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Abstract:  
 
We revisit the minimum wage-employment debate, which is nearly as old as the Department of Labor.  In 
particular, we assess new studies claiming that the standard panel data approach used in much of the “new 
minimum wage research” is flawed because it fails to account for spatial heterogeneity.  These new 
studies use research designs intended to control for this heterogeneity and conclude that minimum wages 
in the United States have not reduced employment.  We explore the ability of these research designs to 
isolate reliable identifying information and test the untested assumptions in this new research about the 
construction of better control groups.  Our evidence points to serious problems with these research 
designs.  We conclude that the evidence still shows that minimum wages pose a tradeoff of higher wages 
for some against job losses for others, and that policymakers need to bear this tradeoff in mind when 
making decisions about increasing the minimum wage.   
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I. Introduction 

Debates about the economic effects and the merits of the minimum wage date back at least as far 

as the establishment of the Department of Labor as a cabinet-level agency in 1913.  The introduction of 

minimum wages in New Zealand, Australia, and the United Kingdom in the late 1800s and the early 

1900s, along with the implementation by some U.S. states of their own wage floors shortly thereafter, 

engendered keen interest among economists.  Given the absence of empirical evidence on the effects of 

minimum wages at that time, these early debates were largely based on theoretical reasoning, pitting 

neoclassical economists, including John Bates Clark, H. B. Lees-Smith, and Frank Taussig, against 

progressive economists such as Sidney Webb, Rogers Seager, and John Commons.  In particular, the 

neoclassical school argued that wage levels were determined by workers’ productivity and that minimum 

wages would reduce employment among low-skilled workers.  In contrast, the progressives argued that 

minimum wages were necessary to prevent the widespread exploitation of lower-skilled workers by 

employers with greater bargaining power over wages, would encourage workers to increase their efforts, 

and would boost consumers’ purchasing power and thus raise aggregate demand.  

A similar debate erupted after the federal minimum wage was enacted in 1938.  In this case, the 

main protagonists were George Stigler (1946) and Fritz Machlup (1946), representing the “marginalist” 

school of economists, and Richard Lester (1946), who was considered an “institutionalist” economist.  As 

in the early 1900s, this debate was primarily about the appropriate theoretical model of the labor market, 

although both sides also attempted to bolster their arguments with empirical analyses.  Stigler and 

Machlup took the neoclassical position that minimum wages reduce employment, while Lester argued 

that product demand rather than wage rates was by far the most important factor determining employment 

so that fairness was the more appropriate consideration in setting a wage floor.  Interestingly, Stigler 

acknowledged the possibility that minimum wages could raise employment in a labor market with a 

monopsonistic employer, an idea that would become more prominent in the 1990s.  However, his own 

view was that low-wage markets were generally competitive in nature and thus that such monopsony 

effects were unlikely to be important in U.S. labor markets. 
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In light of the celebratory nature of this conference, it is noteworthy that economists and 

statisticians from the Department of Labor have contributed importantly to the empirical literature on the 

economic effects of minimum wages over the past century.  Indeed, one of the first statistical analyses of 

minimum wages in a U.S. state was conducted by Marie Obenauer and Bertha von der Nienburg of the 

Bureau of Labor Statistics (BLS) in 1915 and is often cited as the most significant early empirical 

analysis of minimum wages.  For this study, which was a precursor to the case study approach that 

constitutes a key branch of the empirical literature that developed after 1990, the BLS collected data on 

employment of women and men, wages, and sales from 40 retail stores in Oregon for March and April of 

1913, about five months prior to the introduction of the minimum wage in the state, which only applied to 

women, and for March and April of 1914, about five months after the minimum wage took effect.  They 

then compared the changes in the employment of women and men over that period.  Although 

appropriately cautious about the power of their difference-in-differences statistical approach (for example, 

the analysis was complicated by a recession in 1914 and by a legislated reduction in working hours for 

women), they found that the minimum wage had a positive effect on wages and little or no effect on 

women’s employment in the aggregate but that stores substituted teenage girls (who were subject to a 

lower minimum wage) for adult women in lesser-skilled jobs. 

Similarly, some of the first empirical analyses of the federal minimum wage enacted in 1938 were 

undertaken by analysts from the Wage and Hours and Public Contracts Division of the Department of 

Labor.  In particular, the Department conducted a series of studies examining the effects of the new 

minimum wage on wages and employment in certain industries, either by comparing the effects of the 

new minimum wage on wages and employment in plants in low-wage southern states with their 

counterparts in higher-wage northeastern states or by comparing employment changes in plants with 

different levels of average wages before the federal minimum wage took effect.  These studies, which 

tended to report modest disemployment effects, were followed by similar efforts by the Department to 

assess the effects of increases in the federal minimum wage in the 1940s and 1950s.  In addition, the 

findings of these studies were at the center of a vigorous debate between Richard Lester and John 
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Peterson on the merits of the minimum wage in the late 1950s and early 1960s (Lester, 1960; Peterson, 

1957, 1959, 1960).   

Over time, empirical analyses, especially the time-series studies conducted in the 1960s and 

1970s, increasingly found that minimum wages tended to reduce employment among teenagers, who were 

viewed as a proxy for low-skilled labor more generally.  A famous paper by Charles Brown, Curtis 

Gilroy, and Andrew Kohen, published in 1982, surveyed the existing literature on minimum wages and 

established the “consensus” that a 10 percent increase in the minimum wage would reduce teenage 

employment by 1 to 3 percent (Brown et al., 1982).  Following that study, economists began to coalesce 

around the idea that minimum wages have adverse effects on low-skilled employment.   

That consensus turned out to be relatively short-lived.  After a decade of silence, the debate over 

the employment effects of the minimum wage reemerged in the early 1990s with the publication of a 

special issue of the Industrial and Labor Relations Review (ILRR).  This issue featured four studies that 

used different analytical approaches and that took advantage of the increasing divergence of minimum 

wages at the state level to estimate the employment effects of minimum wages.  These studies, which 

formed the basis for what is sometimes termed the “new minimum wage research,” were diverse in their 

findings, ranging from disemployment effects similar to the earlier consensus (Neumark and Wascher 

1992), to no effect on employment (Card 1992a) to a positive effect of the minimum wage on 

employment (Card 1992b; Katz and Krueger 1992).   

The ILRR symposium subsequently launched a new body of contemporary research on the 

minimum wage, much of which was summarized in our 2008 book Minimum Wages (Neumark and 

Wascher, 2008).  In that book, we concluded that  “… [M]inimum wages reduce employment 

opportunities for less-skilled workers, especially those who are most directly affected by the minimum 

wage” (Neumark and Wascher, 2008, p. 6).  This paper, in part, extends this summary to the present by 

evaluating some recent studies that have questioned the empirical methods used to estimate employment 

effects in much of the recent literature (Allegretto et al., 2011; Dube et al., 2010).  

The key issue raised by these recent studies relates to how researchers can reliably identify the 

employment effects of the minimum wage – a question that is nearly as long-running as the debate over 
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the minimum wage.  In particular, the identification of minimum wage effects requires both an adequate 

focus on potentially affected workers and the construction of a counterfactual “control group” for what 

would have happened absent increases in the minimum wage.  The latter is critical to account for other 

influences on the employment of potentially affected workers that may be confounded with the effects of 

changes in the minimum wage.  In the research of the past two decades, economists have frequently used 

state variation in minimum wages to generate comparisons between states with different minimum wage 

levels or changes at the same point in time, hence avoiding confounding minimum wage effects with 

other aggregate influences on the labor market (e.g., the national business cycle).   

Dube et al. (2010, hereafter DLR) and Allegretto et al. (2011, hereafter ADR) have put forward a 

severe critique of the state panel-data approach, including the work discussed at length in Neumark and 

Wascher (2008).  The essence of the argument in DLR and ADR is summarized in a review of Minimum 

Wages by Dube (2011), which draws heavily on the findings from the two papers of which he was a co-

author:  

“…[V]ariation over the past two decades in minimum wages has been highly selective spatially, 
and employment trends for low-wage workers vary substantially across states …  This has tended 
to produce a spurious negative relationship between the minimum wage and employment for low 
wage workers – be it for sectors such as restaurant and retail or for demographic groups such as 
teenagers” (Dube, 2011, p. 763). 
 
Commenting on the econometric evidence more specifically, Dube writes: “Even simple regional 

controls and trends produce employment effects close to zero, as do more sophisticated approaches such 

as comparing contiguous counties across policy boundaries – which essentially embeds the “case study” 

approach within panel data analysis …” (pp. 763-4).  Dube defines his and his co-authors’ studies as “a 

fourth generation of recent work that tries to make sense of the sometimes contradictory evidence” (p. 

763), and argues that their work raises serious questions about the conclusions drawn by Neumark and 

Wascher – and the broader literature – regarding the employment effects of minimum wages. 

Echoing Dube, ADR argue without reservation that their results overturn the conclusion that 

minimum wages reduce employment of low-skilled workers: “Interpretations of the quality and nature of 

the evidence in the existing minimum wage literature, …, must be revised substantially.  Put simply, our 

findings indicate that minimum wage increases – in the range that have been implemented in the United 
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States – do not reduce employment among teens” (ADR, 2011, p. 238).  Similarly, DLR conclude that 

there are “no detectable employment losses from the kind of minimum wage increases we have seen in 

the United States” (DLR, 2010, p. 962).   

Our principal goal in this paper is to evaluate this new research because of the strong challenge it 

(and its authors) pose to the large body of prior research that found that minimum wages reduce 

employment of low-skilled workers.  As the description of the work above suggests, the central element 

of this new research is the issue of how to construct counterfactuals for the places where minimum wages 

are increased.  In particular, the authors of both studies argue that one must compare places that are 

geographically proximate to have valid controls, because, according to them, minimum wage variation is 

associated with unobserved economic shocks to areas that can confound the estimation of minimum wage 

effects.  Consequently, much of the analysis focuses on the validity of this criticism, and on the 

approaches these studies take to address this potential problem.  In particular, the overriding concern we 

have with these studies is that their research designs, out of concerns about avoiding minimum wage 

variation that is potentially confounded with other sources of employment change, discard a great deal of 

valid identifying information – throwing out the identifying “baby” along with, or worse yet instead of,  

the contaminated “bathwater.”   

Our findings, in a nutshell, indicate that neither the conclusions of these studies nor the methods 

they use are supported by the data.  We also briefly discuss other recent research on the employment 

effects of minimum wages – research that also departs from the standard state panel-data approach that 

has been used in much of the new minimum wage research.  This recent research also supports the 

conclusion that minimum wages reduce employment of low-skilled workers  

II. Recent Research Challenging the Conclusion that Minimum Wages Reduce the Employment of Low-

Skilled Workers 

Of the two papers by Dube and his colleagues, the analysis in ADR is the most direct extension of 

the state panel-data approach used extensively in the existing research on the employment effects of 

minimum wages.  In particular, ADR focus on standard specifications of minimum wage effects on the 

employment of teenagers, using information on state-level minimum wages and individual-level data 
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from the Current Population Survey (CPS) from 1990-2009.  When they estimate a model that includes 

state and period fixed effects along with other standard controls, they find a negative employment effect 

of minimum wages.  However, when they include either state-specific linear trends or Census division × 

period interactions (or both), the estimated employment effects of minimum wages fall to approximately 

zero and are statistically insignificant.   

In contrast, DLR’s analysis focuses primarily on restaurant employment using county-level 

Quarterly Census of Employment and Wages (QCEW) data from 1990-2006.  Although they present 

some analyses that are similar to ADR, estimating panel data models that include state-specific trends and 

Census division × period interactions (along with county fixed effects), their core analysis uses a research 

design based on cross-border county pairs.  Their specification, which includes county pair × period 

interactions, identifies the effect of minimum wages from differences in employment changes in paired 

counties on either side of a state border, with the county pair × period interactions controlling for shocks 

common to both counties.  In this specification, the narrowing of identification to this within-county-pair 

comparison causes the employment effects to go from negative and significant to small and insignificant.   

Closely related findings are reported in Addison et al. (forthcoming).  They also use QCEW data, 

focusing on nearly the same period (1990-2005) and on nearly the same sector.  With regard to DLR’s 

first set of analyses, about the only difference is that the authors include county-specific linear trends.  

However, the qualitative conclusion is the same: they find negative employment effects when they 

include only county and quarter fixed effects, but no evidence of employment effects when they include 

county-specific trends.  Similarly, in a 2009 paper these same co-authors estimate these models for 

various parts of the retail sector with county-specific time trends, and also do the same border-county 

analysis as in DLR, with similar findings.1   

                                                      
1 In a separate paper (Addison et al., 2011), the authors use similar methods to try to estimate the effects of 
minimum wages in the United States during the Great Recession.  To some extent this paper appears to be a 
response to Even and Macpherson (2010), who estimate standard state panel-data models (with state and year fixed 
effects) for the 2005-2009 period and find disemployment effects for teenagers.  Addison et al. conclude that it is 
hard to detect disemployment effects when similar kinds of “spatial heterogeneity” extensions to the panel data 
methods are made.  However, perhaps because of the short time period studied and the large movements in 
aggregate labor market outcomes during that period, the standard errors on the point estimates are so large as to be 
uninformative – for example, in some cases (e.g., teens) the authors find negative employment effects that are in the 
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To put this new evidence in context, it is useful first to assess the implications of these results for 

the existing state-level panel studies, especially since ADR and DLR have explicitly used their findings to 

cast doubt on the evidence from these studies.  With regard to DLR’s paper, it is worth noting that very 

little of the existing work is on the restaurant sector or the retail sector more broadly, so new evidence on 

restaurant or retail employment does not address the far more pervasive evidence on teens or other very 

low-skilled workers.  For example, it has repeatedly been emphasized that the evidence from the earlier 

research is strongest for individuals most directly affected by the minimum wage, and that many workers 

within an industry sector earn well more than the minimum wage.  In addition, the minimum wage can 

lead employers to substitute higher-skilled workers for lower-skilled workers without reducing net 

employment very much.2   

ADR’s research focuses primarily on teenagers and can therefore be viewed as posing more of a 

direct challenge to the state-level panel data approach.  Even in this case, however, the potential for labor-

labor substitution among teenagers with different skill levels means that the effects of minimum wages on 

overall teenage employment can be difficult to detect because larger gross disemployment effects among 

                                                                                                                                                                           
earlier “consensus” range but that are not statistically significant. Our view is that estimating the effects of minimum 
wages during this exceptional period is likely to be extraordinarily difficult and that applying demanding empirical 
methods to the data from this period will probably be futile.   

There are similar concerns about the results reported in Hirsch et al. (2011), who study the effects of the federal 
minimum wage increases on employment at “quick-service” restaurants in Georgia and Alabama.  They report 
estimated employment elasticities, with respect to the wage cost increases induced by the higher minimum wage, 
that are sometimes positive and sometimes negative, but that also have large standard errors (about 0.4-0.5).  They 
also estimate the effects of the cumulative increase – which are not reported in the paper but were supplied in a 
personal communication from Barry Hirsch – and find large and negative effects (ranging from −0.8 to −1.7) that 
are statistically insignificant, suggesting that the main problem may be uninformative data.      
2 DLR acknowledge this possibility, noting that  “… [O]ur data do not permit us to test whether restaurants respond 
to minimum wage increases by hiring more skilled workers and fewer less skilled ones” (p. 962).  However, the 
existing literature suggests that such labor-labor substitution is important.  For example, Fairris and Bujanda (2008) 
find evidence of labor-labor substitution by city contractors in response to the Los Angeles living wage ordinance – 
a different kind of mandated wage floor.  In addition, in a study of personnel records from over 600 establishments 
of a single large retail firm, Giuliano (forthcoming) finds that large minimum wage-induced increases in the wage 
rates of teenagers relative to adults were associated with increases in employment for teenagers from higher 
socioeconomic status zip codes and decreases in the employment of young adults (ages 20-22).  Moreover, data on 
the individual workers who were laid off and on store performance indicated that at some stores the teens that were 
hired were of higher quality than teens already employed at the stores, and of higher quality than the young adults at 
the stores.  Similar evidence consistent with this substitution from adults to teens (in food-service occupations) is 
reported in Lang and Kahn (1998).  Finally, Neumark and Wascher (1996) find evidence of this substitution among 
teens, with a higher minimum wage drawing those enrolled in school and working part-time into full-time work, 
while pushing those working full-time and not enrolled in school out of jobs into “idleness” (neither working nor 
employed).   
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the least-skilled teens may be masked by inflows of other teens into employment.3  Indeed, the most 

recent estimates Neumark and Wascher have presented for teenagers show negative effects only for male 

teens when disaggregating by sex, and only for black or Hispanic male teens when disaggregating male 

teens into whites vs. black or Hispanic (Neumark and Wascher, 2011).  And other work, focused on the 

lowest-wage workers rather than on teenagers per se, finds negative employment effects for them as well 

(Neumark et al., 2004).  Nonetheless, a negative effect of minimum wages on employment of the lowest 

skilled ought to imply negative effects for at least some groups of teenagers, and for the sample period 

they study, ADR do find that a panel data model with only state and year fixed effects produces evidence 

of disemployment effects in the range of past estimates.  Thus, their finding that this conclusion is 

sensitive to whether state-specific linear trends or region × period interactions are included in the 

specification poses a challenge to the conventional view of minimum wage employment effects.  We next 

turn to a more thorough explanation of their analysis, as well as an evaluation of it; we then do the same 

for the DLR study.  

III. Evaluation of the Evidence  

Allegretto et al. (2011) 

As noted above, ADR find that the negative effects estimated from standard state-level panel data 

specifications of the effects of minimum wages on the employment of teenagers are sensitive to including 

either state-specific linear trends or Census division × period interactions (or both).  This leads them to 

conclude that models with only state and year fixed effects “fail to account for heterogeneous 

employment patterns that are correlated with selectivity among states with minimum wages.  As a result, 

the estimates are often biased and not robust to the sources of the identifying information” (p. 205).  More 

specifically, they argue that “Lack of controls for spatial heterogeneity in employment trends generates 

biases toward negative employment elasticities in national minimum wage studies” (p. 206).   

We re-examine these findings with the same CPS data, using a specification with the same 

aggregate variables they include.  The sample is extended to take account of newer data (which does not 
                                                      
3 The focus on teenagers is, to some extent, a vestige of the old time-series literature.  Because labor economists had 
to aggregate employment data by age group, it made sense to look mainly at teenagers because minimum wage 
workers comprised such a small share of older age groups. 
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change the basic conclusions), and, whereas ADR use individual-level data with clustering at the state 

level, here the data are aggregated to the state level by quarter, also clustering at the state level.4  The 

minimum wage, here and throughout, is defined as the higher of the state and federal minimum.  As can 

be seen in Table 1, the results closely mirror what ADR found (their Table 3).  Using the model with the 

standard controls and only state and time fixed effects, the estimated employment elasticity with respect 

to the minimum wage is −0.165, significant at the 1% level (ADR estimate an elasticity of −0.12, 

significant at the 5% level).5  When either state-specific linear trends are added, region × quarter 

interactions are added, or both are added simultaneously, the estimated elasticities become considerably 

smaller – ranging from −0.098 to 0.009 – and are statistically insignificant.  The same is true in the ADR 

results (their Table 3), where the estimates are statistically insignificant and the estimated elasticities 

range from −0.036 to 0.047.6   

This evidence indicates that conclusions about the effects of minimum wages on teenagers may 

not always be robust to the type of identifying variation used to estimate these effects: differences in 

within-state variation associated with minimum wage changes relative to other states in the same year; 

differences in within-state variation relative to other states in the same year that is also net of state-

specific linear trends; or (essentially) differences in within-state variation relative to states in the same 

Census division.  What ADR fail to establish is whether the latter two sources of variation provide better 

estimates of the effects of minimum wages than the first type of variation.  In particular, it is important to 

explore the implications of including state-specific trends or region × time interactions and ask whether 

doing so results in more or less reliable estimates of minimum wage effects.   

State-Specific Trends.  We first focus on the evidence regarding state-specific trends, which are 

intended to control for longer-run influences not captured in the other control variables.  It has become 

                                                      
4 Aggregated data are used because this form is more convenient for some of the analyses that follow, which focus 
on the time-series patterns in the data by state.  Moreover, because the identifying information is the state-level 
minimum wage variation, the use of state-level data for the other variables should be inconsequential. 
5 The specification is in logs so the estimated coefficient is the elasticity; in contrast, they estimate linear probability 
models for employment with the log of the minimum wage on the right-hand side.  They report the magnitude and 
statistical significance of the estimated linear probability coefficients, and then the implied elasticity.   
6 We also experimented with a specification adding controls for the adult wage and adult employment-to-population 
ratio, and defining these variables (and the adult unemployment rate) for skilled adults aged 25-64 with more than a 
high school education.  The estimated minimum wage effects were very similar across specifications.   
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standard practice to assess the robustness of panel data estimates of state policy effects to the inclusion of 

state-specific trends, including in the minimum wage literature.  Indeed, Neumark and Wascher’s more 

recent studies of minimum wage effects on employment (2004, 2011) included specifications with these 

trends, and in both studies the evidence of negative employment effects was robust to including state-

specific trends.7  However, if the estimates turn out to be sensitive to this specification check, it is 

important to try to assess both why this might be the case, and to ask whether a particular and highly-

specific way of doing this – by choosing a specification in which these longer-run influences are restricted 

to be linear over a given period – uncovers the right answer. 

ADR’s analysis is flawed on both accounts.  First, the arguments about the need to account for 

such long-run influences to correctly identify minimum wage effects and the validity of doing this with 

state-specific trends are unconvincing.  To argue that there may be differential trends in teen employment 

by state that are not captured by the standard set of control variables, ADR cite research by Smith (2010) 

suggesting that technological change may have led to an increased supply of adult workers for low-skill 

jobs that had been commonly held by youth (their footnote 2).  Smith does present some results 

suggesting that the increase in the share of adults in “youth occupations” rose more in states that had a 

larger baseline share of labor in routine tasks that were more likely to have been affected by computing, 

consistent with the possibility that state-specific trends are capturing the effects of technological change.  

But a higher minimum wage might also lead to substitution of low-skilled adults for teens, suggesting that 

state-specific trends may be capturing some of the variation that was induced by the minimum wage.  

Indeed, Smith says this: “If there is a binding minimum wage, and, for the same wage, employers prefer 

less‐educated adult labor to teen labor, then the effect of polarization on youth employment relative to 

adult employment would further be enhanced” (p. 14).  Such uncertainty about the reasons for differences 

in state-specific trends suggests that it would be better to incorporate data on the factors for which the 

state-specific trends are intended to control, rather than simply including them and interpreting the results 

as necessarily reflecting these factors.   

                                                      
7 The 2011 paper (which ADR cite as an earlier unpublished paper from 2007) focuses on the United States, and the 
2004 paper studies many countries and hence the analogue to state-specific trends is country-specific trends.    



11 
 

ADR also cite research by Aaronson et al. (2007) and the CBO (2004) as providing evidence for 

omitted trends in teen employment unrelated to minimum wages – stemming, for example, from factors 

such as changes in financial aid for college students, the attractiveness of college, or technological shifts 

that have lowered market wages for teens.  They show, in their Figure 1 and Table 1, that “employment 

rates by teens vary by Census division and differentially so over time” (p. 206), and appeal to these 

studies – the CBO and Aaronson et al. studies, especially – to argue that these “differences are not 

captured simply by controls for business cycles, school enrollment rates, relative wages of teens, 

unskilled immigration, or by the timing of federal minimum wage increases” (p. 206).  But the appeal to 

the evidence in these studies is misleading.  For the most part, the two studies cited only discuss 

aggregate time-series evidence, and time-series changes in teen employment relative to adult labor market 

indicators for the United States as a whole would be captured in the time-period dummies.8  As a result, 

these studies do not make a strong case that there are important unexplained trends by state or changes by 

region that would not be captured by state and time dummies.     

The second problem with ADR’s analysis is that it ignores the possibility that the sensitivity of 

the estimates to including state-specific trends may be attributable to the failure of those trends to 

correctly capture longer-run influences on teen employment.  In particular, when the dependent variable 

(teen employment) is strongly affected by the business cycle, the use of restrictive linear trends can 

sometimes give highly misleading estimates.  We illustrate this problem in a number of steps, and in so 

doing show that ADR’s conclusion is wrong – and that controlling for longer-run influences on teen 

employment does not alter the conclusion that minimum wages reduce teen employment.  

Neumark and Wascher’s (2011) finding that the estimated effects of minimum wages on 

employment are negative and significant in specifications that include state-specific trends was based on 

data from 1994-2007.  This raises the question as to whether there is something special about the sample 

period ADR studied that makes it problematic in estimating state-specific trends.  An obvious candidate is 

the severe recession at the end of their sample period, as is the recession at the beginning of their sample; 
                                                      
8 The only exception is that Aaronson et al. (2007) suggest that increases in some states in merit aid for higher 
education reduced teen employment (explaining perhaps one-tenth of the aggregate decline in teen employment 
during the economic expansion of the 2000s).   
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the effects of these recessions on labor market outcomes for the U.S. as a whole are illustrated in Figures 

1 and 2.9  In models that include state-specific trends, the recessions at the beginning and end of ADR’s 

sample period could have a large influence on the estimated state-specific trends.  If the recessions have 

purely an aggregate influence that is common across all states, this will not happen, as the year effects 

will absorb this common influence.  But if the recessions led to cross-state deviations between teen 

employment rates and aggregate labor market conditions, then it can be difficult to sort out the longer-

term trends in teen employment from the effects of the business cycle.   

As a first indication that this may be a problem, Table 2 estimates the same models as in Table 1 

for different sample periods.  Columns (1) and (2) repeat the estimates from Table 1.  Columns (3) and (4) 

leave out the first three years of the sample period, hence excluding the early peak in the unemployment 

rate, columns (5) and (6) similarly leave out the last four years, and columns (7) and (8) leave out both.  

When either recessionary period is included, the results are fairly similar, with the inclusion of state-

specific trends substantially reducing the estimated disemployment effect.  But when the sample is 

restricted to exclude both of these recessionary periods, the evidence of disemployment effects is not 

diminished by the inclusion of state-specific trends – rather, it gets stronger.10     

The sensitivity of the estimates to including state-specific trends when the sample period includes 

either of these recessions may be attributable to pronounced state-specific patterns in the residuals in the 

recessionary periods exerting a strong influence on the state-specific trends.  That, in turn, can 

substantially alter the classification of periods in which teen employment was high or low relative to the 

predicted values net of the minimum wage, and hence can influence the estimated minimum wage effects.  

In particular, if the state-specific trends are strongly influenced by the recessionary periods, then they are 

not reflecting the longer-term trends in teen employment that ADR are attempting to capture, but rather 

                                                      
9 The grey bars indicate recessionary quarters based on NBER business cycle dates.  Note that Figure 2 points to a 
sharp decline in the teen employment rate relative to the adult rate in the last decade.  However, this kind of 
aggregate trend will be captured in the time dummies included in the regression and has no implications for the 
question of whether state-specific trends should be included.   
10 These results were very similar in specifications that included the adult wage and adult employment-to-population 
ratio, and when we defined these variables (and the adult unemployment rate) for skilled adults aged 25-64 with 
more than a high school education.   
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are picking up cyclical fluctuations that can, in other periods, generate spurious correlations that obscure 

the true effects of the minimum wage on teen employment.      

To assess whether this concern applies to ADR’s results, the model was estimated for the whole 

period and then the residuals were computed for three subperiods – the 1994-2007 period used earlier, 

and separate periods that include the recessions that bracket this period.  For each state, the share of 

residuals that was positive in each recessionary period was computed, as were the mean residuals for 

those periods.  Because the residuals should be randomly distributed about zero in a correctly specified 

model, cases where the share of residuals was sharply different from 0.5 (or the mean residual is sharply 

different from zero) in the recessionary periods are indicative of misspecification.  For many states there 

is noticeable evidence of misspecification.  As but one example, in Connecticut, for the estimation using 

the whole sample period, 75% of the residuals were positive in the 1990-1993 period, with a mean of 

0.072, and in the 2007:Q3-2011:Q2 period  81% or the residuals were positive, with a mean of 0.065.  In 

addition, for the intervening period (1994-2007:Q2) the share of positive residuals is considerably below 

one (31%), which suggests that the influence of the recessionary periods on the state-specific trends may 

lead to a worse fit in non-recessionary periods.     

To more clearly illustrate the problem of estimating state-specific linear trends when the sample 

period includes these recessionary periods, Figures 3-6 display more information on four states that had 

these kinds of patterns in the residuals.  First, the model is estimated, again including the state-specific 

trends, for the period excluding the recessions (1994-2007:Q2).  The upper-left panel of each figure 

shows the actual residuals for this period, and then the prediction errors for the two recessionary periods.  

These figures illustrate how the sizable deviations of teen employment from predicted values during these 

two recessionary periods could have a strong influence on the estimated state-specific trends in samples 

that included those periods.  For example, the upper-left panel of Figure 3 shows that, in California, teen 

employment was considerably higher than would have been predicted by the regression model in the 

period of the early-90s recession, whereas the opposite was true during the Great Recession.  This 

difference presumably reflects the different industries affected by the two recessions.  In contrast, for 

Indiana (Figure 4), teen employment fell by relatively more in both the early-90s recession and the Great 
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Recession, whereas in Tennessee (Figure 5) there are large negative residuals during the Great Recession.  

Finally, in Pennsylvania (Figure 6) teen employment remained relatively strong during both recessions.  

The implication of these data plots in the upper-left panels of the figures is twofold: first, they show that 

recessions can cause teen employment to deviate significantly from the predictions of the control 

variables of the model; and second, this pattern can differ substantially across states (and recessions).   

These results, in turn, imply that estimating state-specific trends for sample periods that include 

recessionary periods can result in trend estimates that are influenced by the effect of a recession in a state. 

In that case, the estimated trends may not adequately measure the underlying trends associated with 

longer-term factors that are not captured by the other controls included in the regression model.  This 

point is illustrated in the remaining three panels of Figures 3-6.  In these panels, the estimation period is 

extended to include one or both recessionary periods.  The residuals from the fitted regression model are 

then plotted, showing that the deviations of teen employment in the recessionary periods influence the 

regression model.  For example, for California, in Figure 3, note that in the remaining three panels (lower-

left, and both panels on the right), the deviations of the actual values of teen employment from the fitted 

values (i.e., the residuals) are much smaller for the recessionary periods than in the upper-left panel, and 

these residuals are more centered on zero.  The same is generally true for the states shown in the 

remaining figures: see, as good examples, Indiana (Figure 4, especially for the Great Recession), 

Tennessee (Figure 5), and Pennsylvania (Figure 6, especially for the recession in the early 1990’s).   

Correspondingly, the estimation of the state-specific trends over the non-recessionary period can 

be importantly influenced by the inclusion of the recessionary periods, which can, in turn, influence the 

other estimates once the trends are included.  In the upper-left panel of each figure, where the model is 

estimated for 1994-2007:Q2, a regression of the residuals for this period on a time trend will, by 

construction, yield a zero coefficient.  (The model includes a separate time trend for each state, and OLS 

residuals are orthogonal to the regressors.)   However, in the other three panels, the regression of the 

residuals on a time trend for this subperiod need not have a zero slope; indeed, if the residuals from the 

recessionary period influence the estimated trends then this slope will differ from zero.  This is illustrated 

by the fitted lines in the middle segment of each of the other three panels, which are the fitted regression 
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lines of the residuals on the time trend for the 1994-2007:Q2 subperiod.  The trend for this period – which 

still comprises most of the sample period – is usually quite different from zero. 

In sum, including the strong recessionary periods of the early 1990’s and the Great Recession in 

the estimation is evidently biasing at least some of the state-specific trend estimates away from their 

longer-run values and thus potentially confounding the estimates of the employment effects of minimum 

wages.  Two solutions to this problem are proposed.   

One is simply to exclude the recessionary periods.  As already shown in Table 2, columns (7) and 

(8), including the state-specific time trends for the 1994-2007:Q2 sample period causes the estimated 

employment effects to become more negative, in sharp contrast to the results in the other columns that 

include the recessionary periods.  These estimates provide one indication that when one adds state-

specific linear trends to the model, for a period when these trends are more likely to accurately capture the 

long-run trends in teen employment, the conclusion is no longer – to quote ADR (2011) again – that 

“Lack of controls for spatial heterogeneity in employment trends generates biases toward negative 

employment elasticities in national minimum wage studies” (p. 206).   

As another way of illustrating the sensitivity of the specifications with state-specific trends to the 

recessionary periods at the beginning and end of the sample period, the models are estimated allowing the 

state-specific trends to be of a higher order than linear.  As the preceding figures show, linear trends are 

ill-suited to capturing the variation induced by the recessions, whereas higher-order trends should be 

better suited to this – especially trends of third order and higher that can allow for multiple inflection 

points.  The estimates for the full sample period are reported in columns (1)-(4) of Table 3.  (The 

comparable estimates with no state-specific trends and with linear trends are in columns (1) and (2) of 

Table 2.)  The table shows that as long as third-order polynomials or higher are used, there are negative 

and significant effects of the minimum wage on teen employment, with point estimates very similar to the 

estimates for the standard model with just state and year fixed effects in Table 2 – and similar to the 

estimates for the subsample excluding the beginning and ending recessionary periods.  As shown in 
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columns (5)-(8), the same answer is obtained using the slightly shorter sample period that ADR use.11 

Thus, ADR’s claim that underlying trends that vary by state generate spurious evidence of negative 

minimum wage effects on teen employment is clearly not true.  Rather, only with a very specific form of 

controlling for this spatial heterogeneity – and one that is sensitive to recessionary periods at the ends of 

the sample – does the evidence of negative minimum wage effects fail to appear.12     

The analysis thus far indicates that simply including state-specific linear trends in a panel data 

analysis like the kind used to estimate the effects of minimum wages (and many other policies) can do a 

bad job of capturing other sources of long-term trends in the variables of interest.  In particular, in the 

present context, we have seen that sharp business cycle movements can be confounded with these long-

term trends in ways that generate misleading evidence.  It is more constructive, perhaps, to think about 

alternative approaches to capture these long-term trends in a way that avoids these problems, aside from 

simply dropping from the data years with sharp cyclical movements, which can throw out some of the 

policy variation.   

One possible approach is to modify the empirical specification to estimate the state-specific linear 

trends using only the data from the subsample that excludes the recessionary periods and then include 

those trend estimates in a regression over the full sample period.  Intuitively, the appeal of this approach 

is that it allows the state-specific trend estimates to more accurately reflect unmeasured determinants of 

the longer-run trends in the relative employment rates of teenagers (such as technological change).  

Indeed ADR say as much: “A state-specific linear trend variable provides a second means of controlling 

for heterogeneity in the underlying (long-term) growth prospects of low-wage employment and other 

                                                      
11 The point estimates are similar, although a bit less precise, with 6th- or 7th-order polynomials; for these 
specifications, the estimated minimum wage elasticity ranges from −0.14 to −0.17, and is significant at the ten-
percent level in three out of four cases (including both specifications using ADR’s sample). 
12 We also considered whether using more flexible functions of the regression controls would reduce the sensitivity 
of the state-specific trends to the recessionary periods.  We added second- and third-order terms of the controls and 
cross-products of the controls.  The addition of these variables did not qualitatively alter the estimates reported in 
Table 2.  The estimates without the state-specific linear trends were similar to those in Table 2, as were the (smaller, 
in absolute value) estimates with the trends added.  Given what we show in Figures 3-6 and discuss more generally, 
this is not surprising.  The movement of teen employment rates in the recessionary periods, conditional on the other 
controls, is not always consistent, so adding these non-linear terms in the regression controls in a manner that still 
imposes the same structure on all states is not a substitute for more flexible ways of capturing state-specific trends.  
If we continue to let the strong movements in teen employment in the recessionary periods drive the state-specific 
trends, we are still apparently confounding these recession-induced movements with minimum wage effects.   
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trends in teen employment” (p. 216).  Clearly, letting the strong recessions at the beginning and end of the 

sample period influence these trends violates the goal of including the trends.  

To implement this approach, note that the standard regression model with state-specific linear 

trends is: 

 (1) Yit = α + πMWit + Xitβ + Siγ + Ttδ + Si·t·θ + εit  . 

We can simply estimate this model with OLS.  If we knew θ, however, we could instead form the 

dependent variable Yit − Si·t·θ, and estimate the model  

(2)  Yit − Si·t·θ = α + πMWit + Xitβ + Siγ + Ttδ + εit  . 

This specification will give us the same estimates, although the standard errors would be understated 

because the sampling variation in estimating θ would be ignored.   

Following this intuition, we can define a subperiod of the sample, t1 to t2, and estimate equation 

(1) for this subsample.  The estimated state-specific trends for this subsample can be retained, denoted by 

the vector ߠ෠ଵଶ.  The dependent variable for the full sample period can then be detrended using ߠ෠ଵଶ, and 

equation (2) estimated over the full sample for the detrended data.  This lets us remove the state-specific 

linear trends estimated for the subperiods excluding the steep recessions, rather than the whole sample 

period.  The only complication is that the standard errors have to be corrected to account for the sampling 

variation in ߠ෠ଵଶ.  This is done by using block-bootstrapping by state, to account for the non-independence 

of observations within states.   

A slightly more complicated version of this estimator is also estimated, which allows different 

state-specific trends with a break beginning in 2000:Q4,13 restricting the trend lines to be joined in that 

quarter (so that the trend can shift, but not the state effects).  Denoting this period t1’, and defining a 

dummy variable Dt
1’2 for the period t1’ to t2, the model estimated is   

(3) Yit = α + πMWit + Xitβ + Siγ + Ttδ + Si·t· ߠଵଶ + Si·t·Dt
ଵᇱଶ – Si· Dtߠ2’1

   ଵᇱଶ·t1’ + εitߠ2’1

for the period t1 to t2.  The analysis then proceeds in the same way, detrending Yit by constructing  

                                                      
13 This is near the peak of the economy before the 2001 recession.  It is also around the period in which a trend break 
in teen labor force participation is identified in Aaronson et al. (2007), although here the trend break can occur 
differently in each state. 
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(4) Yit – {Si·t·ߠ෠ଵଶ + Si·t·Dt
෠ଵᇱଶ – Si· Dtߠ2’1

 .  {’ଵᇱଶ· t1ߠ2’1

As reported in columns (1) and (2) of Table 4, when the panel data model with state-specific 

trends is estimated in this way – however the trends are treated – the estimated effects of minimum wages 

are much more strongly negative and are statistically significant.  The estimates in columns (1) and (2) 

can be compared to those for the full period (1990 – 2011:Q2) in Table 2.  Detrending in this way, the 

estimated minimum wage effect remains negative and significant, ranging from –0.178 to –0.207 (the 

latter significant at the ten-percent level), vs. –0.165 in Table 2 without the state-specific linear trends and 

–0.074 (and insignificant) with them.  Thus, removing state-specific trends in a way that is not sensitive 

to the recessions at the beginning and end of the sample if anything leads to stronger evidence of 

disemployment effects.     

Another possible approach is to estimate the model over the full sample period after pre-filtering 

the data to remove state-specific trends.  This pre-filtering is done in two ways: (1) calculating the trend 

in each variable as a linear spline between consecutive business cycle peaks as defined by the NBER (and 

extrapolating the trends over the relevant range of the sample before the first business cycle peak and 

after the last business cycle peak);14 and (2) passing each data series (by state) through a Hodrick-Prescott 

filter using the standard smoothing parameter for quarterly data and extracting the non-trend component 

of the series.15  Estimates of the model using the data detrended in each of these ways are shown in 

                                                      
14 The rationale for this is perhaps best illustrated by the problem demonstrated earlier in Figures 3-6, namely that 
recessions can produce quite different patterns in the teen employment variable.  Doing this calculation from peak-
to-peak is a simple way to avoid this problem.    
15 The Hodrick-Prescott (or HP) filter is a common technique used in the empirical macroeconomics literature to 
remove stochastic trends from aggregate time-series data prior to estimation by statistical procedures that assume 
stationarity (see, for example, Hodrick and Prescott, 1997).  Effectively, the HP filter is a two-sided symmetric 
moving average filter that extracts the trend by smoothing the time series, with the degree of smoothing specified in 
advance by the researcher.  The smoothing parameter (often referred to as λ) penalizes variations in the growth rate 
of the trend component and can range from zero (in which case there is no smoothing) to ∞ (in which case the 
smoothed trend is linear).  For quarterly data, λ is typically set to 1600, based on research by Ravn and Uhlig (2002) 
on how the optimal smoothing parameter changes for data of varying frequencies. 

One issue that can arise in using the HP filter relates to the time-series properties of the original data.  In 
particular, Cogley and Nason (1995) find that the HP filter performs well for time-series that are stationary or trend 
stationary, but can generate spurious business cycle periodicity for time series that are difference stationary.  
Accordingly, each series in the regression was tested at the state level for the presence of a unit root using the 
standard Dickey-Fuller test, and in most cases we were able to characterize the time series as stationary or trend 
stationary.  That said, we think that the use of the HP filter to detrend the data is better viewed as providing 
supporting evidence on the robustness of the results to alternative methods of detrending rather than as the best 
technique for accounting for state-specific trends in this particular dataset. 
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columns (3) and (4) of Table 4.  Similar to the results in columns (1) and (2), the coefficients on the 

minimum wage variable are more strongly negative than when linear trends are included in the model 

estimated over the full sample period (as in the second column of Table 2), and are broadly similar to the 

coefficient obtained from estimating the model over a sample period that excludes the early 1990s 

recession and the more recent Great Recession.  

The general conclusion from these results is quite apparent.  The estimated effects of minimum 

wages on teen employment are negative and significant with or without the inclusion of controls for long-

term trends in teen employment once those long-term trends are estimated in a way that is not highly 

sensitive to the business cycle.  Based on the analyses we have done, the only way to generate the results 

in ADR (2011) – that inclusion of state-specific time trends eliminates the negative effects of minimum 

wages – is to include in the sample period the recessionary period of the early 1990s or the recent Great 

Recession, and to let these periods have a strong influence on the estimated trends by use of a highly 

restrictive specification for those trends.  The evidence suggests that the state-specific trends for these 

sample periods are influenced by the recessions in ways that do not reflect the long-run trends and that 

apparently contaminate estimates of minimum wage effects on teen employment.16        

Division × Period Interactions.  The preceding analysis suggests that there is little reason to be 

concerned about long-run state-specific trends in teen employment contaminating the estimated effects of 

minimum wages on teenagers.  Table 1 also shows, though, that the inclusion of Census division × period 

interactions renders the estimated minimum wage effect smaller and statistically insignificant.  As a 

prelude to delving into what to make of these estimates, it is useful to consider how ADR see this 
                                                      
16 Addison et al. (2009) discuss this issue in somewhat more detail.  They note that Sabia (2008) estimates models 
for retail employment (using CPS data from 1979-2004) and finds negative employment effects without state trends, 
but not when trends are included (in which case the estimates become positive).  They write that Sabia argues 
against including these trends, quoting him as saying that the trends may reduce “potentially important identifying 
information” (p. 88, cited in footnote 18).  However, they then argue that because the standard errors fall when the 
trends are included, this is not a concern.  This argument is disputable.  First, with respect to our findings, if the 
state-specific trends are mis-estimated because of the recessionary periods, they may still lead to more precise 
estimates – even though their inclusion may not yield reliable estimates of minimum wage effects.  Second, they 
omit the continuation of Sabia’s argument, that “[S]tate trends may, in fact, be capturing retail employment variation 
that the model seeks to explain” (p. 88).  That is a legitimate concern about the inclusion of state-specific trends, 
raised earlier with regard to Smith (2010).  It is also acknowledged as a problem by DLR: “The sensitivity of the 
estimates from the traditional specification … to the inclusion of a linear time trend does not necessarily imply that 
it is biased.  Inclusion of parametric trends may “overcontrol” if minimum wages themselves reduce the 
employment trends of minimum wage workers …” (p. 954).   
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specification as accounting for the spatial heterogeneity that they think needs to be controlled for in order 

to obtain unbiased estimates of minimum wage effects.  In this regard, they appeal to Figure 1 and Table 

1 (from their paper) to argue that “employment rates for teens vary by Census division and differentially 

so over time” (p. 206).   

One particular hypothesis they suggest is that minimum wages increases are endogenous in a 

manner that generates a bias towards finding negative employment effects.  As evidence, they cite Reich 

(2009), who ADR claim shows that minimum wages “are often enacted when the economy is expanding 

and unemployment is low.  But, by the time of implementation, the economy may be contracting and 

unemployment increasing, possibly leading to a spurious time series correlation between minimum wages 

and employment” (p. 212, italics added).  This is the type of mechanism that could be controlled for by 

adding the Census division × period interactions. 

One problem with this argument is that Reich actually argues the opposite, based on his evidence: 

“Minimum-wage increases are voted almost without exception and are mostly implemented in times of 

growing employment.  This pattern holds for both federal and state increases” (p. 366, italics added).  So 

Reich provides no evidence of spurious negative correlations between minimum wage increases and 

employment shocks.  Rather, he shows that there is generally growth during periods of approval and 

implementation of minimum wages, implying that, if anything, we might expect spurious positive 

correlations that would bias estimated minimum wage effects toward zero.  However, ADR’s argument is 

also problematic because the regression model already controls for aggregate state-level labor market 

conditions via the unemployment rate, and includes time dummies that will capture aggregate changes not 

picked up in the state-level controls.  

That said, there could be other omitted factors that drive patterns of teen employment 

differentially by Census division, and these could be correlated with minimum wage changes in any 

direction.  And the sensitivity of the estimates to the inclusion of the division × period interactions is 

something that is important to understand further – in particular whether the disappearance of minimum 

wage effects when these interactions are included can be attributed to controlling for spatial 

heterogeneity, as ADR argue.   
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From one perspective, ADR’s results are not especially surprising.  The inclusion of Census 

division × period interactions adds over 1,900 dummy variables (there are 20 years of monthly data for 9 

divisions) to the specification.  An obvious concern is that this extensive set of controls captures a lot 

more than just the unobserved regional variation, and in particular may remove a good deal of valid 

identifying information on the effects of minimum wages.  This is an issue that is never explored by 

ADR.   

More specifically, when the Census division × period interactions are included, all of the 

identifying information about minimum wage effects comes from within-division variation in minimum 

wages.  In this context, Figure 7 provides a useful picture of the identifying information that is available 

within Census divisions.  The top panel plots the average quarterly minimum wage by division from 

1990-2011, and the nine lower graphs plot the minimum wage by state, within division; all values are 

shown relative to the federal minimum.  The graph shows that within some Census divisions there is 

virtually no variation relative to the federal minimum (e.g., East South Central), in some divisions there is 

more variation, but little within-division identifying information (e.g., Mountain), and in other divisions 

there is both variation over time and across states (e.g., New England).17  Conversely, as the top panel 

shows, the across-division variation is rather extensive.   

What this discussion highlights is that when ADR estimate their much more saturated model, the 

identifying information is substantially reduced and identification comes from a much more restricted set 

of comparisons.  Thus, before concluding that this more restricted identification provides more 

convincing evidence on the effects of minimum wages, a number of questions should be asked.   

First, what do we find if we simply estimate the models separately by Census division, equivalent 

to estimating the model with a full set of Census division interactions?  In ADR’s saturated specification 

the effect of the minimum wage (and all other controls) is constrained to be the same in each division.  

However, if we think that the patterns of unobserved shocks to divisions differ (or that the effects of the 

same observed shocks – like technological change – differ), why would we not also allow the effects of 

                                                      
17 Much of the variation in the South Atlantic division is driven by Delaware and Washington, DC.   
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the observed variables differ by division, equivalent to estimating the model Census division by Census 

division?     

The results, which are reported in Table 5, reveal that the estimated effects of the minimum wage 

differ substantially across Census divisions, and – just as importantly – that our ability to obtain a precise 

estimate of the minimum wage effect varies substantially across divisions.  In particular, for the New 

England, West North Central, West South Central, and Mountain divisions there are significant 

disemployment effects, with elasticities ranging from −0.15 to −0.64, a rather large range.  For two other 

divisions – East North Central and East South Central – the estimated effects are also negative, although 

these are not statistically significant, and the estimates for East South Central are implausibly large.  

Finally, for the Mid-Atlantic division the estimated elasticities are positive but insignificant, and for the 

South Atlantic and Pacific divisions the estimates are near zero.   

Looking at the standard errors, and having in mind as a plausible range of elasticities from prior 

evidence something like −0.1 to −0.2, it is clear that only three divisions – New England, West North 

Central, and West South Central – yield sufficiently precise estimates to detect a statistically significant 

elasticity in this range.  And, in the three divisions that yield precise estimates, the estimated elasticities 

are negative and significant.18  Thus, looking division-by-division, which in the spirit of ADR’s study 

seems like the best way to control for spatial heterogeneity across Census divisions, yields one of two 

things – either precise estimates that point to disemployment effects, or estimates too imprecise to be 

informative.  In and of itself, these results lead to a very different conclusion than the one reached by 

ADR.   

The least restrictive approach of estimating the models separately by Census division often leads 

to very imprecise estimates.  This naturally raises the question of whether, in estimating models that 

control for spatial heterogeneity, it is really necessary to throw out information on other potential 

                                                      
18 This would not necessarily have been predicted from looking at the variation in Figure 7.  On the one hand, New 
England and West North Central exhibit a fair amount of within-division variation in minimum wages.  But West 
South Central has only one change, for Arkansas.  In contrast, other divisions that display substantial variation – 
such as South Atlantic – do not yield precise estimates. 
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comparison states on the presumption that states in other divisions cannot serve as effective controls 

because of spatial heterogeneity.   

The assumption that ADR make, but do not test in any direct way, is that the states within a 

Census division are better controls for states where minimum wages increase than are states in other 

Census divisions.  In particular, ADR argue that because minimum wage changes are correlated with 

economic shocks at the regional level, the models should include “…Census division-specific time 

effects, which sweeps out the variation across the nine divisions and thereby control for spatial 

heterogeneity in regional economic shocks …” (p. 206).  One might have expected them to provide 

convincing evidence that the counterfactual employment growth that comes from states in other Census 

divisions does not provide a good control, yet they fail to do so.19  Moreover, there is considerable 

heterogeneity among states within Census divisions (e.g., Maryland vs. South Carolina, West Virginia vs. 

Florida, or Connecticut vs. Maine), and some divisions have many states and cover huge areas (e.g., the 

Mountain division), so the a priori argument for why the within-division states provide better controls is 

unclear.   

We address the question of which states are good controls for the states with minimum wage 

increases in any period in two ways.  Our first approach uses the initial step of the Abadie et al. (2010) 

synthetic control approach to estimating treatment effects.  This method can be applied to simple settings 

when a discrete treatment (like implementing a program) is applied to one unit (such as a geographic 

area) and not to others.  The latter – which are the potential control units, and are referred to as “donor” 

units – are selected based on a matching estimator, with the choice of variables on which to match subject 

to the choice of the researcher; most typical, perhaps, would be to match on prior values or percent 

changes (where there are level differences) in the outcome of interest.20   

                                                      
19 Even if one accepted the notion that geographically-proximate states provide better controls, it raises the 
following question: Are states within a Census division better controls than closer states in other Census divisions?   
ADR, like DLR, do present some other indirect evidence that their specification better captures spatial 
heterogeneity.  This evidence is considered later, after discussing both papers; we demonstrate that this indirect 
evidence is much less persuasive than the authors claim.   
20 After ascertaining the match quality of each potential control unit, the method is then typically used to estimate 
the treatment effect by weighting control units based on quality of the match.  In the present case, however, the 
focus is only on the identification of which states are better matches as controls, because in the minimum wage 
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To draw a comparison, suppose we want to estimate the effect of a specific state minimum wage 

increase in this setting.  If we had a time period when only one state raised its minimum wage, the 

standard panel data approach would use the other 49 states as controls.  In contrast, the “case study” 

approach, typified by Card and Krueger (1994), would choose another state (or even a subset of that state) 

based on geographic contiguity.  In this context, ADR’s approach essentially restricts the set of control 

states to those in the same Census division.  Nothing in ADR’s study, however, establishes that states in 

the same division are better controls (just as nothing in the Card and Krueger study establishes that 

Pennsylvania is a good – let alone the best – control for New Jersey).  The synthetic control approach 

provides us with empirical evidence on which states are the best control states.21    

This approach is applied to the CPS data used in the preceding analyses.  In particular, a set of 

treatment observations in the data set are defined as state-quarter observations with minimum wage 

increases in that quarter and no minimum wage increase in the previous four quarters; this yields a set of 

129 potential minimum wage treatments to analyze.  For each of these treatments, a set of potential donor 

units (state-quarter observations) is defined as states with no minimum wage increase in the same quarter 

and the succeeding three quarters, and similarly no minimum wage increase in the previous four quarters.  

In these analyses, a set of variables is chosen on which to match over the four quarters prior to the 

treatment,22 and then the weights that the matching estimator assigns to each of these donor units are 

computed.   

The validity of ADR’s approach can be assessed by looking at how much of this weight is 

assigned to states in the same Census division.  A finding that most of the estimation weight is on donor 

states in the same Census division as the treatment state would rationalize ADR’s approach; states in 

                                                                                                                                                                           
setting there is continuous variation in the treatment, and there are multiple increases.   
21 Sabia et al. (2012) use the synthetic control approach to estimate the effects of the increase in the minimum wage 
in New York in 2004.  In particular, they compare estimates using geographically proximate states to those that 
instead use control states picked by the synthetic control method.  In their case the estimates are very similar, 
because the approach puts much of the weight on the geographically proximate states.  However, they do not match 
on lagged values of the dependent variable.   
22 In the matching process for each treatment case, the relative importance of each value of the matching variable 
over the four previous quarters is included in the optimization routine, but it can also be specified in advance.  To 
obtain standardized results across all treatment cases and to economize on computational requirements, we treated 
the four different values of the matching variable as equally important, although relaxing this restriction does not 
affect the results. 
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other divisions would not match as well because those other regions have different prior trends.  

Conversely, if only a little weight is put on state-quarter pairs in the same division, this would tell us that 

there is no good rationale to restrict (or even focus) attention on the states in the same Census division, 

either because spatial heterogeneity is not important, or if it is, because it is not specific to the Census 

divisions used by ADR.23  

As noted above, this approach also requires a choice of variables on which to match.  Four 

different alternatives were used.  Three of these involve matching on forms of the dependent variable: the 

log of the teen employment-to-population ratio, as well as the one-quarter change and the four-quarter 

change in that variable, each of these defined over the four pre-treatment quarters.24  Finally, matching 

was done on the residuals from the standard panel data estimator for teen employment (Table 1, column 

(1)), again for the prior four quarters.  This is not a standard type of variable on which to match, primarily 

because there typically is not a regression model underlying the application of the synthetic control 

approach; rather, the synthetic control estimator is typically used instead of a regression model.  

However, matching on the residuals is informative about the spatial heterogeneity arguments that ADR 

advance, as their contention is that the residuals for states in the same Census division share common 

features that are correlated with minimum wage changes.  Consequently, matching on the residuals will 

tell us whether the residuals for states in the same region share these commonalities and hence whether 

these states are good controls – or, in ADR’s approach, should be isolated as the control states by 

including division × period dummy variables.   

The results are summarized in Table 6.  As noted, there are 129 unique treatments that are defined 

for this analysis.  Of these, 50 have potential donors in the same Census division, covering six divisions.  

The key results are reported in columns (1)-(4); these are the weights from the matching process on states 

                                                      
23 In some cases, there were no potential donor units in a division, because all other states in the division had a 
minimum wage increase in the current quarter, the next three quarters, or the previous four; these cases were thrown 
out since clearly no weight can be assigned to state-quarter pairs in the Census division if there are no donors in the 
division for that particular treatment.  As a result, whether there is substantial weight on donor states in the same 
division is considered only when there are such donor states, to avoid overstating of the extent to which donor states 
come from other divisions.   
24 As explained in the notes to Table 6, when matching on the one- and four-quarter changes, treatment observations 
are lost at the beginning of the sample period.   
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in the same division.  With the exception of West North Central, these weights are generally well below 

one.  In 14 out of the 24 cases they are below 0.25, and in some cases they are quite close to zero.25  

Columns (5)-(7) report on the average number of divisions and states in the donor pool, and the average 

number of states in the same division.  One thing we see from these columns is that the low weight on 

states in the same division is not attributable to a small number of potential donor states from the same 

division.  For example, East North Central has the second highest average number of potential donor 

states from the same division but weights close to zero, while West North Central has one of the lowest 

number of potential donor states from the same division but the highest weights.  

These results provide striking evidence against ADR’s choice to restrict the control states to be 

states in the same Census division.  For most Census divisions, states outside the Census division tend to 

be better controls for treatment observations, whether matched on regression residuals or on levels or 

growth rates of teen employment.  In cases where most of the weight is on states outside the division, it 

may well be that the conventional panel data estimator provides more reliable estimates of minimum 

wage effects.   

A second method is also used to address the question of which states are good controls for the 

states with minimum wage increases, which we term the “ranked prediction error” approach.  The 

synthetic control approach finds a weighted average of the potential donor states to best match the 

treatment unit.  Comparing the weight that this method assigns to the control units used by ADR – in 

particular, the weight on states in the same Census division as the treatment state – is informative about 

whether the same-division states in fact provide a good control.  The second method, instead, matches up 

the treatment unit to each potential donor one-by-one.  For each of these potential controls, the root mean 

squared prediction error (RMSPE) is calculated for the donor unit relative to the treatment unit in the pre-

treatment period (the four quarters prior to the MW change in the treatment unit), for the exact same 

matching variables used for the synthetic control approach.  The analysis then asks whether the donors in 

                                                      
25 Code in R was used to do these calculations.  The software is available at 
http://www.mit.edu/~jhainm/synthpage.html (viewed July 30, 2012).    
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the same division are better controls than the donors outside the division by comparing the RMSPEs for 

the same-division and other division states.     

Some notation helps to clarify the method and the difference between the two approaches.  

Denote a specific treatment unit by T,26 the potential donors in the same division Ds
1, …, Ds

J, and the 

potential donors in other divisions Do
1, …, Do

K.  The synthetic control approach finds a weight for each 

donor, ws
1, …, ws

J  and wo
1, …, wo

K, to best match the treatment unit during the pre-treatment period, 

using an RMSPE criterion.  What was done before, then, was to sum up the weights for the donor states in 

the same division, Ws = Σjw
s
j, and ask whether this weight was large.   

What is done now is calculate the RSMPE for each potential donor, denoted rs
j, j = 1,…, J, or ro

k, 

k = 1,…, K, for the same-division and other-division donor states respectively.  These r’s are then pooled, 

and ordered based on how well they match the treatment unit based on lower RMSPE.  Finally, a 

percentile in this ranking is assigned to each donor unit, denoted Pm, m = 1,…,(J + K), where the highest 

rank is given to the donor with lowest r.27    

The percentile assigned to a donor state is defined as the percentage of donor states with a higher 

RMSPE – i.e., a worse match.  Thus, a percentile of 100 (or near 100 with a smaller number of states) 

would imply that a particular donor unit provides the best match.  A percentile near zero would imply that 

it provides the worst match.  And a percentile near 50 would suggest that it provides about as good a 

match as a randomly chosen control unit.   

If ADR are correct that same-division states provide better controls than states in other divisions, 

then the percentile ranking should be higher, on average, for states in the same division as a treatment unit 

than for states in other divisions.  To test this, the percentiles for same-division states are collected after 

doing this analysis for every possible treatment unit and the associated matching variables (exactly as in 

the synthetic control analysis), and histograms for these percentiles are constructed to see if they are in 

fact clustered at higher percentiles than would be expected if the same-division states were on average no 

                                                      
26 The treatment unit is a particular state in a particular quarter; the time subscript is omitted.   
27 For example, if there are 50 donor units, then the unit with the lowest RMSPE gets a rank of 50.  The Weibull rule 
is used to convert ranks to percentiles.  With N units, the percentile is (100×rank)/(N+1). 
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better or worse controls than other states (or, equivalently, if the distributions of the percentiles appear 

approximately uniform). 

Figure 8 displays an example of the first step of this process.  This figure simply focuses on one 

treatment unit – California in 2001:Q1.  The potential same-division donor states are Alaska, Hawaii, and 

Oregon; Washington is also in the Pacific division but had a minimum wage increase in the same quarter.  

For each of the four matching variables, the corresponding figure is the histogram of RMSPEs for all 

potential donor states, with the three same-division states highlighted with the thin vertical lines that 

extend to the top of the box.  As the figure reveals, states within the same division can provide quite good 

matches, with low RMSPEs relative to other states (e.g., Hawaii in the lower-right panel), or they can 

provide quite bad matches, with relatively high RMSPEs (e.g., Hawaii in the upper-left panel). 

Figure 9 then presents the analysis aggregating across all of the treatment units, plotting the 

histogram for the percentiles in the RMSPE distribution for each same-division state that ever appears as 

a potential donor in this analysis.  The figure indicates no tendency of these percentiles to be clustered 

towards the upper end of the distribution, and in fact the medians are around 50.  The implication is that 

the same-division control states are, on average, no better than the control states from other divisions, 

contrary to ADR’s identification strategy.    

Finally, Figure 10 plots, for each of these analyses, the medians for each of the Census divisions.  

The figure shows that the only division where other states in that division stand out as generally providing 

the best controls – in the sense that the percentile rankings are above the median – is the West North 

Central region.  Looking back at Table 6, notice that the synthetic control approach indicated a high 

weight on same-division states only for this division.  Thus, the two analyses lead to a qualitatively 

similar conclusion.  Both raise doubts about the validity of ADR’s restriction that identifying information 

be confined to states in the same division, with one notable exception – the West North Central division.   

Finally, a comparison of the estimates in Table 5 with the results from the synthetic control or 

ranked prediction error approach is instructive.  Table 6 and Figure 10 both show that the only Census 

division for which there is a strong indication that most of the control states should come from within the 

division is West North Central.  Table 5 shows that when minimum wage effects are estimated for this 
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division in isolation, there is statistically significant evidence of a negative employment effect of 

minimum wages, with an estimated elasticity −0.19 – very much in line with much of the existing 

evidence on minimum wages.   

Furthermore, Table 6 also indicates that New England and the Pacific regions assign non-

negligible weight to states in the same region.  Of the two, the estimates in Table 5 for New England are 

precise, as noted above, and these estimates also point to negative employment effects (with larger 

disemployment effects).  In contrast, Table 6 indicates that especially for the matching on residuals – 

which seems most pertinent to ADR’s argument – states in the same division get essentially no weight for 

the Middle Atlantic and East North Central.  These are two cases that, in Table 5, do not provide any 

evidence of disemployment effects.  Thus, while this analysis does not pin down one “best” estimator, it 

does indicate that (a) there is generally little rationale for ADR’s choice to focus only on the within-

division variation to identify minimum wage effects; and (b) when there is a good rationale for doing this, 

the evidence is generally quite similar to the prior evidence suggesting that teen minimum wage 

employment elasticities fall into the −0.1 to −0.2 range.   

Dube et al. (2010) 

As noted earlier, Dube et al. (DLR) focus on restaurant employment with county-level QCEW 

data from 1990-2006.  They show that the standard panel data model with county and period fixed effects 

yields negative employment effects, with elasticities in the conventional range, whereas these effects 

become small and insignificant when either state-specific linear time trends or Census division × quarter 

interactions (or both) are added.  As noted above, the inclusion of these additional controls is problematic. 

However, the main focus of this paper is on a research design based on cross-border county pairs.  

When DLR include unique dummy variables for cross-border contiguous county pairs interacted with 

period, they identify the effect of minimum wages from differences in employment changes in these 

paired counties on either side of a state border – using the within-county-pair variation in the same way 

that including division × period dummy variables in the specifications in ADR relies on the within-

Census division variation.  Given that this identification strategy is the key contribution of this paper, we 
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focus on their cross-border analysis of the effects of minimum wages on restaurant employment rather 

than on their analyses that more closely parallel ADR.    

The key estimates from this approach are reported in Table 7, replicating the results in DLR 

(Table 2, specifications 5 and 6); the estimates are nearly identical to theirs.  The first two columns use 

the balanced panel of the subset of counties in the contiguous border county-pair analysis, but include 

only county and period (quarter) fixed effects.  As in DLR, two specifications are reported – with and 

without a control for total private-sector employment.  The estimated minimum wage effects on restaurant 

employment are negative and in the old “consensus range,” with the first significant at the ten-percent 

level.  In columns (3) and (4), county-pair × period interactions are added to replicate DLR’s method of 

controlling for spatial heterogeneity.  As the table shows, the estimated minimum wage effects are near 

zero, positive, and statistically insignificant.   

Prior to getting to our main line of inquiry regarding this paper, it is worth noting that DLR 

substantially overstate the number of cross-border county pairs that are used to identify the effects of 

minimum wages in their approach.  Their Figure 2 claims to show all the state borders – and counties 

along them – that are used in their analysis.  This figure is replicated in Panel A of Figure 11, and 

includes 81 distinct state border pairs.  However, many of the borders highlighted in this figure are for 

pairs of states that did not have a minimum wage higher than the federal minimum during their sample 

period.  Panel B shows the corrected figure, which clearly includes far fewer state borders.  For example, 

while the top panel suggests that there is identifying information along the Michigan, Indiana, and Ohio 

borders, the bottom panel shows that there is in fact no minimum wage variation along these borders.  All 

told, there are only 48 distinct state border pairs with identifying information.28 

                                                      
28 Note that Panel B has the counties on the North and South Dakota border shaded.  There was a higher minimum 
wage in North Dakota (by five cents) in the first three months of 1990, so this is one border that DLR missed.   
There is also another slight discrepancy.  DLR’s data includes a higher minimum wage in Maryland in the first six 
months of 2006 – $6.15, instead of the $5.15 federal minimum wage that actually prevailed.  This correction would 
eliminate two additional state border pairs (Maryland’s border with Virginia and West Virginia).  However, in this 
paper we use their original data and making this correction to the data did not materially change the results.  Finally, 
note that, as DLR do, we use the balanced sample of counties with data in all periods.  That restriction drops some 
counties along the borders shown in the figures.     



31 
 

However, the main question concerns the underlying assumption in DLR’s identification strategy 

– that the cross-border contiguous county in the bordering state that did not raise its minimum wage is the 

best control group for the county in the state that did raise its minimum.29  As they point out, this has 

close parallels to the type of analysis in Card and Krueger (1994), who studied the effects of the 1992 

minimum wage increase in New Jersey by comparing employment changes in the fast food industry in 

that state to areas in Pennsylvania – where the minimum wage stayed fixed – on or near the border with 

New Jersey.   

How strong is the evidence for their assumption that the cross-border contiguous county is the 

appropriate control group?  Like in ADR, the authors present no direct evidence validating this research 

design.  Instead, they only speculate:  

“Contiguous border counties represent good control groups for estimating minimum wage effects 
if … a county is more similar to its cross-state counterpart than to a randomly chosen county.  In 
contrast, panel and period fixed-effects models used in the national-level estimates implicitly 
assume that one county in the United States is as good a control as any other” (Dube at al.,2010, 
pp. 949-50).  
 
To address this question of the quality of cross-border contiguous counties as controls, we again 

use the synthetic control matching estimator – this time to calculate the weight that the matching puts on 

the contiguous cross-border counties relative to the weight it puts on other potential control counties.    

The analysis exactly parallels the state-level analysis.  Potential donors to the control group are all 

counties in the states that were identified as potential donors in the previous analysis.30  The estimator is 

then implemented, and the weights put on the cross-border control counties that DLR actually use are 

computed.  The criteria for defining treatments and controls are the same as before, but now done at the 

county level.  In particular, the set of treatment counties are border counties with a minimum wage 

increase and where there was no minimum wage increase in the previous four quarters.  Potential donor 

units are county-quarter observations with no minimum wage increase in the same quarter and the 

succeeding three quarters, and similarly no minimum wage increase in the previous four quarters.  Two 

different analyses are done.  The first includes all potential donor counties.  In the second analysis, the set 
                                                      
29 There can be more than one cross-border contiguous county. 
30 The set of potential donors is restricted to the counties in the balanced sample of counties (with non-missing 
employment data) that DLR use.    
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of donor counties is restricted to reduce the computational burden of the synthetic control calculation with 

the large number of donor counties used in the first analysis.  In particular, the first step is to calculate, for 

each treatment and the potential donor counties, the RMSPE of each donor county for the four quarters 

prior to the minimum wage increase.  Then the 50 donor counties with the lowest RMSPE are used as 

potential donors, adding DLR’s contiguous cross-border counties if they are not in this set of 50.   

The match is done on the same types of variables as before defined over the four previous 

quarters: regression residuals (from a regression of the log of the ratio of restaurant employment to county 

population on the log of the minimum wage and state and period (quarter) dummy variables); the log of 

county restaurant employment relative to county population; and the one-quarter and four-quarter 

differences in logs of restaurant employment relative to county population.  As before, in some cases 

there were no potential contiguous cross-border donor units for a county, and these cases are thrown out. 

The results are reported in Table 8, and the analysis reveals that the weight put on the cross-

border contiguous counties as controls – the only controls DLR use – is very small.  For example, in Panel 

A, where there are typically just over 50 possible controls for each treatment, the weight put on the cross-

border contiguous counties is 0.033 in column (1), and of a similar if not smaller magnitude in the other 

columns.  (We view the results for the regression residuals as most pertinent to the critique in DLR.)  

Given that there are on average 1.7 cross-border contiguous counties in the donor pool, and the donor 

pool on average includes 51.3 counties,31 if we put equal weights on each county in the donor pool that 

weight would be 0.033 (1.7/51.3).  In other words, within these donor pools the control counties that DLR 

use appear no better than a random draw.  The same is true in Panel B.  In column (1) the weight on 

DLR’s control counties is 0.007, only slightly above the share of these latter counties in the potential 

donor pool (0.005).   

Next, the ranked prediction error approach is again used to assess whether contiguous cross-

border counties are better controls than other counties.  The method is the same as before, but now simply 

looking at the percentiles for the matched contiguous cross-border counties (analogous to the previous 

                                                      
31 Note that the latter number need not be 51.7 (i.e., 50 + 1.7), because the contiguous cross-border counties are 
sometimes among the 50 counties with the lowest RMSPE. 
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examination of same-division states).  Figure 12 gives an example of the distribution of RMSPE’s for one 

particular treatment unit (San Bernardino County, California in 2001:Q1), with the RMSPEs of the 

contiguous cross-border counties highlighted.32  Again, the figure reveals that some cross-border counties 

can provide good matches, while others may not.   

Figure 13 then shows the percentiles for these matched counties.  There is perhaps a slight 

tendency for these percentiles to be clustered above 50, but, in general, the histograms seem fairly close to 

uniform.  Again then, there is little in the data to support the assumption made by DLR that the 

contiguous cross-border counties are the appropriate controls.33   

One might argue that it is not surprising that the contiguous cross-border counties get so little 

weight or fail to stand out as the best control areas.  After all, as shown in column (5) of Table 8, Panel B, 

there are typically a very large number of potential donor counties for any one county’s minimum wage 

increase.  But that is precisely the point: With the large set of potential donor counties, why throw away 

most of the potential identifying information without testing which counties are in fact the best controls?    

Is there other evidence that justifies the approach in ADR and DLR? 

ADR and DLR present two analyses that are intended to show that their identification strategy is 

valid and that the more conventional panel data approach, which uses a much broader set of controls, 

leads to spurious evidence of negative minimum wage effects because of spatial heterogeneity.  The first 

is an analysis of employment changes prior to the implementation of minimum wages, and the second is 

pitched as a falsification test showing that county employment appears to respond to cross-border 

minimum wage changes. 

                                                      
32 In some cases, like this one, DLR match a treatment county to multiple adjacent counties across a state border.  
The percentiles for each of these are collected and displayed in the figure that follows.   
33 To their credit, Addison et al. (2009), who do a similar analysis, at least address this issue.  They note an example 
of a cross-border county match that is quite bad, with a 3.5% unemployment rate for one observation and a 7.7% 
unemployment rate for a matched county, and suggest that “such examples of poor matches across state borders 
could be rather common” (p. 406).  Nonetheless, they still use this method to estimate minimum wage effects.   

Another possible reason that cross-border contiguous counties may not be good controls is that they often are 
affected by the minimum wage on the other side of the border.  For example, if disemployment effects in the treated 
county lead workers to cross the state border for jobs, then the disemployment effects would be overstated.  
Conversely, if the minimum wage increase induces workers from the cross-border control county to come to the 
treated county to search for jobs (as in Mincer, 1976), then employment in the control county can fall.   



34 
 

In the first analysis, ADR estimate dynamic models for employment and earnings with long leads 

and lags, and then present figures showing cumulative effects at these leads and these lags based on the 

coefficients from these models.  For example, in their Figure 2, ADR plot the cumulative effects from 

leads of two years to lags of four years for the standard panel data specification with fixed state and 

period effects, as well as for the specification that adds both the state-specific linear time trends and the 

Census division × interactions.  The replication of their graphs for employment effects appear in the 

upper-left and upper-right panels of Figure 14.  According to ADR, the evidence of leading effects in the 

upper-left panel, in comparison with the evidence in the upper-right panel, provides “strong evidence 

against the model without controls for heterogeneity across states …” (p. 220).   

However, this evidence appears to be both overstated and misleading.  First, note that the figure 

also suggests that when the state-specific linear time trends and the division × period interactions are 

included, there appears to be fairly substantial positive effects of the minimum wage on teen employment 

– with elasticities of about 0.2 – three to four years after the minimum wage increase.  Although ADR do 

not remark on this, it seems unlikely that those estimates represent the real effects of minimum wages and 

hence they could be viewed as providing evidence against the model that includes those controls.   

Second, even though the regression estimates for their main analyses are based on quarterly data, 

the graphs they show in their Figure 2 (replicated here in the top row of Figure 14) are generated from a 

model specified with leads and lags on an annual basis.  The bottom two panels of the figure show the 

graphs from a less constrained model that specifies the leads and lags at a quarterly frequency.  Not 

surprisingly, the plots are noisier.  However, the quarterly graphs appear to show three things: (1) they do 

not give a clear indication of any kind of pre-trend in the standard panel data model; (2) they point to 

negative employment effects in the two years after the minimum wage increase that look quite distinct 

from anything occurring in the data prior to the minimum wage increase; and (3) they show significant 

positive employment effects (with elasticities in the 0.4 to 0.5 range) more than three years after the 

minimum wage increases in the model with state-specific linear trends and division × period interactions, 

which could be construed as evidence against that model.   
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DLR also present evidence suggesting that the inclusion of state-specific linear trends and Census 

division × period interactions in panel-data models eliminates spurious negative estimates of the effects of 

minimum wage for periods without a minimum wage increase.  This analysis is captured succinctly in 

their Table 3, which – for the model with just county and period fixed effects – reports the “effect” three 

years prior to the minimum wage increase, one year prior, and the “pre-trend” based on the difference 

between the cumulative effects at these two points.34  The replication of their results is reported in column 

(1) of Table 9; again, the results are nearly identical to theirs.  The evidence points to a fairly large 

cumulative negative “effect” at a four-quarter lead, and also a negative trend 12 quarters to four quarters 

prior to the minimum wage increase; both estimates are significant at the ten-percent level.  These same 

results, in somewhat more detail, are reported in their Figure 4, which shows a growing cumulative 

negative effect up to the minimum wage increase, although this cumulative leading “effect” is never 

statistically significant.  This is replicated in the upper-left panel of Figure 15. 

Note, however, that their figure also shows a positive cumulative leading effect for the model 

with state-specific linear trends and division × period interactions, and in this case the cumulative effect is 

sometimes statistically significant; see the upper-middle panel of Figure 15, which also replicates their 

Figure 4.  Not only do DLR fail to remark on this result; they essentially deny it, claiming (on p. 956) that 

this specification shows “relatively stable coefficients for the leads centered around 0.”35   

DLR also omit the estimates of this specification from their Table 3 – estimates on the basis of 

which they criticize the “canonical” panel data model as showing a pre-existing negative trend.  The 

corresponding estimates for the model including the state-specific linear trends and the division × period 

interactions (their specification 3) were computed, and are reported in column (2) of Table 9.  These 

estimates show a significant positive “pre-trend” of the same magnitude as the negative pre-trend 

obtained from the standard model.  And since negative anticipatory effects of a minimum wage are at 

                                                      
34 These models include a contemporaneous effect of the minimum wage, two leads at three years (12 quarters) and 
one year (4 quarters), but no lagged minimum wage effects.  The results discussed below for this specification and 
variants thereof are very similar if the intervening semi-annual leads (which they include in the specification on 
which the figure discussed below is based) are included as well.  
35 To be precise, this quote refers to a different specification (specification 6), but they then say that the results in 
question are similar: “Intermediate specifications … with coarser controls for heterogeneity in employment show 
similar results to the local specification (6)” (p. 956).   
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least in principle plausible (as acknowledged by ADR, p. 220), one might argue that the positive pre-trend 

raises particular doubts about the specification with state-specific trends and division × period 

interactions.  

Moreover, there is no obvious rationale for focusing only on the pre-trend calculated between the 

4th and the 12th quarters.  If the results were robust to which interval was used, it would be of little 

consequence.  However, Panel A of Table 10, which retains the specification with 12-quarter leads, but 

computes the pre-trend between the 2nd, 6th, 8th, and 10th quarters as well, shows that this is not the case.  

As columns (1) and (2) – which otherwise correspond to the specifications in Table 9 – show, it is only 

for the 4th-to-12th quarter interval that the “canonical” or standard panel-data model (column (1)) 

generates a statistically significant pre-trend, and for many of the other intervals it is quite small.  In 

contrast, for the model with county and period fixed effects, state-specific linear trends, and division × 

period interactions, the pre-trend is significant and positive in every case.  Column (3) shows the similar 

estimates for the contiguous border county-pair analysis.  These estimates are all statistically 

insignificant; however, the standard errors are large, and in some cases the coefficient estimates are of 

roughly the same absolute magnitude as the estimates in column (1).   

As Panel B of Table 10 shows, the evidence for their claim is even weaker if regression models 

that correspond to their Figure 4 – with leads only up to 8 quarters – are estimated.  In this case, the 

canonical model shows no evidence of pre-trends; the estimates are small and statistically insignificant.  

However, for the model with county and period fixed effects, state-specific linear trends, and division × 

period interactions, there is again robust evidence of a positive pre-trend.  And for the contiguous border 

county-pair analysis, the point estimates in two of three cases are large and positive, although 

insignificant given the very large standard errors.   

The table highlights in bold and italics the two estimates reported in DLR’s Table 3 for this 

specification.36  It is quite clear that the estimates DLR emphasized are the ones that most strongly make 

                                                      
36 There are alternative specifications with a control for private-sector employment added, but the results are similar.  
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their case, and that there are many more equally plausible analyses of the issue of pre-trends that produce 

much weaker evidence.   

Finally, Figure 4 in DLR – replicated in the top three panels of Figure 15 – parallels the figure in 

ADR by using data at a smoother semi-annual frequency than the quarterly frequency used in all their 

model estimates.  As shown in Panel B of Figure 15, when the figures are replicated using the data on a 

quarterly basis, the figure for specification 1 is much less suggestive of any kind of pre-treatment trend.37  

In fact, the only pronounced negative estimate is one quarter before the treatment.  In contrast, the figure 

for specification 3 still shows a pronounced upward trend prior to the treatment.  And, to us at least, it is 

not obvious that the pre-trend apparent for specification 6 – DLR’s preferred contiguous border county-

pair analysis – is less problematic.  It is true that the estimates are much less precise, as indicated by the 

wider confidence intervals.  But there is a noticeable increase in employment in the two quarters 

preceding the minimum wage increase, and the decline subsequent to that is roughly the same order of 

magnitude as the decline in the figure for specification 1.   

In a second analysis, DLR present results from what they refer to as a falsification test, which in 

their view proves that spatial heterogeneity is responsible for the apparent evidence of negative effects of 

minimum wages on employment in conventional panel data estimates (p. 958).  In particular, they define 

a narrow sample of all border counties where the minimum wage was never above the federal minimum 

wage in the sample period, and then estimate the standard panel data specification (with county and 

period fixed effects) for this sample, substituting the cross-border counties’ minimum wages.  When they 

do this, their estimated “placebo” minimum wage effect is negative, albeit smaller than its standard error, 

and it is about 60 percent of the estimated minimum wage effect for the counties bordering the placebo 

sample but using their actual minimum wages.38  These estimates are replicated in column (1) of Table 

11.  

                                                      
37 How one views these graphs is partly subjective.  But this interpretation appears to be more accurate than DLR’s 
claim that “Using leads and lags for every quarter, as opposed to every other quarter, produces virtually identical 
results” (p. 956, footnote 24).   
38 See their Appendix B for further information on how they implemented their falsification test. 
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However, one possible reason why DLR find an unexpected negative employment effect in their 

placebo sample is that they do not have a valid falsification test.  For most county pair-quarter 

observations in the sample they use (96 percent), both the cross-border minimum wage and the own-

county minimum wage are the same – equal to the federal minimum wage.  Thus, in most cases the 

placebo minimum wage assigned to the county is equal to the actual minimum wage prevailing in the 

county, which of course can affect employment.39  In other words, DLR assume that the null hypothesis 

of no spatial heterogeneity implies that the effect of the placebo minimum wage is zero, and then reject 

this null because their estimated placebo minimum wage effect is negative.  But because the “placebo” 

minimum wage they use is often the same as the actual minimum wage, we would expect a negative 

minimum wage effect in their placebo analysis even if there is no spatial heterogeneity – invalidating their 

falsification test.   

Confirming this problem, we do not find a placebo effect when the sample used for DLR’s 

falsification test is modified to avoid having a contaminated placebo sample.  Specifically, the sample is 

restricted to observations after the federal minimum wage increase in 1997, so that there is no federal 

minimum wage variation in the placebo counties that is captured by the counties matched to them.40  As 

shown in column (2) of Table 11, in this case the estimated minimum wage effect in what DLR term the 

“actual minimum wage” sample is large, negative, and statistically significant, while the estimate for the 

placebo sample is much smaller and statistically insignificant.41  In this placebo sample, there are still 

many counties paired with cross-border counties that have the same federal minimum wage (although 

now it does not vary); only 7 percent of the county pair-quarters have a minimum wage difference.  It is 

possible to further restrict attention to an even more informative placebo sample by focusing on county 

pairs where there is at least one minimum wage difference in this sample period between the true 

                                                      
39 Note that the effect of federal minimum wage variation is still identified in their placebo sample when county and 
period fixed effects are included as long as the federal minimum wage is not binding in some states. The minimum 
wage change induced by federal variation will vary across placebo counties depending on the level of the state 
minimum wage in the cross-border county. 
40 Their sample ends before the most recent round of federal increases beginning in 2007.  The sample begins in 
1998:Q3, one year after the last federal minimum wage increase, to avoid lagged effects of federal minimum wages.  
But the results were very similar if the sample starts in 1997:Q4, the first quarter after the last federal increase.  
41 The standard errors in both samples are a good deal smaller, likely because there is much more state minimum 
wage variation in the latter part of the sample.   
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minimum wage in the placebo county and the cross-border minimum wage that is used in the falsification 

test; after all, it is this variation that is informative about their falsification test.  When this is done, in 

column (3), the estimated minimum wage effect in the placebo sample falls to zero, while the estimated 

minimum wage effect in the actual minimum wage sample is little changed.  These estimates provide yet 

additional evidence refuting DLR’s claim that spatial heterogeneity generates spurious evidence of 

disemployment effects of minimum wages.   

Discussion 

 Echoing long-standing concerns in the minimum wage literature, the studies by ADR and DLR 

attempt to construct better counterfactuals for estimating how minimum wages affect employment.  When 

they narrow the source of identifying variation – looking either at deviations around state-specific linear 

trends or at within-region or within-county-pair variation – they find no effects of minimum wages on 

employment, rather than negative effects.  There is some intuitive appeal to what they do, as their 

analyses have parallels to the “case-study” method of estimating minimum wage effects best typified by 

Card and Krueger (1994).42  The problem is that they do nothing to assess the validity of the different 

controls they effectively obtain by using these methods.  Indeed, the analysis suggests that the reason they 

obtain evidence at odds with disemployment effects is that they throw out lots of valid identifying 

information and likely end up with less valid controls.   

Interestingly, the only time ADR question the validity of their approach is with regard to their 

evidence of statistically significant negative effects on hours of Hispanic teens.  In response to these 

findings, they write “the puzzling and somewhat fragile evidence for Hispanic teens may be driven by the 

concentration of Hispanic teens in a small number of Census divisions, on the one hand, and the small 

number of Hispanic teens in most states at the beginning of the sample period.  These patterns reduce the 

ability to estimate effects for this group robustly within our methodology” (2011, p. 234).  Similarly, they 

argue that “[I]ncluding spatial controls renders the estimates for Latinos particularly imprecise and 

fragile” (p. 208).  But in their Table 7, on which this discussion is based, the estimates are actually more 

                                                      
42 Indeed, DLR describe the estimation using contiguous cross-border county pairs, with county pair × period 
interactions, as “producing a pooled estimate from individual case studies” (2010, p. 957).    
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precise for Hispanics than for blacks, yet they conclude that “controlling for spatial heterogeneity by 

using within-Census division variation is particularly important when looking at African-American 

employment effects” (p. 234).   

Rather than judgmentally deciding where and when to include area-specific time trends or region 

× period dummies and thus what types of potentially identifying information are valid, it is important to 

ask the following question of all of their results:  Out of their concern for avoiding minimum wage 

variation that is potentially confounded with other sources of employment change, have they thrown out 

so much useful and potentially valid identifying information that their estimates become uninformative or 

invalid?  That is, have they thrown out the “baby” along with – or worse yet, instead of – the 

contaminated “bathwater”?  Our analysis suggests they have.  Moreover, despite the claims made by 

ADR and DLR, the evidence that their approaches provide more compelling identifying information than 

the standard panel data estimates that they criticize is weak or non-existent.  Indeed, the evidence suggests 

that the standard panel data model provides better identification than the methods they use.     

IV. Other Recent Work on Minimum Wages 

There are a number of other significant studies on the employment effects of minimum wages 

that have been written in recent years, some of which also depart from the standard state panel data 

analysis that was used in the new minimum wage research.  While it is beyond the scope of this paper to 

provide a detailed analysis and critique of these papers, it is noteworthy that the evidence from these 

studies tends to point to stronger evidence of disemployment effects of minimum wages.  Moreover, 

these studies raise substantively important issues and, in some respects, provide more compelling reasons 

to pursue their extensions of the standard state panel data approach than do DLR and ADR.   

Thompson (2009) notes that past studies estimating minimum wage effects at the state level 

ignore considerable within-state heterogeneity in wage levels and local labor market conditions.  This 

heterogeneity implies that minimum wages may be binding for teenagers – and have negative 
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employment effects – in many regions within a state, but that the aggregation to the state level can mask 

these negative effects.43   

Thompson argues that counties better represent labor markets for teens than do entire states, 

given constraints that keep them close to where they live.  He uses data from the Census Bureau’s 

Quarterly Workforce Indicators, which is based on the Longitudinal Employer-Household Dynamics 

(LEHD) program.  One cannot calculate a teen employment rate from these data, so Thompson instead 

uses as the dependent variable the teen share of total employment.44  Numerous controls are constructed 

from these data, and average quarterly earnings of teenagers in the quarter before a minimum wage 

increase are used to capture how binding minimum wages are likely to be in a county and period.  The 

heterogeneity in this average across counties within states is quite striking, providing a strong rationale 

for looking at differences in minimum wage effects in low- versus high-earnings counties.   

The key estimates are based on a difference-in-differences estimator that expands on the usual 

state-level analysis by allowing for differences in effects between high- and low-earnings counties.  In 

particular, the analysis focuses on the 1996 and 1997 increases in the federal minimum wage, using data 

from the first quarter before and after each of the increases only from the states for which the increase in 

the federal minimum wage raised the effective minimum wage in the state.  The specification for the teen 

employment share includes, like in other analyses, adult labor market controls, the teen population share, 

a dummy variable for the period after the federal increase, a dummy variable for low-earnings counties, 

and – to identify the differential effect of the federal minimum wage increase on the low-earnings (or 

high-impact) counties  – an interaction between the dummy variable for low-earnings counties and the 

dummy variable for the period after the federal minimum wage increase.45  In addition, some 

specifications include state fixed effects, in which case the effect of the minimum wage in low- versus 

                                                      
43 This is one of very few papers that focus on variation in minimum wage effects depending on how binding 
minimum wages are, although of course the emphasis on teens or other low-skilled workers in much of the literature 
is a nod in this direction.  An earlier attempt to account for how binding minimum wages are at the state level is 
Neumark and Wascher (2002).  Thompson’s approach is less structural, and focuses (importantly, it would appear) 
on within-state variation in how binding minimum wages are.  
44 This dependent variable has been used in other research on minimum wages as well. 
45 There are also continuous versions of this specification.   
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high-earnings counties is identified only from the within-state differences in the impact of the minimum 

wage increase on the change in the teen employment share in these counties.   

For both of the federal minimum wage increases, the estimates uniformly show an adverse 

employment effect on teenagers in the counties where teenagers have low average earnings.  Note, also, 

that Thompson’s analysis considers the types of factors that DLR and ADR suggest can lead to spurious 

evidence of disemployment effects of minimum wages.  First, by identifying the effects from differences 

between counties with low versus high teen earnings, they control for state-specific changes or trends that 

could be correlated with minimum wage changes.  Moreover, because the minimum wage variation 

comes from federal legislation, and the identification comes from cross-county variation within states, 

any endogeneity of state minimum wages is unlikely to be a confounding influence.  Second, in a 

“placebo test,” Thompson uses the same methodology to estimate minimum wage effects two years later 

when the federal minimum wage did not change.  In this case Thompson finds no effect, suggesting that 

differential trends for low- and high-earnings counties do not drive the results.  An implication of these 

analyses is that we should be cautious in concluding, as DLR and ADR do, that spatial heterogeneity 

leads to spurious evidence of disemployment effects.  The problem, instead, may be that the poorly-

motivated estimators DLR and ADR use do not correct for spatial heterogeneity, but instead yield 

spurious evidence that minimum wages do not reduce employment of low-skilled workers 

Of course, as Thompson points out, these results do not imply that state level analyses give 

misleading estimates of the state-level impact of minimum wages (p. 343).  However, the results do show 

that the workers for whom the minimum wage would be expected to have the greatest impact – and for 

whom, therefore, minimum wages potentially offer the largest wage gains – are often adversely affected 

by the minimum wage.  As Thompson suggests, this is a “geographic” perspective on the same point 

made by Neumark and Wascher (2008) that the disemployment effects of minimum wages are more 

apparent when the focus is on those individuals likely to be most affected. 

Baskaya and Rubinstein (2011) follow the more conventional state-level panel data framework in 

estimating the effects of minimum wages on teenagers, but explicitly focus on the endogeneity of state 

minimum wage changes – in particular the variation that is not driven by federal minimum wages.  The 
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core of the authors’ approach is to recognize that in states that have tended to let the federal minimum 

wage be binding (by having a lower state minimum wage or no state minimum wage), the variation in the 

effective minimum wage is primarily federal.  In these states, the minimum wage variation used to 

identify minimum wage effects is less likely to be influenced by state economic conditions, and is 

therefore more likely to reveal the causal effects of minimum wages.  Conversely, in states where the 

effective minimum wage tends to be determined by the state minimum wage, endogeneity is more likely 

to be a problem.   

They take a couple of empirical approaches, but their main estimates seek to eliminate the 

endogeneity of minimum wages by instrumenting for the effective state minimum wage (the usual 

variable used in state-level panel data analyses) with interactions between the federal minimum wage and 

the state’s propensity to let the federal minimum wage be binding.46  This propensity is predicted from a 

model that includes variables capturing the political ideology of the state in the 1960s, per capita income 

in the 1960s, and, in some specifications, lagged data on whether the federal minimum wage was binding 

in the state.  The idea behind this instrument is that the federal minimum wage is exogenous to state 

economic conditions, and will have a greater impact on the effective minimum wage in states that have 

historically let the federal minimum wage be binding; this latter variation is also likely to be exogenous 

because it is inferred from historical experience rather than the current decision about which minimum 

wage is binding, which could be endogenous.   

In the data set the authors use, which is constructed from May CPS files extending from 1977-

2007, the conventional panel data estimator yields negative and significant effects of minimum wages on 

teen employment.  But these weaken if Census region × year interactions are added (paralleling some of 

ADR’s results), and become insignificant when richer year effects are added that have some parallels to 

state-specific linear trends (see their Table 3).  But when they implement their instrumental variables 

procedure, they find robust evidence of a strong negative effect of minimum wages on teenage 

                                                      
46 Note that this instrument varies by state and year, so that they can estimate this model including fixed state 
effects.   
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employment, with an elasticity of around −1.  The authors also present a number of other analyses that 

bolster the validity of their identification strategy.  

In a sense, by worrying about the endogeneity of state minimum wages, the Baskaya and 

Rubinstein study is concerned with the same issues as ADR and DLR.  However, ADR and DLR simply 

posit – with no supporting evidence or even much of a compelling argument – alternative identification 

strategies.  In contrast, Baskaya and Rubinstein both present a substantive argument for their 

identification strategy, and present auxiliary evidence that backs it up.  First, they present evidence from 

regressions of effective state minimum wages on lagged labor market conditions and find that state 

minimum wages tend to be set lower when the labor market is weak.  Second, this effect is attenuated 

(essentially completely) in states that let the federal minimum wage be binding.  These results support 

their contention that state minimum wage increases are procyclical, so that failure to account for 

endogeneity could mask the negative effect of minimum wages, biasing the estimates toward zero.47  And 

they provide some evidence that bolsters their strategy of exploiting federal minimum wage variation to 

identify the effects of the minimum wage on teen employment, showing that it is the minimum wage 

variation induced by the interaction between the federal minimum wage and its propensity to be binding 

that generates their negative employment effects, rather than additional state-level variation in the 

minimum wage that is correlated with the instrument.   

The identification strategy that Baskaya and Rubinstein use merits further consideration.  

Nonetheless, the paper provides an example of a study that considers what ADR and DLR would term 

“spatial heterogeneity” in minimum wage effects and finds strong evidence of disemployment effects of 

minimum wages.  This is directly at odds with the conclusions from the problematic methods that ADR 

and DLR use to address this issue.    

V. Beyond Employment Effects: State Minimum Wages and Minimum Wage Compliance 

This paper focuses on the employment effects of the minimum wage, which is the principal 

policy debate about one of the most prominent – and almost surely the most studied – programs that the 

                                                      
47 Of course this does not establish the endogeneity of teen employment rates conditional on adult unemployment 
rates, or the direction of the bias that this endogeneity would create.    
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Department of Labor administers.  However, federal minimum wage policy is set by the Congress and the 

President.  The more direct purview of the Department of Labor has to do with enforcement, and here, we 

would argue, the research record is remarkably thin; there is, in fact, alarmingly little research on the 

extent to which employers comply with minimum wage laws.  The lack of attention to this topic is 

somewhat surprising given that it is an important focus of the Wages and Hours Division of the 

Department of Labor.  According to the Department, there were 10,000 minimum wage violations in 

fiscal year 2008 affecting 42,000 workers.  In addition to the fines levied by the Department, the 

noncompliant employers had to pay back wages totaling about $16 million to these workers.  By industry, 

violations were most prevalent in the restaurant, agriculture, and health care industries.48   

In terms of the research that does exist, Ashenfelter and Smith (1979) laid out the basic 

economics of an employer’s decision whether or not to comply with the minimum wage law.  In 

particular, they developed a model in which employers compare the benefits (lower wages) of 

noncompliance against the penalties associated with being caught multiplied by the probability of being 

caught.  According to the model, noncompliance should rise with increases in the minimum wage relative 

to the market wage and should fall with higher penalties or greater enforcement efforts.  A few other 

papers (Grenier, 1982; Chang and Ehrlich, 1985; Yaniv, 2001) added some modifications to the model to 

attempt to make it conform better to actual Labor Department enforcement policies, but to our knowledge 

there has been little in the way of empirical work on this topic.   

There is a paper by Sellekaerts and Welch (1984) that arose out of the work of the Minimum 

Wage Study Commission, which finds that noncompliance was more frequent in low-wage sectors and 

for classes of workers more likely to be paid the minimum wage.  More recently, Weil (2005) studied 

compliance in the low-wage apparel industry and found evidence that the “hot goods” compliance 

program agreements developed by the Labor Department in the late 1990s to target supply chain 

dynamics were effective in increasing compliance with the FLSA in Los Angeles.  Finally, Bernhardt et 

al. (2009) conducted an extensive study of minimum wage (and other) violations.  Among their many 

                                                      
48 See http://www.dol.gov/whd/statistics/2008FiscalYear.htm (viewed March 15, 2012). 
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findings are extensive minimum wage violations among low-wage workers, and more violations for 

foreign-born workers (especially Latinos and those with less proficient English) and for women.  In our 

view, additional research on the determinants of compliance with minimum wage laws, the effectiveness 

of alternative methods of enforcement of minimum wage laws, and their interactions with the economic 

effects of minimum wages would be welcome additions to the literature, and likely of great value to the 

Department of Labor.    

From a research perspective, there is also a strong need for more information about compliance 

with state minimum wage laws.  The research discussed in this paper is simply the latest work in a long 

line of research (mainly since the early 1990s) focusing on variation in minimum wages generated by 

state minimum wage laws.  If compliance differs by state, however, then estimates of the effects of state 

minimum wage laws can be biased.  In the simplest case, we might expect weaker evidence of effects 

where there is more noncompliance.  If we extend our perspective on compliance to the avoidance of 

minimum wage laws by hiring in the informal, unregulated market populated in large part by illegal 

immigrants (as suggested by the Bernhardt et al. study), then there is a richer set of possibilities.  For 

example, where there is a large and elastic supply of illegal immigrants, a state minimum wage may 

induce stronger disemployment effects among teenagers as employers can substitute more easily towards 

illegal immigrants.  And in locations where workers cross state borders in substantial shares, 

identification strategies based on comparisons along a border can also be sensitive to the supply of illegal 

immigrants.  Thus, thinking about minimum wage compliance at the state level introduces potentially 

substantial sources of variation in minimum wage effects across states that, to the best of our knowledge, 

have not been explored.      

VI. Conclusions 

While two of us have been involved in the debate about the employment effects of minimum 

wages for more than two decades, the debate has raged for much longer, roughly coinciding with the 

establishment of the Department of Labor 100 years ago.  To a remarkable degree, the empirical evidence 

has focused on similar questions throughout this period: How does a minimum wage affect employment?  
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Which workers are affected?  And how do we ensure that we are getting a valid comparison that isolates 

the effect of the minimum wage?   

Given the continuing ebb and flow of this debate, it would have been shortsighted to think that 

the 2008 book that two of us wrote (Neumark and Wascher, 2008), despite surveying a massive amount 

of evidence, would have settled the issue.  And indeed it has not.  In particular, Dube et al. (2010) and 

Allegretto et al. (2011) present evidence and a forceful critique of much of the prior research on the 

employment effects of minimum wages.  And, returning to the long-standing issue of how to construct a 

counterfactual, they argue that the evidence of negative employment effects for low-skilled workers is 

spurious, and generated by other differences across geographic areas that were not adequately controlled 

for by researchers.  They put forth a self-proclaimed “fourth generation” of minimum wage studies that 

control for this spatial heterogeneity and conclude that once one does this, there is no evidence of 

disemployment effects of minimum wages. 

Our analysis suggests, however, that their methods are flawed and give misleading answers.  In 

particular, neither study makes a compelling argument that its methods isolate more reliable identifying 

information (i.e., a better counterfactual).  In one case – the issue of state-specific trends – we explicitly 

demonstrate the problem with their methods and show how more appropriate ways of controlling for 

unobserved trends that affect teen employment lead to evidence of disemployment effects that is similar 

to past studies.  In the other case – identifying minimum wage effects from the variation within Census 

divisions or, even more narrowly, within contiguous cross-border county pairs – we show that the 

exclusion of other regions or counties as potential controls is not supported by the data.  Moreover, when 

it is supported by the data, the evidence is again consistent with past findings of disemployment effects.     

In addition to the flaws in the studies by ADR and DLR that our evaluation identifies, other 

recent studies more convincingly address potential biases in state-level panel data that the ADR and DLR 

studies were intended to address, and find negative employment effects of minimum wages.  Together, 

the evidence invalidates the strong conclusions that ADR and DLR draw – that there are “no detectable 

employment losses from the kind of minimum wage increases we have seen in the United States” (DLR, 
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2010, p. 962), and that “Interpretations of the quality and nature of the evidence in the existing minimum 

wage literature …,  must be revised substantially” (ADR, 2011, p. 238).   

Can one come up with a dataset and an econometric specification of the effects of minimum 

wages on teen and low-skilled employment that does not yield disemployment effects?  As in the earlier 

literature, the answer is yes.  But prior to concluding that one has overturned a literature based on a vast 

number of studies, one has to make a much stronger case that the data and methods that yield this answer 

are more believable than the established research literature, and convincingly demonstrate why the studies 

in that literature generated the misleading evidence that it is claimed they did.  Our analysis indicates that 

the studies by Allegretto et al. (2011) and Dube et al. (2010) claiming to overturn evidence that minimum 

wages reduce employment fail to meet these standards. 

We have never claimed that the disemployment effects of minimum wages are large.  Nor have 

we claimed that they necessarily imply that minimum wages cannot help poor and low-income families 

(Neumark and Wascher, 2008, p. 190), although the much more limited evidence suggests that on net they 

do not.  But we believe that the research record still shows that minimum wages pose a tradeoff of higher 

wages for some against job losses for others, and that policymakers need to bear this tradeoff in mind 

when making decisions about increasing the minimum wage.   

We also believe there are more general lessons to be learned from this paper.  Although the 

results in the paper focus on the evidence on the employment effects of minimum wages, a similar set of 

issues carries over to the analysis of essentially any kind of policy with regional variation that might be 

studied with panel data on these regions over time.  When doing these kinds of panel data studies, 

researchers often make the same choices as ADR and DLR – such as including state-specific linear time 

trends, or narrowing the scope of the geographic areas used for controls by either restricting the sample or 

estimating a more saturated model that reduces the identifying information to variation within a smaller 

region.  Our evidence suggests that these kinds of analyses, even if well motivated, can deliver misleading 

evidence of either the presence or absence of effects.  We do not advocate ignoring the potential biases 

introduced by differences in the regions where policies are enacted.  We do, however, advocate using the 

data to explore more fully what specifications provide the most reliable counterfactuals, and we discuss 



49 
 

some methods for doing this.  After all, ADR and DLR are essentially pursuing identification strategies, 

and in other contexts – such as instrumental variables estimation – we generally ask hard questions about 

the validity of the identifying assumptions used in those analyses.   

In particular, if these kinds of analyses deliver robust results that are insensitive to detrending or 

narrowing of control areas, then they can clearly bolster the evidence.  If, however, they point to different 

evidence, then the researcher has to seriously explore which analysis is most convincing, rather than 

simply relying on a priori hunches.  In the case of removing long-term trends from panel data over time, 

we have suggested methods that increase the likelihood that business cycle movements are not 

confounded with long-term trends.  And in the case of restricting the set of control areas, we have shown 

how to use existing methods to obtain evidence on which areas are better controls.  We believe these 

kinds of approaches – and others more appropriate to different types of analyses – should be incorporated 

into what can otherwise be a somewhat blind approach to robustness analysis.  And we would suggest 

that these kinds of approaches are particularly imperative in research in which a particular type of 

robustness analysis is claimed to overturn a large body of existing evidence.   

Finally, as this conference is part of the centennial celebration of the Department of Labor, which 

enforces minimum wage laws rather than deciding upon them, we have touched on the under-researched 

issue of minimum wage compliance.  There is no question that we need to know a lot more on that issue 

than we do now.  Moreover, the issue is more complex than we might think.  A simplistic view would 

suggest that weak enforcement would imply weaker effects of minimum wage laws, and conversely.  But 

once one takes account of illegal or off-the-books workers – that is, once one moves beyond thinking 

about enforcement in the textbook “covered” sector, and thinks also about how enforcement changes the 

sizes of the covered and uncovered sectors – this relationship could be different.  Stronger enforcement 

that effectively reduces the elasticity of supply of unregulated labor to minimum wage employers could 

end up reducing the impact of the minimum wage on affected workers in the regulated market.  Given the 

dearth of research on compliance, we can only speculate on how this actually plays out.  But greater 

knowledge of enforcement and compliance with federal and state minimum wage laws, and how this 

might vary across on-the-books regular employees and workers in the informal or underground economy, 
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could contribute in two ways: it would increase our understanding of the effects of minimum wages on 

employment; and it would be informative about the consequences of the extent and the targeting of 

minimum wage enforcement. 
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Figure 1: Aggregate and Teenage Unemployment Rates 

 
The grey bars indicate recessionary quarters based on NBER business cycle dates. 

 
 

Figure 2: Aggregate and Teenage Employment Rates

 
See notes to Figure 1.
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Figure 3: Residual Plots for California 

The upper-left panel shows the residuals from estimating the model with state-specific linear trends for 
1994-2007:Q2; for the quarters outside this period prediction errors are shown.  The lower-left, upper-
right, and lower-right panels, respectively, show the residuals for the following estimation periods: 
1990-2007:Q2; 1994-2011:Q2; and 1990-2011:Q2.  These three panels also display the fitted 
regression lines of the residuals on the time trend for the 1994-2007:Q2 subperiod.   
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Figure 4: Residual Plots for Indiana  

 
See notes to Figure 3.  
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Figure 5: Residual Plots for Tennessee 

 
See notes to Figure 3. 
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Figure 6: Residual Plots for Pennsylvania  

 
See notes to Figure 3. 
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Figure 7: Between- and Within-Census Division Variation in State Minimum Wages 
(Difference Relative to Federal Minimum Wage, in Dollars per Hour) 
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Figure 8: Example of RMSPE Calculation at State Level

 
Treatment state: CA, 2001:Q1.  Same-division control states are AK, HI, and OR.  (WA is excluded 
because it had a minimum wage increase in the same quarter.)  The thick bars are the histogram.  The 
thin vertical lines extending to the top of the graph show the placement of the RMSPEs for each control 
state in the same division as the treatment state.   
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Figure 9: Distributions of Percentiles of Same-Division States’ RMSPEs 

 
Ranks are converted to percentile rankings using the Weibull rule described in the text. 
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Figure 10: Medians of Percentiles of Same-Division States’ RMSPEs, by Census Division 

 
The Census division “plotting symbol” shows the median of the RMSPE percentile for the states in 
the indicated division.  
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Figure 11: Matched County Pairs Along State Borders for DLR Analysis 
 

A. DLR’s Figure 2, eyeballed  
(81 state borders with MW differential over 1990:Q1-2006:Q2) 

 

 

 

B. Corrected version of DLR’s Figure 2, using their minimum wage data  
(48 state borders with MW differential over 1990:Q1-2006:Q2) 

 

 



 
 

Figure 12: Example of RMSPE Calculation at County Level 

 
Treatment county: San Bernardino, CA, 2001:Q1.  Contiguous cross-border control counties are La 
Paz and Mohave, AZ, and Clark, NV.  The thick bars are the histogram.  The thin vertical lines 
extending to the top of the graph place the RMSPEs for the control counties.   
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Figure 13: Distributions of Percentiles of Contiguous Cross-Border Counties’ RMSPEs 

 
Ranks are converted to percentile rankings using the Weibull rule described in the text. 
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Figure 14: Time Path of Cumulative Employment Elasticity in Response to 
Minimum Wage Change, ADR

 
“Specification 1” is the specification with state and period fixed effects.  “Specification 
4” also includes the state-specific linear trends and the division × period interactions.  
The top graphs use the data from ADR (2011) and replicate the employment results in 
Figure 2 from that paper, with annual leads and lags of the minimum wage variable.  
The bottom graphs use the same data but include leads and lags at a quarterly 
frequency, which corresponds to the frequency of the minimum wage variable used in 
all of the regression analyses in ADR.  The dashed lines show 90-percent confidence 
intervals. 
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Figure 15: Time Path of Cumulative Employment Elasticity in Response to Minimum Wage Change, DLR

 
“Specification 1” is the specification with county and period fixed effects.  “Specification 3” also includes the state-specific linear trends and 
the Census division × period interactions.  “Specification 6” includes county-pair × period interactions. Specifications 1 and 3 use the all-
county sample, while Specification 6 uses the contiguous border county-pair sample.  The top graphs use the data from DLR (2010) and 
replicate the employment results in Figure 4 from that paper, with semi-annual leads and lags of the minimum wage variable.  The bottom 
graphs use the same data but include leads and lags at a quarterly frequency, which corresponds to the frequency of the minimum wage variable 
used in all of the regression analyses in DLR.  The dashed lines show 90-percent confidence intervals.   
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Table 1: The Effects of the Minimum Wage on Teen (16-19) Employment, 
1990 – 2011:Q2 

(1) (2) (3) (4) 

 Dependent variable: Log (E/P) 

Log(MW) -.165***

(.041) 
-.074 
(.102) 

-.098 
(.097) 

.009 
(.058) 

Unemployment rate -4.20*** 
(.427) 

-3.83*** 
(.387) 

-3.86*** 
(.403) 

-3.12*** 
(.397) 

Relative size of youth 
population 

.100 
(.316) 

.218 
(.336) 

.126 
(.360) 

.161 
(.310) 

State effects Yes Yes Yes Yes 

Time effects Yes Yes Yes Yes 

State trends No Yes No Yes 

Region-specific time 
effects 

No No Yes Yes 

R2 .877 .893 .911 .921 

N 4386 4386 4386 4386 

Estimates are weighted by teen population.  Standard errors are clustered at the 
state level.  ***, **, and * indicate estimates that are statistically different from 
zero at the one-, five-, and ten-percent levels, respectively.  
 
 

  



 
 

Table 2:  Sensitivity of Minimum Wage Effects to Sample Period 

 1990 – 2011:Q2 1994 – 2011:Q2 1990 – 2007:Q2 1994 – 2007:Q2 

(1) (2) (3) (4) (5) (6) (7) (8) 

 Dependent variable: log(E/P) 

Log(MW) -.165*** 

(.041) 
-.074 
(.102) 

-.110** 
(.047) 

-.085 
(.081) 

-.195*** 
(.049) 

-.109 
(.099) 

-.148** 
(.060) 

-.229** 
(.095) 

Unemployment 
rate 

-4.20*** 
(.427) 

-3.83*** 
(.387) 

-4.35*** 
(.441) 

-3.83*** 
(.441) 

-3.48*** 
(.436) 

-3.69*** 
(.427) 

-3.60*** 
(.473) 

-1.40*** 
(.469) 

Relative size of 
youth 
population 

.100 
(.316) 

.218 
(.336) 

.169 
(.380) 

.428 
(.359) 

.526 
(.344) 

.514 
(.322) 

.732 
(.409) 

.267 
(.377) 

State effects Yes Yes Yes Yes Yes Yes Yes Yes 

State trends No Yes No Yes No Yes No Yes 

R2 .877 .893 .883 .898 .845 .857 .851 .863 

N 4386 4386 3570 3570 3570 3570 2754 2754 

Estimates are weighted by teen population.  Standard errors are clustered at state level.  ***, **, and * indicate 
estimated effects that are statistically different from zero at the one-, five-, and ten-percent levels, respectively. 
  



 
 

Table 3:  Sensitivity of Minimum Wage Effects to Polynomial Order of State-Specific “Trends”  

 1990 – 2011:Q2 1990 – 2009 (ADR sample) 

(1) (2) (3) (4) (5) (6) (7) (8) 

 Dependent variable: log(E/P) 

Order of polynomial 
for state-specific 
“trends” 

2nd 3rd 4th 5th 2nd 3rd 4th 5th 

Log(MW) -0.051 
(0.85) 

-0.230*** 
(0.073) 

-0.180** 
(0.069) 

-0.185** 
(0.073) 

-0.071 
(0.086) 

-0.219*** 
(0.066) 

-0.169** 
(0.078) 

-0.201** 
(0.094) 

Unemployment rate -3.591*** 
(0.494) 

-2.571** 
(0.454) 

-2.376** 
(0.461) 

-2.378*** 
(0.492) 

-3.303*** 
(0.477) 

-2.425*** 
(0.429) 

-2.495*** 
(0.446) 

-2.412*** 
(0.455) 

Relative size of youth 
population 

0.490 
(0.296) 

0.402 
(0.280) 

0.412 
(0.291) 

0.354 
(0.308) 

0.471* 
(0.281) 

0.409 
(0.280) 

0.333 
(0.267) 

0.271 
(0.289) 

R2 0.899 0.903 0.906 0.908 0.881 0.886 0.889 0.892 

N 4386 4386 4386 4386 4080 4080 4080 4080 

Estimates are weighted by teen population.  Standard errors are clustered at state level.  Models include state dummy variables interacted with 
polynomial in time, with order of polynomial as indicated.  ***, **, and * indicate estimated effects that are statistically different from zero at 
the one-, five-, and ten-percent levels, respectively.



 
 

Table 4: The Effects of the Minimum Wage on Teen (16-19) Employment, Estimates Using 
Alternative Detrending Methods, 1990 – 2011:Q2 

(1) (2) (3) (4)

Dependent variable: log (E/P)

Method Single trends, 
estimated from 

subperiod excluding 
severe recessions 

Split trends,
estimated from 

subperiod excluding 
severe recessions 

 
 

Peak-to-peak 
trends 

 
 

HP filter (λ = 
1600) 

Log(MW) -.178** 
(.090) 

-.207* 
(.106) 

-.319** 

(.126) 
-.184*** 
(.068) 

Unemployment 
rate 

-3.06*** 
(.307) 

-3.20*** 
(.568) 

-3.52*** 
(.760) 

-2.38*** 
(.468) 

Relative size of 
youth population 

.112 
(.285) 

.521* 
(.308) 

.650 
(.486) 

.304 
(.280) 

N 4386 4386 4386 4386 

Estimates are weighted by teen population.  In columns (1) and (2), state-specific trends are estimated from 
1994:Q1-2007:Q2 and then extrapolated to 1990:Q1-2011:Q2.  For split trend specification, trend is a 
spline with a knot in 2000:Q4.  (These estimates are based on equations (1)-(4) in the text.)  In column (4), 
as noted in the text, λ is the smoothing parameter for the HP filter and is set to the value commonly used for 
quarterly data.  For each column, standard errors are block bootstrapped by state using 200 replications.  
***, **, and * indicate estimated effects that are statistically different from zero at the one-, five-, and ten-
percent levels, respectively, based on the normal approximation. 

 



 
 

Table 5:  The Effects of the Minimum Wage on Teen (16-19) Employment, 
By Division 

(1) (2) 

Dependent variable: Log (E/P) 

  
1990:Q1-2011:Q2 

1990:Q1-2009:Q4 
(ADR sample) 

New England -.390*** 
(.052) 

-.384*** 
(.058) 

Mid-Atlantic .166 
(.143) 

.105 
(.162) 

East North Central -.208 
(.284) 

-.166 
(.272) 

West North Central -.191** 
(.082) 

-.194*** 
(.067) 

South Atlantic -.150 
(.242) 

-.152 
(.281) 

East South Central -2.24 
(1.41) 

-2.02 
(1.51) 

West South Central -.217*** 
(.062) 

-.147** 
(.053) 

Mountain -.598*** 
(.139) 

-.638*** 
(.187) 

Pacific -.002 
(.133) 

.016 
(.143) 

Specification includes the unemployment rate, the ratio of teen population to 
total population, and state and time (quarter) fixed effects.  Estimates are 
weighted by teen population. Standard errors are clustered at the state level.  
***, **, and * indicate estimated effects that are statistically different from 
zero at the one-, five-, and ten-percent levels, respectively.    
 



 
 

Table 6:  Weights on States in Same Census Division from Synthetic Control Estimator, State-Level CPS Data 

 Proportion of weight on states in same division    

 Matching on:    

 
Regression 
residuals 

Log teen 
employment-
to-population 

ratio 

One-quarter 
difference in log 

teen employment-
to-population ratio 

Four-quarter 
difference in log 

teen employment-
to-population ratio 

Avg. # 
divisions in 
donor pool 

Avg. # 
states in 

donor pool 

Avg. # states in 
donor pool in 
same division 

Division (1) (2) (3) (4) (5) (6) (7) 

New England 0.168 0.209 0.163 0.185 6.9 30.4 1.9 
Middle Atlantic 0.073 0.134 0.455 0.168 5.5 20.0 1.0 
East North Central 0.000 0.000 0.016 0.015 9.0 39.5 3.5 
West North Central 0.547 0.823 0.698 0.464 3.7 7.7 1.7 
South Atlantic 0.123 0.290 0.075 0.222 6.9 26.8 4.9 
Pacific 0.322 0.339 0.279 0.297 5.3 21.1 2.1 

Aggregate 0.233 0.323 0.264 0.251 6.1 24.0 2.5 
Results are reported for the 50 unique minimum wage treatments (out of a total of 129) for which there is at least one potential donor state from the 
same Census division.  Details are explained in the text.  The numbers in columns (5)-(7) refer to the matching on residuals or the log teen 
employment-to-population ratio.  There are somewhat fewer treatments and donors when matching on the one- or four-quarter differences in the 
employment-to-population ratio because the earliest lags are not available at the beginning of the sample period.  The aggregate row reports the 
means across all treatment units.     



 
 

Table 7: The Effects of the Minimum Wage on Restaurant Employment, 
1990-2006:Q2 

(1) (2) (3) (4) 

 Dependent variable: log (restaurant employment), 
DLR contiguous border county-pair sample 

Without county-pair × 
period interactions 

(DLR, Table 2, 
specification 5) 

With county-pair × 
period interactions 

(DLR, Table 2, 
specification 6) 

Log(MW) -.137* 
(.072) 

-.112 
(.079) 

.057 
(.115) 

.016 
(.099) 

Log(population) .952*** 
(.073) 

.567*** 
(.103) 

1.116*** 
(.190) 

.714*** 
(.246) 

Log(private-sector 
employment) 

… 
 

.405*** 
(.067) 

… 
 

.393*** 
(.117) 

County effects Yes Yes Yes Yes 

Period effects Yes Yes No No 

County-pair × period 
interactions 

No No Yes Yes 

N 70,620 70,582 70,620 70,582 

Standard errors are two-way clustered at the (non-nested) state and border 
segment levels; the border segment is the set of all counties on both sides of a 
border between two states.  ***, **, and * indicate estimates that are 
statistically different from zero at the one-, five-, and ten-percent levels, 
respectively.



 
 

Table 8:  Weights on Contiguous Cross-Border Counties from Synthetic Control Estimator,  
County-Level QCEW Data 

 Proportion of weight on contiguous cross-border counties   

 Matching on:   

 
Regression 
residuals 

Log restaurant 
employment-

to-county 
population 

ratio 

One-quarter 
difference in log 

restaurant 
employment-to-

county population 
ratio 

Four-quarter 
difference in log 

restaurant 
employment-to-

county population 
ratio 

Avg. # counties 
in donor pool 

Avg. # contiguous 
cross-border counties in 

donor pool 
Division (1) (2) (3) (4) (5) (6) 
A. Donor pools restricted to 50 counties with lowest RMSPE for four quarters prior to minimum wage increase 

New England 0.042 0.047 0.025 0.013 51.5 1.7 
Middle Atlantic 0.015 0.030 0.045 0.014 50.9 1.7 
East North Central 0.012 0.013 0.007 0.008 51.3 1.3 
West North Central 0.012 0.006 0.008 0.012 51.2 1.2 
South Atlantic 0.100 0.093 0.090 0.045 53.0 3.3 
Mountain 0.065 0.016 0.216 0.084 50.0 1.3 
Pacific 0.034 0.048 0.024 0.012 51.2 1.5 

Aggregate 0.033 0.038 0.035 0.017 51.3 1.7 

A. Full donor pools 

New England 0.005 0.002 0.002 0.001 1,083.9 1.7 
Middle Atlantic 0.008 0.022 0.020 0.012 577.8 1.7 
East North Central 0.001 0.001 0.001 0.001 1,195.3 1.3 
West North Central 0.001 0.001 0.001 0.001 1,007.0 1.2 
South Atlantic 0.022 0.042 0.048 0.005 1,052.9 3.3 
Mountain 0.061 0.002 0.231 0.084 52.0 1.3 
Pacific 0.002 0.002 0.001 0.001 970.6 1.5 

Aggregate 0.007 0.008 0.016 0.007 959.6 1.7 
County results are reported for the 121 unique minimum wage treatments at the state-by-quarter level for which there is at least one potential 
contiguous cross-border donor county.  In Panel A, for each treatment the donor pool consists of the 50 counties with the lowest RMSPE for the 
four quarters following the minimum wage increase.  If the contiguous cross-border counties that DLR use as controls are not in this top 50, they 
are added to the donor pool.   Panel B does not impose this restriction.  Details are explained in the text.  There are somewhat fewer treatments and 
donors when matching on the one- or four-quarter differences in the employment-to-population ratio because the earliest lags are not available at 
the beginning of the sample period.  The aggregate rows report the means across all treatment units. 



 
 

Table 9: The Effects of the Minimum Wage on Restaurant Employment, with 
Leading Effects, 1990-2006:Q2 

(1) (2) 

Dependent variable: Log(restaurant employment) 

 
 
 

All counties (DLR, Table 
3, specification 1) 

All counties, with state-
specific linear trends and 
Census division × period 

interactions (DLR 
specification 3) 

Cumulative effect of 
log(MW) 

  

12-quarter lead -.069 
(.058) 

.070 
(.047) 

4-quarter lead -.192* 
(.113) 

.188* 
(.094) 

Pre-trend: 4-quarter 
lead – 12-quarter lead 

-.122* 
(.070) 

.117** 
(.054) 

County effects Yes Yes 

Period effects Yes No 

N 82,800 82,800 

Estimates correspond to Table 3 of DLR.  ***, **, and * indicate estimates that 
are statistically different from zero at the one-, five-, and ten-percent levels, 
respectively.    

 



 
 

Table 10: The Effects of the Minimum Wage on Restaurant Employment, with Leading Effects, 
1990-2006:Q2 

(1) (2)  

Dependent variable: Log(restaurant employment)  

 
 
 
 

All counties (DLR, Table 
3, specification 1) 

All counties, with 
state-specific linear 
trends, and Census 
division × period 
interactions (DLR 

specification 3) 

 
DLR contiguous border 

county-pair sample, 
with county-pair × 
period interactions 

(DLR specification 6) 

A. 12-quarter leads  

Pre-trend:    

10-quarter lead – 12-
quarter lead 

-.004 
(.042) 

.083*** 
(.031) 

.049 
(.072) 

8-quarter lead – 12-
quarter lead 

-.047 
(.064) 

.127** 
(.051) 

.057 
(.095) 

6-quarter lead – 12-
quarter lead 

-.067 
(.060) 

.124** 
(.049) 

.056 
(.121) 

4-quarter lead – 12-
quarter lead 

-.122* 
(.070)

.117** 
(.054) 

.040 
(.134)

2-quarter lead – 12-
quarter lead 

-.105 
(.071) 

.088* 
(.052) 

.058 
(.143) 

B. 8-quarter leads  

6-quarter lead – 8- 
quarter lead 

-.015 
(.038) 

.058** 
(.022) 

.062 
(.092) 

4-quarter lead – 8- 
quarter lead 

-.055 
(.065) 

.098** 
(.039) 

.119 
(.125) 

2-quarter lead – 8- 
quarter lead 

-.040 
(.066) 

.106*** 
(.036) 

.137 
(.125) 

Specifications in Panel A, columns (1) and (2) correspond to Table 9, but with the pre-trend estimated over 
different periods.  Specifications in column (3) do the same for DLR’s specification 6.  Specifications in 
Panel B are the same, but only include leads up to 8 quarters.  The two highlighted estimates are the ones 
reported in DLR’s Table 3 for restaurant employment.  These specifications exclude the private-sector 
employment control, although DLR include this control in the specifications on which their Figure 4 is 
based.  ***, **, and * indicate estimates that are statistically different from zero at the one-, five-, and ten-
percent levels, respectively. 

  



 
 

Table 11: The Effects of the Minimum Wage on Restaurant Employment, “Falsification Tests” 

(1) (2) (3) 

 Dependent variable: Log (restaurant employment) 

  
 

DLR sample: 1990:Q1-
2006:Q2 (Table B1, 

specification 2) 

 
Sample restricted to 
1998:Q3-2006:Q2 

(period with no federal 
MW changes) 

Sample restricted to 
1998:Q3-2006:Q2, county 
pairs with minimum wage 
difference for at least one 

quarter 

Actual MW sample: 

Log(MW) -0.208 
(0.150) 

-0.247*** 
(0.042) 

-0.260**

(0.097) 

N 34,514 21,308 5,180 

Placebo MW sample: 

Log(MW) -0.123 
(0.158) 

-0.107 
(0.068) 

0.005 
(0.082) 

N 33,726 20,768 4,640 

% of county pair-quarter 
observations with 
minimum wage 
difference between 
counties 

4.0 7.0 31.2 

% of county pairs with 
minimum wage 
difference between 
counties in sample 
period 

17.8 22.3 100.0 

County effects Yes Yes Yes 

Period effects Yes Yes Yes 

Standard errors are clustered at the state level.  These specifications include controls for population and private-
sector employment.  Following DLR’s code, the sample is restricted to counties that have an area less than 
2,000 square miles.  In columns (2) and (3), a balanced panel of counties is used, as in DLR’s other analyses; 
some counties that are not included in column (1) can be included in the samples in these columns.  In column 
(3), the subset of county pairs in column (2) that had one or more minimum wage differences in the period 
always had at least two quarters of minimum wage differences.  ***, **, and * indicate estimates that are 
statistically different from zero at the one-, five-, and ten-percent levels, respectively. 

 
 

 


