distance esti-
formation procedure. A collection of data moments summarizing educational attainment, the patterns of marriage and divorce, and married female labor-force participation is targeted. The estimated structural model matches the targeted moments well, yielding parameter values that are both reasonable and tightly estimated. Technological progress at home is an important driver of the rise of married female labor-force participation. It also plays a significant role in explaining the decline in marriage and rise in divorce by education level. The structure of wages in the U.S. is found to have a powerful influence on assortative mating and educational attainment.

5 Appendix–Data

Unless stated otherwise, all data is obtained from IPUMS-USA. For the years 1960, 1970, 1980, 1990 and 2000 the data derives from federal censuses, while for 2005 it comes from the American Community Survey (ACS). The ACS has a sample size comparable to the one percent census samples that IPUMS provides for the other years. The age group for which the analysis is done is 25-54. A college-educated individual refers to someone with 4 years of college or more, otherwise they are labelled as being non-college educated. This applies to both males and females.

Figure 1. The fraction of the population that is ever married is one minus the fraction of the population that is never married. The fraction of the population that is currently divorced and single is calculated by taking the stock of divorced and single individuals and then dividing this by the stock of ever-married people.

Figure 2. The value of β_t is plotted from the regression equation (1). This equation is estimated for married couples using the data mentioned above. The regression coefficient measures the likelihood that an educated male is married to an educated female in the year t, for $t = 1960, 1970, 1980, 1990, 2000, 2005$.

Figure 3. Female labor-force participation is calculated from the variable EMPSTAT in IPUMS. This variable reports whether or not an individual is in the labor force. This calculation is done for both college and non-college educated women. A wife’s contribution to family income is calculated by computing the ratio of her labor income to total family income.
labor income. This ratio is averaged across all married women.

Figure 4. A woman is labelled as having a college degree if she has 4 years of college or more. The college premium is calculated by dividing the average labor income for college-educated men by the average labor income for non-college educated ones.

References

