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Abstract

In this paper we use school admission lotteries to estimate the effect of elite school atten-

dance on student achievement in China. The empirical assessment requires combining lottery

records with administrative Middle School Exit Exam (MSEE) records, in which we encounter

an imperfect matching problem arising from the lack of a common unique identifier. To address

this problem, we develop a data combination procedure and extend the existing local average

treatment effect (LATE) framework to analyze treatment effects in contexts with imperfect

matching following data combination. Despite the large observed superiority of elite schools

in student achievement, we find little evidence that three-year attendance at an elite school

improves students’MSEE scores or secondary school admission outcomes. We also find that the

most sought-after elite schools are those with the highest student achievement level, rather than

those with the largest value-added effect on test scores. This finding suggests that parents may

choose schools primarily on the basis of their observed superiority in student outcomes rather

than their academic value-added, which casts doubt on parents’ability to identify schools that

are better suited to their children’s learning needs.
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1 Introduction

The question of whether elite schools add value to their already high-achieving students is of

practical importance to parents who are concerned about their children’s academic progress as the

perceived superiority of such schools may be masking the true nature of academic performance.

At the same time, this question is also of great value to researchers and policymakers because

the answer not only contributes to the existing understanding on the determinants of student

achievement but also has important policy implications for the effi cient organization of students

into schools and the effective allocation of school resources.

Clear evidence on the effects of better schooling is scarce, however, largely because school

attendance is an endogenous decision and thus may be correlated with unobserved family and

individual characteristics that affect student achievement. Several recent studies adopt compelling

research designs to address the issue of endogeneity, albeit with mixed results. One strand of

such research relies on regression discontinuity (RD) designs to exploit the sharp changes in the

probability of attending selective schools around their admission cutoffs. For example, Jackson

(2010) discovers large test score gains for students attending better secondary schools in Trinidad

and Tobago, and Pop-Eleches and Urquiola (2011) find that students benefit from attending higher-

achieving schools in Romania. In contrast, Clark (2010) finds selective school attendance to have no

impact on test scores in the UK, and Abdulkadiroglu, Angrist, and Pathak (2012) show exam school

education to have little effect on student achievement in Boston and New York. The second strand

of this research uses school admission lotteries to identify exogenous variation in school attendance

induced by lottery assignment. Cullen, Jacob, and Levitt (2006), for example, find no test score

gains among students attending high-achieving public schools in Chicago, whereas Hastings and

Weinstein (2008) report substantial achievement gains for students attending higher-performing

schools in Charlotte-Mecklenburg. It is thus apparent that whether better schools improve the

achievement of their attendees remains unclear and requires further investigation.

This paper presents new evidence on the effect of elite school attendance on student achievement

by exploiting exogenous variation in access to elite schools in China generated by school admission

lotteries. Students in China are assigned to primary schools (grades 1-6) and neighborhood middle

schools (grades 7-9) based on their area of residence. Elite middle schools (hereafter, elite schools)

are considered superior to neighborhood middle schools (hereafter, neighborhood schools) and open

their enrollment to all interested students within their school districts. Lotteries are often used by

the oversubscribed elite schools to determine the allocation of seats, thereby generating exogenous

variation in access to elite schools among students with a variety of academic backgrounds. In
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addition to this natural experimental setting, a number of distinct features of the Chinese education

system render extension of the investigation to the Chinese context particularly informative and

interesting. First, a number of institutional factors, such as the uniform curriculum, textbooks and

high-stakes exit exams adopted in both elite and neighborhood schools and the rare occurrences of

grade retention and dropping out during the nine-year compulsory schooling stage,1 make middle

schools in China a very ideal setting to evaluate the effect of attending better schools on student

achievement. Second, secondary school (grades 10-12) and university admissions in China are

almost solely determined by students’ test scores in entrance exams, which is in contrast to the

situation in many Western countries, where such admissions are based on multi-dimensional criteria

going beyond standardized test scores (e.g., teacher recommendations, extracurricular activities,

leadership potential, etc.). Thus, if attending a better school adds any value to students’academic

outcomes, the gains are likely to be more salient in China than in the West. Third, unlike the

most studied US school admission lotteries where exercising school choice is free of charge (e.g.,

Abdulkadiroglu et al., 2011; Dobbie and Fryer, 2011), attending an elite school in China usually

incurs an additional tuition cost, as is the case in the city under study in this paper (see Section

2 for a detailed discussion). With the additional cost that parents pay to enroll their children in

elite schools, the perceived difference between elite and neighborhood schools must be substantial

in China, rendering it a good context to compare parental perceptions of what constitutes a “good

school”to evidence of effective value-added.

In this paper, we examine the effect of elite school attendance on student achievement using

data from a provincial capital city in China. Our data come from two sources: school admission

lottery records and administrative records from the Middle School Exit Exam (MSEE), which is

compulsory for all students at the end of middle school and also serves as the entrance exam for

secondary school admissions. The former contain information on school choices and lottery assign-

ments for elite school applicants and the latter contain information on the middle schools attended,

MSEE scores and secondary school admission outcomes for all students taking the MSEE. Program

evaluation employing random assignment with imperfect compliance often resorts to the bench-

mark local average treatment effect (LATE) framework, which assumes perfect observation of the

lottery assignments, treatment intakes and outcomes of all individuals in the target population or

sample (e.g., Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). However, we encounter

an observational obstacle when combining student records in the two data sources. Because the

common variables available for use in data combination (i.e., name, gender and cohort) do not

1Dropping out during the compulsory schooling stage almost never happens in the urban areas under study in
this paper, although it may occur occasionally in some rural areas.
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constitute a unique identifier, we sometimes falsely link lottery and MSEE records pertaining to

different individuals, resulting in imperfect matching in the combined data set. To address this

problem, we first develop a data combination procedure that forms all pairwise links between the

lottery and MSEE records, and then extend the benchmark LATE framework to analyze treatment

effects in contexts with imperfect matching by employing all linked lottery-MSEE pairs, regardless

of whether link is correct or false. We show that, if sample attrition is independent of lottery assign-

ment, our extended LATE framework can identify the average treatment effect for the admission

lottery compliers who are retained in the MSEE data set. We also consider the general case in

which sample attrition depends on lottery assignment and analyze the extent of the bias that may

result from differential attrition between winners and losers. Because both imperfect matching and

sample attrition are commonly confronted problems in randomized evaluations involving the com-

bination of information from different data sets, the extended LATE framework presented herein

is widely applicable to a variety of contexts in which similar observational problems arise following

data combination.

In the city investigated in this paper, elite schools are far superior to neighborhood schools with

regard to student achievement. Students graduating from elite schools score, on average, about

two-thirds of a standard deviation (hereafter, σ) above those from neighborhood schools on the

MSEE. However, similar to Pischke and Manning’s (2006) finding in the case of selective schools in

the UK, much of the achievement advantage associated with elite school attendance is attributable

to the ability sorting of students and is not caused by attendance per se. Using exogenous variation

in access to elite schools generated by school admission lotteries, we find little evidence that three-

year attendance at an elite school improves students’MSEE scores or secondary school admission

outcomes. The instrumental variables (IV) point estimate of the effect of elite school attendance

on MSEE scores is −0.016 and can reject a relatively modest gain of 0.15σ in test scores over the

three-year period. Moreover, although we find evidence of a small degree of differential attrition

between winners and losers, we show that the resulting bias is small in magnitude and that its sign

is in favor of finding a positive elite school attendance effect.

The results of this paper are also relevant to the broader debate over school choice, as the

magnet-type elite schools investigated herein provide schooling alternatives for students to opt out

of their assigned neighborhood schools.2 The popularity of school choice is based largely upon

the belief that increasing parental choice can yield improved effi ciency in education production

2Recent years have seen a surge in the empirical literature investigating the effects of school choice on student
outcomes, and the debate has permeated various cultural contexts, including Chile (Hsieh and Urquiola, 2006), China
(Lai, Sadoulet, and Janvry, 2011; He, 2012), Columbia (Angrist et al., 2002; Angrist, Bettinger, and Kremer, 2006;
Bettinger, Kremer, and Saavedra, 2010), Israel (Lavy, 2010) and Norway (Machin and Salvanes, 2010).

4



through enhanced competition or better matches between students and schools (e.g., Friedman,

1962; Chub and Moe, 1990; Hoxby, 2000). The ability of the choice mechanism to improve educa-

tional outcomes, however, depends in part on the extent to which parents express their preference

for achievement gains in selecting schools for their children. As Rothstein (2006) notes, any factors

that inhibit parents from choosing the most effective schools will tend to dilute the incentives for

effi ciency improvement that the choice mechanism might otherwise create. However, several stud-

ies find that parents do not necessarily place the greatest weight on academic outcomes (Hastings,

Kane, and Staiger, 2005, 2006 ; Jacob and Lefgren, 2007) or know which schools are likely to

benefit their children the most academically (Figlio and Lucas, 2004; Mizala and Urquiola, 2007).

Despite the lack of evidence of any academic value-added, all of the elite schools in our sample

were oversubscribed throughout the study period and had very competitive admission lotteries,

of which even the highest winning rate was still below 50 percent. Moreover, the most popular

elite schools in our sample are those with the highest average student achievement level, not those

estimated to have the largest value-added effect on test scores. Our finding that schools are sought

after primarily for their observed superiority rather than their academic value-added casts doubt

on parents’ability to identify schools that are better suited to their children’s learning needs and,

consequently, on the potential of school choice to improve student achievement.

The remainder of this paper is organized as follows. Section 2 provides the background on

China’s middle school system and elite school admission procedures, and introduces the admission

lottery data. Section 3 introduces our data combination procedure and describes the data combi-

nation outcomes. Section 4 presents our empirical framework, which extends the benchmark LATE

framework to treatment effect analysis in contexts with imperfect matching encountered in data

combination. Section 5 presents our empirical results and discusses the possible reasons for elite

schools’persistent popularity and yet lack of evident academic value-added. Section 6 provides

some concluding remarks.

2 Background

2.1 Middle School System

The middle school system in the provincial capital city investigated in this paper is typical of

those in most Chinese cities. Upon graduation from primary school, students are assigned to a

neighborhood school through an assignment mechanism that works at the neighborhood level. Elite

schools exist outside the neighborhood middle school system and provide schooling alternatives for

students to opt out of their assigned neighborhood schools. Unlike neighborhood schools, which are
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entirely publicly funded and tuition-free, elite schools rely on public funding only for basic personnel

expenses and charge tuition fees to cover operating and benefit expenses.3 Historically, these elite

schools were exam schools that admitted students primarily on the basis of their entrance exam

scores. However, the central government adopted country-wide educational reform in the late 1990s

under the banner Cross Century Quality Education Project,4 of which an important educational

ideal was to reduce the excesses of exam-based assessment. In response to the central government’s

call to ease exam pressure, local education authorities across the country adopted directives banning

the use of any form of entrance exam in admissions during the nine-year compulsory schooling stage,

although entrance exams are still used in secondary school and university admissions. Consequently,

elite schools resorted to alternative admission schemes, such as the use of admission lotteries, for

allocation of spots. Attending a private school is another option available to students. In the city

under study here, private schools, all of which were founded after the 1990s, are much less popular

than elite schools because of the lack of a long established reputation. Nonetheless, they are still

an option for students who are interested in attending an elite school but fail to gain a place.

Table 1 summarizes enrollment and outcomes by school type using the city’s MSEE takers in

2005, the first cohort examined in this paper. The city had 181 middle schools, including 160

neighborhood schools, 16 elite schools, and five private schools. The average school-grade size

was 591 for elite schools, 223 for neighborhood schools and 114 for private schools. Accordingly,

the 16 elite schools and five private schools accounted for 20.7 and 1.3 percent,5 respectively, of

the city’s total enrollment in middle school. Elite schools, with a mean MSEE score of 0.52σ,

were far more advantageous than neighborhood schools (−0.14σ) and private schools (−0.09σ) in

student achievement, whereas the latter two were largely comparable. After taking the MSEE,

middle school graduates were tracked into three types of secondary schools based on their MSEE

scores: top-echelon high schools, regular high schools and vocational secondary schools, ranked in

descending order of entrance score requirements. The superiority of elite schools was also reflected

by its greater proportion of graduates admitted to top-echelon high schools (40 vs. 17 percent) and

regular high schools (41 vs. 28 percent) compared with neighborhood schools.

3The basic salaries of elite school teachers are paid out of the local government’s education budget. However,
these schools provide a higher level of overall compensation to their teachers through school-funded benefits.

4See Dello-Iacovo (2009) for a review of the quality education reform in China. Although quality education, or
so called “suzhi jiaoyu,”has inspired a number of innovative reforms and received considerable support in principle,
wider-scale implementation has been hindered by a lack of resources, conceptual ambiguity, and cultural resistance,
leaving the problems in the country’s education system largely unresolved.

5Because private schools located outside the city’s boundaries, most of which are boarding schools, are not included
in the sample, the actual enrollment share of private schools is larger than the reported 1.3 percent; nonetheless, the
increase in that share would be marginal even if the these schools were included.
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2.2 Elite School Admissions and Lottery Data

The shift away from excessive exam orientation in the late 1990s, as advocated by the country’s

quality education reform, has engendered a new admission process of elite schools. In the city

under study in this paper, all of the elite schools adopted a two-tier admission process, with the

total admission quota divided between advance and general admissions. The former are reserved

exclusively for gifted and talented students who are awarded in city- or district-level academic,

artistic, and athletic contests.6 Following advance admissions, application becomes open to all

students who are willing to pay elite school tuition. During the period considered in this paper,

all of the city’s elite schools set their tuition at the price ceiling allowed by the city education

council, that is, RMB3,000 (approximately US$400) per year, or about one-tenth the average annual

disposable income of a three-person family. All of the elite schools were nonetheless oversubscribed,

as the demand at the regulated tuition far exceeded the general admission quota.

Unlike lottery-based magnet or charter school admissions in the US, where students can apply to

as many schools as they want and participate in multiple lotteries (e.g., Cullen, Jacob, and Levitt,

2006; Abdulkadiroglu et al., 2011), in the Chinese city under study, students can apply to only one

elite school and will be disqualified from enrolling in any elite school if caught submitting multiple

applications. Every year, all of the city’s elite schools conduct their general admission lotteries on

the same day using the same computer program designated by the city education council. In each

lottery, the program randomly assigns a lottery number to each applicant and enrolls students with

the lowest numbers first, until the school’s quota is filled. To prevent tampering, all admission

lotteries are certified by notaries public. Within a few weeks of the lottery, winners are required to

pay off the entire three-year tuition, which is nonrefundable even if they later switch schools. Those

who do not pay their tuition by the deadline are considered to have declined their admission offer.

The nonrefundable nature of the tuition payment means that students rarely switch out of any elite

school once enrolled. However, the lottery assignments are not completely binding. A significant

portion of applicants who lose out in the lottery still gain admission through back door channels.7

The final enrollment number in an elite school is therefore larger than its announced admission

quota. During the period under study, a typical elite school in the city admitted approximately one-

third of its students through advance admissions, one-third through the lottery, and the remaining

6Advance admission recipients are also offered with some tuition waivers, with the amount waived varying by
school and award rank.

7The most important factor determining a lottery loser’s chances of being admitted through back door channels is
whether he/she has been referred by someone (for example, a government offi cial that the student’s parents have found
through their personal network) who can exert an influence over the principal. The student’s academic performance
in primary school is another factor, albeit of secondary importance. These factors also affect the tuition paid by
students admitted through back door channels, with the ceiling reaching twice as much as regular tuition.
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one-third through the “back door.”

The city investigated in this paper has seven municipal districts whose boundaries coincide

with the school district boundaries. The Yangtze River runs through the city and divides it into

two parts: North Bank (Districts 1-3) and South Bank (Districts 4-7). These two parts can be

considered as independent enrollment areas, as students rarely commute across the Yangtze River

for schooling. With the cooperation of the notary public offi ce, we obtained the lottery records

of three cohorts of students who participated in the 21 admission lotteries run by all of the eight

elite schools in the North Bank during the 2002-2004 period. Three lotteries conducted in 2003

are excluded because the notary public offi ce’s records contain only winners’ information. We

also exclude the approximately four percent of applicants who attended primary schools outside

the North Bank at the time of application. Our final lottery sample comprises 13,768 applicants

who were enrolled in North Bank primary schools at the time of application.8 The lottery records

include each applicant’s name, gender, primary school attended and lottery assignment, but contain

no information on his/her family background or baseline scores. Working with School District 3,

we obtained students’test scores on a district-wide uniform exam taken in grade 6, the final grade

of primary school, and matched the scores to the applicants in our lottery sample by name, gender,

primary school and year. However, no baseline scores are available for applicants from the other

two districts.

Columns 1-3 in Table 2 report the descriptive statistics of the lottery assignments and appli-

cants’predetermined characteristics at the time of application. These admission lotteries are quite

competitive, with an average of only three out of ten applicants winning their lottery. The subsam-

ple of applicants in District 3 where baseline scores are available has even a lower lottery winning

rate of 22 percent. Among the 3,483 applicants in District 3, the match rate of baseline scores is 85

percent, whereas non-matching is largely a result of name misspellings or gender misidentifications

in either the lottery or baseline score records. Figure 1A plots the kernel density curves of the

6th-grade combined math and Chinese scores (standardized to have zero mean and unit variance

for each cohort) for District 3 students by elite school enrollment status. There is clear evidence

of "cream-skimming": students enrolled in elite schools have a mean 6th-grade score 0.42σ above

the district average, whereas the mean 6th-grade score of neighborhood school students is 0.08σ

below the district average. Two sources of cream-skimming can be identified in Figure 1B: advance

admission recipients and general admission applicants have mean 6th-grade scores that are 0.57σ

and 0.29σ above the district average, respectively, leaving non-applicants a mean score that is 0.12σ

8Students in the final lottery sample accounted for 23 percent of all North Bank students who transitioned from
primary school to middle school in the 2002-2004 period.
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below the district average. The "cream-skimming" evidence indicates that the superiority of elite

schools in student achievement on the MSEE is at least in part the result of their ability to lure a

disproportionate number of already high-achieving students from neighborhood schools.

2.2.1 Validity of the Randomization

If these admission lotteries are indeed random as certified by notaries public, the winners and losers

of a given lottery would be expected, on average, to have the same predetermined individual char-

acteristics. Accordingly, we check the validity of the randomization by testing whether applicants’

predetermined individual characteristics are associated with their win/loss status. In Column 4 of

Table 2, we regress the dummy indicator of winning a lottery on gender, the set of dummy indi-

cators for primary schools attended, and lottery fixed effects for all of the applicants in the North

Bank. Neither the coeffi cient on the female indicator nor any of the coeffi cients on the 175 primary

school dummies (omitted in the table) is statistically significant. The F-test of the joint signifi-

cance of these coeffi cients (excluding lottery fixed effects) is very small and insignificant (F=0.78,

p-value=0.986), suggesting little evidence that applicants’gender and primary school attended are

correlated with their odds of winning a lottery. For applicants from District 3, we further include

the availability of baseline scores and, if available, the score level as additional regressors. The

results, reported in Columns 5 and 6 of Table 2, show no evidence that either this availability or

the baseline score level is associated with lottery outcomes. We therefore take the fact that these

lotteries did not favor applicants with higher baseline scores as compelling evidence for the validity

of their randomness.

3 Data Combination

The lottery data set contains only applicants’ choice of elite school and lottery assignment. To

examine the lotteries’effects on students’elite school enrollment status and subsequent educational

outcomes, we need to link the lottery data set with the MSEE data set, which contains information

on students’middle schools attended, MSEE scores and secondary school admission outcomes upon

graduation from middle school. The linkage between the two data sets is through the set of common

variables C that are observed in both data sets, i.e., name and gender. As skipping or repeating a

grade rarely occurs and few students commute across the Yangtze River to attend middle school,

we restrict the target universe in the MSEE data set to students who finished middle school in the

North Bank three years after each lottery.9 But even conditional on gender and cohort, it is still
9Expanding the target universe to middle school graduates from the entire city increases the overall match rate

by only two percentage points, which suggests that very few applicants opted to attend middle school in the South
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possible to falsely link some lottery and MSEE records which have the same names but pertain to

different individuals. As we are unable to distinguish between correct and false links, our empirical

analysis has to employ all pairwise links between the lottery and MSEE records, regardless of

whether the link is correct or false.

Our data combination procedure can be formalized as follows. Assume that there is a super-

population of (unobserved) identifiers from which the identifiers (also unobserved) of individuals

from both the lottery data set and MSEE data set are drawn. The lottery data set contains (Ci, Zi)

for i ∈ I and the MSEE data set contains (Cj , Dj , Yj) for j ∈ J , where Z is a dummy indicator for

lottery assignments, D is a dummy indicator for elite school enrollments, and Y denotes student

outcomes (e.g., test scores) in the MSEE. In this notation, because i and j are drawn from the

same superpopulation of identifiers, i = j if the lottery record and MSEE record pertain to the

same individual and i 6= j if the two records pertain to different individuals. Our data combination

procedure involves forming all pairwise links of records between the two data sets that are matched

by the common variables C. In other words, for each record i in the lottery data set and each

record j in the MSEE data set such that Cj = Ci, we construct a linked pair (Ci, Zi, Di(j), Yi(j)) in

which Di(j)/Yi(j) indicates that Di/Yi is imputed by the value of Dj/Yj . Therefore, our combined

data set can be written as

Ψ = {(Ci, Zi, Di(j), Yi(j)),∀ Cj = Ci, i ∈ I, j ∈ J}.

The total number of record pairs in the combined data set is
∑
i∈I

ni, where ni =
∑
j∈J

1(Cj = Ci), the

number of MSEE records that are linked to individual i in the lottery data set by C.

Table 3 reports matching statistics by lottery assignment separately for all applicants, District

3 applicants and a subsample of District 3 applicants with baseline scores. As the results are

qualitatively the same across different samples, we discuss in the following only the results for the

full sample of all applicants in Columns 1-2. Each lottery loser is, on average, matched to 1.58 MSEE

records, demonstrating that duplicate names are quite common in our context. Because the number

of false matches is independent of random lottery assignments, the average number of false matches

should be the same for winners and losers. Therefore, the difference in the average number of total

matches between winners and losers should reflect the extent of the differential attrition caused

by lottery assignment. Column 2 presents the regression-adjusted win/loss difference controlling

for lottery fixed effects, showing winners to have, on average, 0.027 more matches than losers.

Bank. However, such expansion of the target universe significantly increases the probability of multiple matches. In
this paper, we report only the results using the matched records in the North Bank, although the main results are
similar when all matched records from the entire city are used.
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However, the difference is insignificant as the standard error of the coeffi cient (0.039) corresponds

with a minimum detectable difference of 0.075. Even if differential attrition does exist, its degree is

likely to be small and muted by the large variation in the number of total matches in our context,

which ranges from 0 to 23 and has a standard deviation over 2.0.

To address the imprecision of the foregoing exercise, we further examine the win/loss difference

in the matching probability without distinguishing between single and multiple matches. Note that

if an applicant’s name is also used by some other student(s) in the MSEE data set conditional on

gender and cohort, he/she will be matched regardless of whether his/her own record is contained in

the MSEE data set. Thus, differential attrition will lead to a difference in the matching probability

between winners and losers only among the subsample of applicants with no false matches. It

follows that the win/loss difference in the matching probability among all applicants is equal to

the product of this difference among the subsample of applicants with no false matches and their

proportion in the entire sample. The overall match rate, regardless of whether the match is single or

multiple, is 89.2 percent for lottery losers. The coeffi cient on the lottery winner dummy in Column

2 shows a win/loss difference of 2.2 percentage points in the overall match rate, significant at the

one percent level, suggesting that differential attrition does exist, though not detected at a level of

statistical significance in the previous exercise. The sharp increase in precision is the result of the

large reduction in the standard deviation of the dependent variable —from over 2.0 for the number

of total matches to only 0.3 for the dummy indicator of being matched. To quantify the extent of

the differential attrition, we also need to know the proportion of applicants with no false matches.

However, direct observation of this proportion is not possible, as we cannot distinguish between

false and correct matches. We instead employ an indirect strategy to proxy for this information.

To do so, we search for the names of the 2004 elite school applicants in the 2005 and 2006 MSEE

records conditional on gender. As applicants entering the 2004 lotteries would not have graduated

from middle school until 2007, none of them were expected to be observed in the 2005 or 2006

MSEE data set. Therefore, any such name match would be a false match. In this exercise, we find

matched MSEE records for only about a quarter of the applicants in the 2004 lotteries, suggesting

that about three-quarters of the applicants have no false matches. As this proportion is likely

to remain stable across cohorts, we take 75 percent as a proxy for the proportion of applicants

with no false matches. Dividing the win/loss difference in all applicants’matching probability

(2.2 percentage points) by the proportion of applicants with no false matches (75 percent) gives

us the extent of differential attrition: 2.9 percentage points, very close to the point estimate of a

2.7-percentage-point difference in the average number of total matches between winners and losers.

Therefore, we take the results of both exercises in Table 3 as evidence suggesting that differential
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attrition exists, but with a very small magnitude.

4 Empirical Framework

The employment of random assignment, albeit with imperfect compliance, in elite school admissions

leads us to consider utilizing the LATE framework to evaluate the average treatment effect for the

assignment compliers among applicants. However, application of this framework to our context

encounters an observational challenge, imperfect matching, which arises because of the lack of a

common unique identifier between the lottery and MSEE data sets. In this section, we start with

a brief review of the benchmark LATE framework and then extend it to address the imperfect

matching problem encountered in our context.

4.1 Review of the Benchmark LATE Framework

In this subsection, we follow Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) to

review the benchmark LATE framework in a heterogeneous treatment effect model. In the setup

of this framework, researchers are interested in the effect of a treatment D (e.g., attending an elite

school) on an outcome Y (e.g., test scores) and there exists an instrument Z (e.g., lottery assign-

ment) for D. Following the conventions of the prior literature, we adopt a generalized potential

treatment and outcome notation, in which Di(z) denotes the potential treatment status of individ-

ual i were the individual to have instrument value Zi = z and Yi(d, z) denotes the potential outcome

of individual i were the individual to have treatment status Di = d and instrument value Zi = z.

The benchmark LATE framework assumes perfect observation of (Zi, Di(Zi), Yi(Di(Zi), Zi)) for

every individual i.

Proposition 1 The LATE Theorem. Suppose

(A1 Exclusion) Yi(d, z) = Yi(d) for d ∈ {0, 1}, z ∈ {0, 1};

(A2 Independence I) {Di(0), Di(1), Yi(0), Yi(1)} ⊥ Zi;

(A3 First stage) E[Di(1)−Di(0)] > 0 and 0 < P (Zi = 1) < 1;

(A4 Monotonicity) Di(1) ≥ Di(0), ∀ i.

Then, the IV estimand without covariates is

γIV =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Yi(1)− Yi(0)|Di(1) > Di(0)].

4.2 Extended LATE Framework under Imperfect Matching

Although the settings of the benchmark LATE framework assume perfect observation of (Z,D, Y )

for every individual in the target population or sample, very often there is no single data set that

contains all variables of interest. When these variables are contained in two or more separate data
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sets, economists are confronted with the problem of estimating models by combining different data

sets (see Ridder and Moffi t [2007] for a survey of data combination). A prominent example is

the two-sample instrumental variables (TSIV) estimation proposed independently by Angrist and

Krueger (1992) and Arellano and Meghir (1992), in which instrument Z is common to both data

sets but endogenous regressor D and dependent variable Y are included in only one or the other.

The nature of the data combination problem encountered in our study, as discussed in Section 3,

is different to that in applications of TSIV estimation. In our context, instrument Z is observed

in one (i.e., lottery) data set while treatment status D and dependent variable Y are observed in

the other (i.e., MSEE) data set. The two data sets are linked through the set of common variables

C contained in both data sets. However, C does not constitute a unique identifier in either data

set, leading to imperfect matching between the lottery and MSEE records. In this subsection,

we present our extended LATE framework to analyze treatment effects in contexts with imperfect

matching following data combination.

To begin with, we first assume that all individuals in the lottery data set are observed in the

MSEE data set, i.e. no sample attrition. As shown in Proposition 1, with a binary instrument and

treatment, the IV estimand can be expressed as the ratio of the intent-to-treat (ITT) effect of Z

on Y and that of Z on D. In contexts with imperfect matching but no sample attrition, these two

ITT estimands can be constructed using the combined data set Ψ as follows:

E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci]

= p(E[Di|Zi = 1]− E[Di|Zi = 0]) + (1− p)(E[Dj |Zi = 1, Cj = Ci, j 6= i]− E[Dj |Zi = 0, Cj = Ci, j 6= i]) (1)

and

E[Yi(j)|Zi = 1, Cj = Ci]− E[Yi(j)|Zi = 0, Cj = Ci]

= p(E[Yi|Zi = 1]− E[Yi|Zi = 0]) + (1− p)(E[Yj |Zi = 1, Cj = Ci, j 6= i]− E[Yj |Zi = 0, Cj = Ci, j 6= i]), (2)

where p = P [j = i|Cj = Ci], the proportion of correct matches among all matches in Ψ. Equation

(1)/(2) shows that the ITT estimand of Z ′s effect on D/Y using the combined data set is equal

to a weighted average of the mean difference in D/Y by Z of correct and false matches, with the

weights equal to their corresponding proportions in Ψ. We further impose an additional indepen-

dence assumption that lottery assignment Zi is independent of falsely matched treatments Dj and

outcomes Yj .

Assumption (A5) Independence II: {Dj , Yj} ⊥ Zi ∀ Cj = Ci, j 6= i.
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Note that implicit in our potential treatment and outcome notation is the assumption of no

interference between individuals: an individual’s potential treatments and outcomes are unaffected

by the instrument value and treatment status of any other individual (Cox, 1958). With no in-

terference between individuals, (A5) is immediately satisfied with the random assignment of Zi.

As the second terms in both Equations (1) and (2) can be eliminated under Assumption (A5),

the two ITT estimands are attenuated to the same extent by the proportion of false matches in

Ψ. However, the biases are canceled out when their ratio is taken in calculating the IV estimand.

Therefore, despite the contamination of falsely matched pairs, the IV estimand constructed using

the combined data set still identifies the same population parameter as that in Proposition 1 under

perfect observation, that is, the LATE on compliers who change their treatment status according

to the instrument. We summarize this formally in Proposition 2 as follows.

Proposition 2 In the presence of imperfect matching, if Assumptions (A1)-(A5) hold and there is no sample

attrition, then the IV estimand without covariates using the combined data set is

γIV =
E[Yi(j)|Zi = 1, Cj = Ci]− E[Yi(j)|Zi = 0, Cj = Ci]

E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci]

=
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
= E[Yi(1)− Yi(0)|Di(1) > Di(0)].

Proposition 2 assumes complete, although imperfect, observation of (Zi, Di, Yi) in Ψ for all of

the individuals in the lottery data set. However, as previously discussed, the combined data set is

subject to sample attrition as some individuals in the lottery data set are not observed in the MSEE

data set. Let Ti denote a binary indicator that equals 1 if lottery participant i is also observed in

the MSEE data set, and 0 otherwise, i.e., Ti = 1(i ∈ J). The following proposition shows that,

if sample attrition is independent of lottery assignment, the LATE theorem still holds for lottery

compliers who are retained in the MSEE data set.

Proposition 3 In the presence of imperfect matching, if Assumptions (A1)-(A5) hold and Ti ⊥ Zi, then

the IV estimand without covariates using the combined data set is

γIV =
E[Yi(j)|Zi = 1, Cj = Ci]− E[Yi(j)|Zi = 0, Cj = Ci]

E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci]

=
E[Yi|Zi = 1, Ti = 1]− E[Yi|Zi = 0, Ti = 1]

E[Di|Zi = 1, Ti = 1]− E[Di|Zi = 0, Ti = 1]
= E[Yi(1)− Yi(0)|Di(1) > Di(0), Ti = 1].

In addition to imperfect matching, application of the LATE framework to our context faces two

additional empirical challenges. First, sample attrition is not independent of lottery assignment

as assumed in Proposition 3. Instead, winning a lottery has a monotone effect on an individual’s

observability in the MSEE data set: it induces some students who would otherwise opt for schooling

outside the North Bank middle school system to remain in the system, but not vice versa. Hence,

Ti(1) ≥ Ti(0) ∀ i ∈ I, where Ti(1) and Ti(0) are the latent indicators for whether individual i
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would be retained in the MSEE data set when Zi = 1 and Zi = 0, respectively. With a monotone

effect of lottery assignment on an individual’s observability in the MSEE data set, the linked

record pairs (Zi, Di(j), Yi(j)) in Ψ can be classified into three categories: (i) the correctly linked

pairs that pertain to always retained individuals (Ti(0) = Ti(1) = 1), (ii) the correctly linked pairs

that pertain to marginally retained individuals (Ti(0) = 0, Ti(1) = 1), and (iii) falsely linked pairs

(Cj = Ci, j 6= i). Let Ψ1 and Ψ0 denote the subset of linked lottery-MSEE pairs in Ψ that are

matched to winners and losers, respectively. Lottery winners and losers are subject to differential

degrees of attrition because category (ii) pairs are contained in Ψ1 only (but not Ψ0). As the degree

of differential attrition, only about 2.7 percent, is quite small in practical terms in our context, we

relegate the analysis of differential attrition bias to Appendix A. More specifically, Corollary 1

in Appendix A shows that, in the presence of both imperfect matching and differential attrition,

the IV estimand in Proposition 3 corresponds to the sum of the LATE parameter of interest,

E[Yi(1) − Yi(0)|Di(1) > Di(0), Ti(0) = 1], and two additional bias terms. The first/second bias

term arises if the average ability/treatment effect of marginally retained individuals differs from

the weighted average ability/treatment effect of the counterparts to which they are compared (i.e.,

always retained individuals and falsely matched pairs), and the magnitude of both bias terms are

proportional to the ratio of the share of marginally retained individuals in Ψ1 and the difference in

treatment status between Ψ1 and Ψ0.

Second, the randomized elite school admissions investigated in this paper constitute a stratified

randomized experiment as each school runs an independent admission lottery every year with a

varying winning rate. This is different to the simple randomization setup in Proposition 3 in

which the assignment probability P (Zi = 1) is the same for all individuals in the sample. Under

stratified randomization with varying assignment probabilities, it is essential to control for lottery

membership in the IV procedures, as assignment is random only within each lottery. In Appendix

B, we further extend the LATE framework to apply to stratified randomized experiments and show

in Corollary 2 that all of the properties in Proposition 3 can be carried over to stratified randomized

experiments. More specifically, the IV estimand of a stratified randomized experiment controlling

for lottery fixed effects is a weighted average of the simple IV estimands of the various lotteries.

5 Empirical Results

5.1 Lottery Impact on Elite School Enrollment

We first examine the impact of winning a lottery on the likelihood that an applicant would enroll

in his/her selected elite school. Panel A of Table 4 presents the results of the first-stage regressions
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corresponding to the IV estimations using all linked lottery-MSEE pairs in Ψ. We begin with

the results for the full sample in Columns 1-2. The coeffi cients on the lottery winner dummy

show that the enrollment probability at the selected elite school is 19.7 percentage points higher

among the MSEE records matched to winners (i.e, Ψ1) than among those matched to losers (i.e.,

Ψ0). As illustrated in Equation (1), compared to the actual lottery impact on students’ elite

school enrollment, this first-stage estimand is attenuated because of the presence of falsely linked

lottery-MSEE pairs in Ψ. Although the consistency property of our IV estimations is unaffected by

this attenuation in the first-stage relationship as shown in Proposition 3, it is still interesting and

informative if we can estimate the actual, unattenuated, lottery impact on elite school enrollment

for applicants. We perform this estimation in Panel B. The unit of analysis is each elite school

applicant retained in Ψ and the dependent variable is the total number of matched MSEE records

from his/her selected elite school (i.e.,
∑

j:Cj=Ci

Dj). As the number of falsely matched MSEE takers

who happened to enroll in an applicant’s selected elite school is independent of his/her lottery

assignment, the win/loss difference in the total number of matches from an applicant’s selected

elite school has the same expectation as the win/loss difference in the actual enrollment probability

among applicants retained in Ψ, i.e., E[
∑

j:Cj=Ci

Dj |Zi = 1] − E[
∑

j:Cj=Ci

Dj |Zi = 0] = E[Di|Ti =

1, Zi = 1] − E[Di|Ti = 1, Zi = 0]. The coeffi cient on the lottery winner dummy in this regression

shows that winning a lottery increases an applicant’s probability of enrolling in his/her selected

elite school by 34.0 percentage points. If there were no differential attrition, the ratio of the two

coeffi cients in Panels A and B (19.7/34.0 = 0.579) would correspond to the proportion of correct

matches among all of the matches in Ψ.

If all of the applicants retained in Ψ complied with their lottery assignments, then the coeffi cient

on the lottery winner dummy would be 1 in Panel B. However, the estimated coeffi cient is only

one-third of that, thus suggesting a high degree of noncompliance in our context, which occurs when

lottery losers enrolled in their selected elite school through back door admissions or lottery winners

declined their admission offers. Quantifying these two types of non-compliance requires information

on the enrollment status of each applicant in his/her selected elite school. However, perfect iden-

tification of such information is not possible, as we cannot distinguish correctly linked pairs from

falsely linked ones in Ψ due to imperfect matching. Nevertheless, we conduct an exercise in which

an applicant’s enrollment status in his/her selected elite school is inferred by whether his/her name

appears in the school’s list of MSEE records (conditional on gender and cohort). Although false

matching by name and gender is quite common among approximately 20,000 MSEE records from

all of the middle schools in the North Bank in a given year as discussed in Section 3, the chances
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of it occurring become very rare, albeit not entirely zero, when the target universe is restricted

to a few hundred students graduating from a particular elite school. Therefore, the probability of

mistakenly inferring an unenrolled applicant as enrolled is quite small, and the win/loss difference

in the inferred enrollment status should be close to that in the actual enrollment status. As shown

in Panel C of Table 4, 52.8 percent of the lottery losers are inferred to have enrolled in his/her

selected elite school, whereas only 10.5 percent of the lottery winners are inferred to have declined

their admission offers. The regression-adjusted win/loss difference in the inferred enrollment status

is 33.2 percentage points, very close to the 34.0-percentage-point difference reported in Panel B.

Columns 3-4 in Table 4 report separate results for the subsample of District 3 applicants with

baseline scores. Based on the inferred elite school enrollment status, this subsample has a lower

noncompliance rate than the full sample: only 39.6 percent of the lottery losers are inferred to

have enrolled in their selected elite school and only 6.4 percent of the lottery winners are inferred

not to have enrolled, compared to 52.8 and 10.5 percent, respectively, of those in the full sample.

Consequently, the marginal effect of winning a lottery on an applicant’s probability of enrolling in

his/her selected elite school for this subsample, an estimated 51.9 percentage points, is much larger

than that for the full sample (34.0 percentage points). The addition of baseline scores in Column

4 has almost no effect on the coeffi cients on the lottery winner dummy in any of the three panels

in Table 4. However, the coeffi cient on the baseline scores itself is always positive and significant,

thus suggesting a positive association between lottery losers’baseline scores and their enrollment

probability through back door channels. Figure 2A further illustrates the selection in back door

admissions by plotting the kernel density curves of the baseline scores for lottery losers in District

3 by their inferred enrollment status in the elite school of their choice. The difference between

the two distribution curves confirms that lottery losers who attended their selected elite school

through back door admissions had substantially higher average baseline scores than those who did

not (0.42σ vs. 0.22σ). We next examine whether lottery winners who gave up the option to attend

an elite school differ from those who exercised this option in terms of baseline scores. Figure 2B

plots the kernel density curves of the baseline scores lottery winners in District 3 by their inferred

enrollment status in the elite school of their choice. The two-sample Kolmogorov-Smirnov test

(with a p-value of 0.948) cannot reject the equality of the two distributions.

5.2 IV Estimates of the Elite School Attendance Effects

In this subsection, we examine the effects of attending an elite school on students’academic out-

comes in three years’time. Based on the MSEE scores and secondary school admission outcomes,

we construct five measures of students’ex post academic outcomes: total scores on the MSEE, a

17



dummy for admission to a top-echelon high school, a dummy for scoring above the threshold for

top-echelon high school admissions, a dummy for admission to any high school (including both

top-echelon and regular high schools), and a dummy for scoring above the threshold for regular

high school admissions. Every year, the city’s education council announces the minimum score

requirements for top-echelon and regular high school admissions. Students with MSEE scores be-

low the minimum requirement for regular high school admission either drop out of school after

completion of nine years of compulsory education or attend a vocational secondary school to ob-

tain job-oriented training. The reason for including the dummy indicators for scoring above the

two thresholds in addition to secondary school admission status is to examine whether elite school

attendance increases the likelihood of admission to a top-echelon or regular high school through

channels beyond entrance exam scores.

Table 5 reports our regression results employing all linked lottery-MSEE pairs in Ψ. Each row

uses one of the aforementioned five outcome measures as the dependent variable, and each cell

corresponds to a separate regression. Columns 1-3 show the OLS, reduced-form and IV estimates,

respectively, for the full sample. Because the OLS regressions employ only information on middle

school enrollment and student outcomes contained in the MSEE data set, they correspond to cross-

sectional regressions of student outcomes on elite school enrollment status in the subsample of MSEE

takers whose names appear in the list of lottery participants (conditional on gender and cohort).

The OLS coeffi cients on the five outcome measures in Column 1 are all positive and significant.

Those from the regressions using total MSEE scores and top-echelon high school admission status as

the dependent variables show that elite school attendance is associated with 0.4σ higher total scores

on the MSEE and a 12.4 percentage points higher probability of admission to a top-echelon high

school, a more than 50 percent increase over the citywide average admission rate of 21.7 percent.

The large and significant OLS coeffi cients, however, are at least in part attributable to selective

lottery participation and applicants’selective noncompliance with their lottery assignments. These

two sources of selection are illustrated previously in Figures 1B and 2A, respectively. The former

contributes to the OLS coeffi cients because Ψ contains a large number of falsely matched MSEE

records that pertain to non-applicants (most of whom did not enroll in an elite school), whereas

the latter contributes to the OLS coeffi cients by allowing more able applicants to have a greater

chance of gaining access to elite schools after losing the lottery.

To circumvent the spurious cross-sectional relationship between elite school enrollment and stu-

dent outcomes, we examine in Column 2 the reduced-form relationship between lottery assignments

and student outcomes in Ψ. Similar to our earlier exposition on the first-stage relationship, the

reduced-form coeffi cients reflect the win/loss difference in academic outcomes among lottery partic-
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ipants but are attenuated by the existence of falsely matched pairs. Despite such attenuation, we

would still expect a positive reduced-form relationship in Ψ if winners outperformed losers in acad-

emic outcomes upon graduation from middle school. On the contrary, the reduced-form coeffi cients

are insignificant and virtually zero for all five outcome measures, thus providing little evidence of

any difference between winners and losers in ex post academic outcomes. Compared to the atten-

dance effects, the reduced-form coeffi cients are attenuated by the extent of both the contamination

of falsely matched pairs in Ψ and the imperfect compliance of lottery participants. To estimate

the attendance effects that are not attenuated by these two factors, we use the applicant’s lottery

assignment as an instrument for the matched MSEE taker’s enrollment status at the elite school

of the applicant’s choice for every linked lottery-MSEE pair in Ψ. The IV coeffi cients, presented in

Column 3, are never significant and often negative,10 thus providing little evidence of any positive

academic gains from elite school attendance once selection in enrollment is accounted for. The

point estimate of the effect of elite school attendance on MSEE scores is -0.016 and allows rejection

of a relatively modest achievement gain of 0.15σ at the ten percent level. Columns 4-6 of Table

5 replicate the regressions in Columns 1-3 using the subsample of applicants from District 3 with

baseline scores. All of the IV coeffi cients for this subsample are insignificant, showing qualitatively

the same results as those for the full sample.

Our empirical analysis so far has ignored the impact of differential attrition between winners and

losers in Ψ. However, results in Table 3 show evidence for a small degree of differential attrition.

As illustrated in Corollary 1, differences in the ability and treatment effect between marginally

retained individuals and the counterparts to which they are compared to (i.e., always retained

individuals and falsely matched MSEE takers) can lead to biases in the IV estimates. We employ

Corollary 1 in Appendix C to discuss in detail the sign and magnitude of the potential bias that

may arise from differential attrition. In sum, this exercise shows that differential attrition is likely

to bias our IV estimates upward, although the size of the bias, estimated to be bounded by a few

percent of a standard deviation in MSEE scores, is quite small in practical terms. Nonetheless,

despite of the potentially positive differential attrition bias in favor of elite schools, our estimates

still provide little evidence that elite schools confer any clear academic benefits to compliers who

gain access through admission lotteries.

10The only positive IV coeffi cient is obtained when the dummy indicator for admission to a top-echelon high school
is used as the dependent variable, but it is not statistically significant.
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5.3 Possible Pathways of Elite School Exposure

Despite of the large observed superiority of elite schools, our IV estimates show little evidence that

elite school attendance improves students’MSEE scores or secondary school admission outcomes.

To understand this obscurity, we now turn to the possible pathways through which differences in

the schooling environment between elite and neighborhood schools may affect student achievement.

First, elite school attendees are exposed to higher-achieving peers. If better peers facilitate learning,

then elite schools’large peer advantage should benefit their attendees. At the same time, however,

the admission lottery compliers we examine in this study are, on average, relatively weak students

in elite schools owing to the existence of advance and back door admissions. If lower ranking

is demoralizing, then exposure to higher-achieving peers may diminish student performance. In

addition, peer effects may be heterogeneous and depend on a student’s initial achievement or

ranking. For example, in the context of secondary schools in China, Ding and Lehrer (2007)

find that students who score in the top quantiles benefit much more from having high-achieving

peers than those who score in the lowest quantiles. Given the limited and mixed evidence on the

mechanisms of peer effects in the existing literature,11 it is unclear whether exposure to higher-

achieving peers in elite schools has an overall positive effect on the admission lottery compliers.

Second, elite schools typically employ better qualified teachers than neighborhood schools, which

should benefit all their attendees. At the same time, because of the exam school tradition and over-

representation of high-achieving students, classroom instruction in these schools tends to emphasize

more advanced materials and to be more challenging. In an experimental evaluation in Kenya,

Duflo, Dupas, and Kremer (2011) find that low-achieving students benefit from tracking because

the teachers assigned to the lower-achieving classrooms adjust their teaching level toward these

students’ability. Thus, the more advanced classroom instruction in elite schools may have adverse

impact on the relatively weak admission lottery compliers, offsetting the positive effect of teacher

quality, if any. Accordingly, similar to the reasoning of Bui, Craig, and Imberman (2011) concerning

the lack of achievement benefits for marginal students admitted to gifted and talented programs

in the US, the students who gained access to elite schools through admission lotteries in our study

may also have been ill-positioned to benefit from such experience. Lastly, elite schools typically

have higher per-pupil spending and better facilities, such as language learning centers and science

laboratories. On the other hand, they also have much larger class sizes due to strong parental

demand, thus making it diffi cult to determine whether the overall resource effect is positive. In

sum, for each pathway considered (i.e., peer quality, teacher quality and focus, and school resources),

11Examples include Carman and Zhang (2012), Hoxby and Weingarth (2006), Imberman, Kugler, and Sacerdote
(2012), Lavy, Paserman, and Schlosser (2012), and Lavy, Silva, and Weinhardt (2012)
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elite schools expose their attendees to elements that may have opposing effects on achievement. Our

failure to find score improvement most likely reflects the combined workings of the various forces

that shape the performance of elite school attendees, some of which may be value-adding and others

value-reducing, although we are unable to distinguish the extent of these forces.12

5.4 Parental Perception of "Better" Schools and Effective Value-Added

The persistent popularity of elite schools despite the lack of score improvement suggests a dis-

crepancy between parental perceptions of “better”schools and effective value-added education. To

further understand the rationale behind parental school choice, we construct two popularity mea-

sures for elite schools — the oversubscription rate (ratio of the total number of applicants to the

general admission quota) and winner take-up rate (proportion of lottery winners enrolled) —and

examine their relationship to average student achievement and estimated value-added. Figures 3A

and 3B plot the two popularity measures against a school’s average MSEE scores.13 Both mea-

sures are found to be positively associated with the average MSEE scores, thus suggesting that the

most popular elite schools are those with highest average student achievement. Figures 4A and

4B plot the two popularity measures against the estimated value-added effect. If parents indeed

prefer and are able to identify high value-added schools, we would expect to see higher value-added

elite schools possessing a heavier oversubscription rate and a higher take-up rate among lottery

winners. Contrary to our expectation, Figure 4A shows a negative correlation between a school’s

oversubscription rate and value-added and Figure 4B suggests no relationship between a school’s

winner take-up rate and value-added. The patterns in Figures 3 and 4 are confirmed by the re-

gression analysis results in Table A2 of the Appendix. Columns 3 and 6, in particular, show that

the positive effects of average student achievement on both popularity measures remain significant

even after controlling for the estimated value-added effect.

The lack of evidence of any achievement benefits conferred by elite schools, together with the

positive association between school popularity and average student achievement, indicates that

elite schools may be sought after primarily for their observed superiority in student outcomes. One

12 In their study on exam schools in Boston and New York, Abdulkadiroglu, Angrist, and Pathak (2012) interpret
their RD estimates as either the upper bound of peer effects assuming all other exam school inputs are beneficial to
student achievement (Proposition 1) or the sum of direct and indirect effects of peers assuming all other inputs are
causally downstream to peer characteristics (Proposition 2). However, in the context of elite schools in China, some
elements of elite school exposure, as discussed in the text, may not necessarily be value-adding or downstream to
peer chacteristics.
13More specifically, Figures 3A and 3B plot the popularity measures of each elite school in each year against the

average MSEE achievement of the school’s attendees over the study period except for the cohort used in calculating
the popularity measures after controlling for district-year-specific fixed effects. Note that the corresponding cohort
of attendees is excluded in calculating each school’s average MSEE scores because a school’s popularity in a given
year may affect the ex post MSEE achievement of attendees in that cohort through its effect on their composition.
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explanation is that parents choose elite schools for reasons other than their impact on learning, for

example, for nonacademic attributes such as school facilities and peer quality (beyond its effect on

achievement). Another explanation is that parents may confuse student outcomes with achievement

gains and therefore use the former to proxy for the latter. Figure 5 plots schools’ estimated

value-added effects against average MSEE scores and shows that the two measures are largely

uncorrelated, echoing previous findings of a weak correlation between school grades and value-

added in the US school accountability literature (see Kane and Staiger [2002] for a survey). Thus,

when student outcomes constitute a poor proxy for achievement gains (as in the case investigated

herein), parents are likely to misidentify schools with effective value-added. A third explanation

is that, because of the large differences in the accuracy between value-added and peer quality

measurements, parents may choose a school based primarily on peer quality rather than value-

added, even though they indeed value achievement gains the most. For example, parents may place

a high intrinsic weight on achievement gains and a low intrinsic weight on peer quality (beyond

its effect on achievement) in choosing a school. However, because value-added is very imprecisely

measured whereas peer quality can be observed directly with accuracy, the high intrinsic weight on

value-added is swamped by its noisy measurement, resulting in schools being chosen mainly for their

observed peer quality. Although we cannot differentiate between these three underlying reasons

from the existing empirical evidence, any of them being true would lead to elite schools being

sought after predominantly for their observed superiority in student achievement rather than their

academic value-added, thus reducing the potential of school choice to improve student achievement.

6 Conclusion

The empirical evidence on whether students benefit from attending "better" (i.e., selective, elite, or

high-achieving) schools is mixed in the existing literature. In this paper, we present new evidence

on this question by exploiting exogenous variation in elite school attendance induced by school

admission lotteries in China. In addition to the natural experimental setting, the use of uniform

curriculum across schools and the rigid entrance exam-based secondary and university admissions

render the Chinese context very clean and ideal for evaluating the effects of superior schooling

on student achievement and comparing parental perceptions of “better” schools to evidence of

value-added advantage.

Although winning a lottery substantially increases students’chances to enroll in their selected

elite schools that are far advantageous in peer achievement compared to neighborhood schools, we

find little evidence that elite school experience improves students’MSEE scores or their secondary
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school admission outcomes. We show that it is unlikely that our failure to establish evidence of a

positive achievement gain from elite school attendance is driven by biases that arise from lottery

assignment-induced differential attrition. We also find that the most sought-after elite schools

are those with the highest observed student achievement on the MSEE rather than those with

the largest value-added effect on test scores, thus suggesting that parental choice may be based

primarily on a school’s observed superiority in student outcomes. Our finding that schools are

chosen for reasons other than their achievement benefits casts doubt on the potential of school

choice to improve student achievement in the Chinese context.

This paper also makes an important methodological contribution to the program evaluation lit-

erature by extending the benchmark LATE framework to treatment effect analysis in contexts with

imperfect matching, encountered when combining an assignment data set and a treatment/outcome

data set in the lack of a common unique identifier. We develop a data combination procedure that

forms all pairwise links between records in the two data sets that are matched by the common vari-

ables, and show that the IV estimate constructed employing all linked record pairs in the combined

data set identifies the same causal parameter as in the case under perfect observation. As imperfect

matching is commonly confronted in program evaluations involving the combination of information

from different data sets, our extended LATE framework is widely applicable to a variety of contexts

in which similar observational problems arise following data combination.
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Elite
schools

Neighborhood
schools

Private
schools Total

(1) (2) (3) (4)
Number of schools 16 160 5 181
Average number of 9th­grade students 591 223 114 252
Enrollment share (%) 20.7 78.0 1.3 100.0

Mean MSEE score (in s.d.) 0.523 ­0.137 ­0.093 0
% of students admitted to top­echelon high schools 40.0 16.9 10.5 21.7
% of students admittted to regular high schools 40.9 27.5 26.3 30.5

Table 1 Enrollment and Student Outcomes by School Type

Notes:  All statistics are calculated from a random sample of MSEE takers in the study city in 2005.
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1.580 0.027 1.779 0.013 1.889 0.027
(2.059) (0.039) (2.364) (0.098) (2.416) (0.148)

0.892 0.022 *** 0.904 0.018 0.940 0.018 *
(0.311) (0.006) (0.295) (0.012) (0.238) (0.011)

Number of observations 9,630 13,768 2,730 3,483 2,335 2,973

Notes : Odd columns report the mean for lottery losers, and even columns report the regression­adjusted win/loss
difference after controlling for lottery fixed effects. The numbers reported in parentheses are standard deviations in
odd columns and standard errors in even columns.
*significant at 10%; *** significant at 1%.

Number of matches (ni)
(6)

Overall match rate (ni>=1)

(1) (2) (3) (4) (5)

Table 3 Matching Outcomes and Lottery Assignments

Full sample District 3 District 3 w/ baseline scores
Losers'
mean

Win/loss
difference

Losers'
mean

Win/loss
difference

Losers'
mean

Win/loss
difference
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no controls no controls
(1) (2) (3) (4)

Lottery winner 0.197 *** 0.196 *** 0.258 *** 0.257 ***
(0.007) (0.007) (0.014) (0.014)

Female ­ ­0.020 0.002
(0.006) (0.011)

Baseline score ­ ­ 0.034 ***
(0.008)

Number of observations

Lottery winner 0.340 *** 0.340 *** 0.519 *** 0.517 ***
(0.009) (0.009) (0.021) (0.021)

Female ­ ­0.019 0.001
(0.008) (0.017)

Baseline score ­ ­ 0.055 ***
(0.012)

Number of observations

Losers' mean in the inferred enrollment status
Winners' mean in the inferred enrollment status
Lottery winner 0.332 *** 0.332 *** 0.498 *** 0.496 ***

(0.009) (0.009) (0.020) (0.020)
Female ­ ­0.014 ­0.003

(0.008) (0.016)
Baseline score ­ ­ 0.056 ***

(0.011)
Number of observations

*** significant at 1%.

Dependent variable: the inferred enrollment status at the elite school of an applicant's choice

Notes:  This table reports the coefficients of regressions of the dependent variables (specified in each panel) on the
lottery winner dummy and a set of lottery fixed effects. The even columns further include a female dummy and baseline
scores (if available) as covariates. The unit of analysis is the matched record pairs in the combined data set for Panel A
and the applicants contained in the combined data set for Panels B and C. Standard errors are reported in parentheses.

Dependent variable: enrollment status at the elite school of an applicant's choice
Unit of analysis: matched record pairs in the combined data set

Unit of analysis: applicants retained in the combined data set
Dependent variable: the number of matched MSEE records from the elite school of an applicant's choice

Unit of analysis: applicants retained in the combined data set

2,80312,347

0.396

Panel C

0.528
0.895 0.936

Table 4 Effect of Winning an Admission Lottery on Elite School Enrollment

Full sample
District 3 subsample w/

baseline scores

Panel A

2,803

Panel B
5,60621,676

12,347

 w/ controls w/ controls
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B. By Advance Admission and Application Status

Figure 1 Baseline Score Distributions, District 3 Students

Notes : Panel A plots the Kernel density curve of 6th-grade scores of District 3 students by their elite school enrollment status.
The Kolmogorov-Smirnov two-sample test has a p-value of 0.000, showing that elite school and neighborhood school students
are different in terms of baseline scores. Panel B plots the Kernel density curve of 6th-grade scores for District 3’s advance
admission recipients, general admission applicants, and non-applicants, respectively. The Kolmogorov-Smirnov two-sample test
results show that the three distributions are all different from one another with a p-value of 0.000.
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Figure 2 Baseline Score Distributions by Lottery and Enrollment Status, District 3 Applicants

Notes : Panel A plots the Kernel density curve of the 6th-grade scores of lottery losers in District 3 by their inferred elite
school enrollment status. The Kolmogorov-Smirnov two-sample test has a p-value of 0.000, which rejects the equality of the
two distributions. Panel B plots the Kernel density curve of the 6th—grade scores of lottery winners in district 3 by their
inferred elite school enrollment status. The Kolmogorov-Smirnov two-sample test has a p-value of 0.948, which cannot reject
the equality of the two distributions.
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Figure 3 School Popularity and Student Achievement

Notes : Panel A plots the oversubscription rate residual against the value-added effect residual after controlling for district-year-
specific fixed effects. Panel B plots the winner take-up rate residual and the value-added effect residual after controlling for
district-year-specific fixed effects.
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Figure 4 School Popularity and Value-Added Effect

Notes : : Panel A plots the oversubscription rate residual against the value-added effect residual after controlling for district-
year-specific fixed effects. Panel B plots the winner take-up rate residual and the value-added effect residual after controlling
for district-year-specific fixed effects.
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Figure 5 Value-Added Effect and Student Achievement

Notes : : This graph plots the value-added effect residual against the average MSEE score residual after controlling for district-
year-specific fixed effects. In calculating a school’s average MSEE score, we exclude the corresponding cohort of attendees used
in estimating the school-cohort-specific value-added effect.
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Appendix

A. Extended LATE Framework under Monotone Sample Attrition

The independent sample attrition assumption in Proposition 3 does not hold in practice as winning

a lottery has a monotone effect on an individual’s observability in the MSEE data set, resulting

in differential attrition between winners and losers in Ψ. Figure 1A illustrates the partition of the

linked lottery-MSEE pairs in Ψ in a more generalized setting with both imperfect matching and

differential attrition. The subset of linked lottery-MSEE pairs to losers, Ψ0, consists of always

retained individuals (with a proportion of p0) and falsely matched pairs (with a proportion of

1−p0), and the subset of linked lottery-MSEE pairs to winners, Ψ1, is comprised of always retained

individuals (with a proportion of p1), marginally retained individuals (with a proportion of pm), and

falsely matched pairs (with a proportion of 1− p1− pm). These three fractions are linked in such a
way that p1 = p0(1−pm). Following Angrist, Imbens, and Rubin (1996), we further partition always

retained individuals into always takers (Di(0) = Di(1) = 1, with a proportion of da), compliers

(Di(0) = 0, Di(1) = 1, with a proportion of dc), and never takers (Di(0) = Di(1) = 0, with a

proportion of 1 − da − dc). In addition, we also divide falsely matched pairs by treatment status
into treatment takers (Dj = 1, with a proportion of df ) and treatment non-takers (Dj = 0, with a

proportion of 1−df ), and assume that all marginally retained individuals in Ψ1 are indeed treated,

i.e., Di(1) = 1 ∀ i : Ti(1) > Ti(0).

With the foregoing partitions and notations, the ITT estimand of Z ′s effect on D, constructed

by comparing the means in the treatment status between Ψ1 and Ψ0, can be expressed as

E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci]

= p1E[Di(1)|Ti(0) = 1] + pmE[Di(1)|Ti(1) > Ti(0)] + (1− p1 − pm)E[Dj |Cj = Ci, j 6= i]

− p0E[Di(0)|Ti(0) = 1]− (1− p0)E[Dj |Cj = Ci, j 6= i]

= p1(da + dc) + pm · 1 + (1− p1 − pm)df − p0da − (1− p0)df

= p0dc + pm[1− p0(dc + da)− (1− p0)df ]. (1’)

The first term, p0dc, corresponds to the potential ITT effect of Z on D in Ψ0, whereas the second

term is the bias arising from the existence of marginally retained individuals in Ψ1 only, whose

treatment status differs from that of the always retained individuals and falsely matched pairs in

Ψ0 to which they are compared. Analogously, the ITT estimand of Z ′s effect on Y in Ψ can be

written as
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E[Yi(j)|Zi = 1, Cj = Ci]− E[Yi(j)|Zi = 0, Cj = Ci]

= p1E[Yi(0) + γiDi(1)|Ti(0) = 1] + pmE[Yi(0) + γiDi(1)|Ti(1) > Ti(0)] + (1− p1 − pm)E[Yj(0) + γjDj |Cj = Ci, j 6= i]

− p0E[Yi(0) + γiDi(0)|Ti(0) = 1]− (1− p0)E[Yj(0) + γjDj |Cj = Ci, j 6= i]

= p1(ya + γada + γcdc) + pm(ym + γm) + (1− p1 − pm)(yf + γfdf )− p0(ya + γada)− (1− p0)(yf + γfdf )

= p0γcdc + pm[(ym + γm)− p0(ya + γcdc + γada)− (1− p0)(yf + γfdf )], (2’)

where ya, ym, and yf denote the average potential outcomewithout treatment for always retained

individuals, marginally retained individuals, and falsely matched MSEE takers, respectively;1 and

γc, γa, γm, and γf denote the average treatment effect for compliers, always takers, marginally

retained individuals, and falsely matched treatment takers, respectively.2 Similar to Equation (1’),

the first term, p0γcdc, in Equation (2’) corresponds to the potential ITT effect of Z on Y in Ψ0,

whereas the second term is the bias owing to the contamination of marginally retained individu-

als in Ψ1, whose average outcome (ym + γm) may differ from that of always retained individuals

(ya+γcdc+γada) and falsely matched MSEE takers (yf +γfdf ). Taking the ratio of Equations (2’)

and (1’), we can derive the extended LATE theorem under both imperfect matching and differential

attrition as follows.

Corollary 1 In the presence of imperfect matching, if Assumptions (A1)-(A5) hold and Ti(1) > Ti(0) ∀
i ∈ I, then the IV estimand without covariates using the combined data set is

γIV =
E[Yi(j)|Zi = 1, Cj = Ci]− E[Yi(j)|Zi = 0, Cj = Ci]

E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci]

= γc + (pm/δ){ym − p0ya − (1− p0)yf︸ ︷︷ ︸
η1

+ γm − p0daγa − (1− p0)dfγf − [1− p0da − (1− p0)df ]γc︸ ︷︷ ︸
η2

},

where all notations are as previously defined except for δ, which denotes the ITT estimand of the effect of Z

on D in the combined data set, i.e., E[Di(j)|Zi = 1, Cj = Ci]− E[Di(j)|Zi = 0, Cj = Ci].

Remark 1. The magnitude of the bias is proportional to the ratio of the share of marginally

retained individuals in Ψ1 (pm) and the ITT estimand of Z ′s effect on D in Ψ (δ). The smaller the

size of pm/δ, the smaller the bias. Proposition 3 can be considered as a special case of Corollary 1

in which the bias term is eliminated in the absence of differential attrition (i.e., pm = 0).

Remark 2. The first bias component in the curly bracket, η1, arises if the extent of the ability

selection of marginally retained individuals differs from that of the counterparts to which they are

compared, i.e., always retained individuals and falsely matched MSEE takers. The size of this bias

component is determined by the extent to which the average potential outcome without treatment

1More specifically, ya = E[Yi(0)|Ti(0) = 1], ym = E[Yi(0)|Ti(1) > Ti(0)], and yf = E[Yj(0)|Cj = Ci, j 6= i].
2More specifically, γc = E[Yi(1) − Yi(0)|Di(1) > Di(0), Ti(0) = 1], γa = E[Yi(1) − Yi(0)|Di(0) = 1, Ti(0) = 1], γm =

E[Yi(1)− Yi(0)|Ti(1) > Ti(0)], and γf = E[Yi(1)− Yi(0)|Cj = Ci, j 6= i].
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of marginally retained individuals, ym, differs from a weighted average of that of always retained

individuals and falsely matched MSEE takers, p0ya + (1− p0)yf .
Remark 3. The second bias component in the curly bracket, η2, arises if the average treatment

effect (ATE) of marginally retained individuals, γm, differs from a weighted average of the ATE

of always takers, falsely matched treatment takers, and compliers, p0daγa + (1 − p0)dfγf + [1 −
p0da − (1− p0)df ]γc. It is important to note that in the case of homogeneous treatment effects, η2

becomes zero, as the ATEs are the same for all subgroups.

B. Extended LATE Framework under Stratified Randomization

The randomized elite school admissions investigated in this paper constitute a stratified randomized

experiment as each lottery has a varying winning rate. In this appendix, we consider the further

extension of the LATE framework to stratified randomization in which the population is partitioned

into randomization blocks (strata) and an independent lottery with varying assignment probability

is conducted within each randomization block. Let Bi indicate the lottery (i.e., randomization

block) that individual i enters, indexed by k ∈ {1, ...,K}, where K is the total number of lotteries.

Note that when the assignment probability, P (Zi = 1), varies across lotteries, assignment Zi is

correlated with lottery membership Bi. Therefore, if lottery membership Bi is associated with

individuals’potential treatments and outcomes, Zi is correlated with {Di(0), Di(1), Yi(0), Yi(1)}
through its correlation with Bi, which is in violation of Assumption (A2). Nevertheless, a con-

ditional version of (A2) still holds as Zi is randomly assigned conditional on Bi. Analogously,

Assumptions (3) and (5) also hold only in conditional forms.

Assumptions (A2’), (A3’) and (A5’)

(A2’) Conditional Independence I : {Di(0), Di(1), Yi(0), Yi(1)} ⊥ Zi|Bi;
(A3’) Conditional First Stage: E[Di(1)−Di(0)|Bi] > 0 and 0 < P (Zi = 1|Bi) < 1;

(A5’) Conditional Independence II:{Dj , Yj} ⊥ Zi|Bi ∀ Cj = Ci, j 6= i.

When these assumptions hold in their conditional forms in the presence of multiple independently

conducted lotteries, it is essential to control for lottery membership in the IV procedures. The

following Corollary shows that, controlling for lottery fixed effects, the IV estimand of a stratified

randomized experiment is a weighted average of the simple IV estimands of the various lotteries.

Corollary 2 In the case of stratified randomization with imperfect matching, if Assumptions (A1), (A2’),

(A3’), (A4), and (A5’) hold and Ti(1) > Ti(0) ∀ i ∈ I, then the IV estimand with no covariates except the
lottery dummies is a weighted average of the simple IV estimands of the various lotteries:

γIV =
K∑
k=1

ωkγk,

where γk denotes the simple IV estimand of lottery k, E[Yi(j)|Zi=1,Bi=k,Cj=Ci]−E[Yi(j)|Zi=0,Bi=k,Cj=Ci]

E[Di(j)|Zi=1,Bi=k,Cj=Ci]−E[Di(j)|Zi=0,Bi=k,Cj=Ci]
, and

ωk represents the weight for lottery k that equals
Nkπk(1−πk)δk
K∑
k=1

Nkπk(1−πk)δk
. In the weight formula, Nk is the total
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number of matched pairs for lottery k,
∑

i:Bi=k

( ∑
j:Cj=Ci

1

)
; πk is the proportion of matched pairs for lottery

k that are for winners, P (Zi = 1|Bi = k,Cj = Ci); and δk is the win/loss difference in treatment status in

all matched pairs for lottery k, E[Di(j)|Zi = 1, Bi = k,Cj = Ci]− E[Di(j)|Zi = 0, Bi = k,Cj = Ci].

Proof. Let Dk and Yk denote the average treatment status and outcome of all matched pairs for lottery

k, i.e., Dk = 1
Nk

∑
i:Bi=k

( ∑
j:Cj=Ci

Di(j)

)
and Yk = 1

Nk

∑
i:Bi=k

( ∑
j:Cj=Ci

Yi(j)

)
. The IV estimator, controlling for

the set of lottery dummies, is

γ̂IV =

K∑
k=1

{ ∑
i:Bi=k

[ ∑
j:Cj=Ci

Zi(Yi(j) − Yk)
]}

K∑
k=1

{ ∑
i:Bi=k

[ ∑
j:Cj=Ci

Zi(Di(j) −Dk)
]} =

K∑
k=1

{ ∑
i:Bi=k,Zi=1

[ ∑
j:Cj=Ci

(Yi(j) − Yk)
]}

K∑
k=1

{ ∑
i:Bi=k,Zi=1

[ ∑
j:Cj=Ci

(Di(j) −Dk)
]} .

The population analog of the IV estimator can be written as

γIV = p lim γ̂IV =

K∑
k=1

{
Nkπk([E[Yi(j)|Zi = 1, Bi = k,Cj = Ci]− E[Yi(j)|Bi = k,Cj = Ci])

}
K∑
k=1

{
Nkπk(E[Di(j)|Zi = 1, Bi = k,Cj = Ci]− E[Di(j)|Bi = k,Cj = Ci])

}

=

K∑
k=1

{
Nkπk(E[Yi(j)|Zi = 1, Bi = k,Cj = Ci]− πkE[Yi(j)|Zi = 1, Bi = k,Cj = Ci]

−(1− πk)E[Yi(j)|Zi = 0, Bi = k,Cj = Ci])

}
K∑
k=1

{
Nkπk(E[Di(j)|Zi = 1, Bi = k,Cj = Ci]− πkE[Di(j)|Zi = 1, Bi = k,Cj = Ci]

−(1− πk)E[Di(j)|Zi = 0, Bi = k,Cj = Ci])

}

=

K∑
k=1

{
Nkπk(1− πk)(E[Yi(j)|Zi = 1, Bi = k,Cj = Ci]− E[Yi(j)|Zi = 0, Bi = k,Cj = Ci])

}
K∑
k=1

{
Nkπk(1− πk)(E[Di(j)|Zi = 1, Bi = k,Cj = Ci]− E[Di(j)|Zi = 0, Bi = k,Cj = Ci])

}
=

1
K∑
k=1

Nkπk(1− πk)δk

K∑
k=1

{
Nkπk(1− πk)δk

E[Yi(j)|Zi = 1, Bi = k,Cj = Ci]− E[Di(j)|Zi = 0, Bi = k,Cj = Ci]

E[Di(j)|Zi = 1, Bi = k,Cj = Ci]− E[Di(j)|Zi = 0, Bi = k,Cj = Ci]

}

=
1

K∑
k=1

Nkπk(1− πk)δk

K∑
k=1
{Nkπk(1− πk)δkγk} =

K∑
k=1

ωkγk.

C. Accounting for Differential Attrition Bias

Our analysis in Section 3 suggests a small degree of differential attrition between lottery winners

and losers in Ψ, raising concerns over bias from differential attrition in our IV estimates. The prior

literature on treatment effect analysis of randomized experiments with missing outcomes resorts

to the construction of bounds for the treatment effect by either inferring the missing outcomes

with population maximums/minimums (Manski, 1990; Horowitz and Manski, 2000) or trimming

the lower/upper tail of the outcome distribution (Lee, 2009). Because our point estimates are close

to zero, application of such strategies to our data yields treatment bounds that always include zero

and thus cannot help to sign the treatment effect. Moreover, the constructed treatment bounds are
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also too wide to be informative. We thus employ an alternative approach to investigate directly

the sign and size of the bias arising from differential attrition.

As Corollary 1 shows the magnitude of the bias to be proportional to the ratio of the share of

marginally retained individuals in Ψ1 (pm) and the first-stage effect (δ), we begin with investigating

the size of pm/δ. The matching statistics in Table 3 indicate an average of 1.58 matches for lottery

losers and a win/loss difference of about 0.03. Thus, pm can be estimated as 0.03/(1.58 + 0.03) =

0.019. Also, Panel A of Table 4 shows the first-stage coeffi cient on the lottery winner dummy, δ,

to be 0.197. Therefore, the ratio of pm/δ in the bias formula is close to 0.1.

We now consider the first bias component, η1, i.e., ym − p0ya − (1 − p0)yf , which arises if

the extent of the ability selection in terms of potential outcomes without treatment of marginally

retained individuals differs from those of always retained individuals and falsely matched MSEE

takers. Because of the unobservable nature of potential outcomes without treatment, we are unable

to analyze this difference directly. However, for a subsample of District 3 applicants with baseline

scores, the extent of this ability selection can be gauged by the difference in the average baseline

scores between marginally retained individuals (xm) and always retained individuals (xa) and falsely

matched MSEE takers (xf ). Let θL and θW denote the proportion of losers and winners who are

unmatched in Ψ, respectively. The former contains both (i) never retained individuals without

false matches (i.e., Ti(1) = 0 and Fi = 0) and (ii) marginally retained individuals without false

matches (i.e., Ti(0) = 0, Ti(0) = 1 and Fi = 0); and the latter contains type (ii) applicants only,

where Fi is a dummy indicator for whether applicant i has any false match in Ψ. Columns (5)-(6)

of Table 3 show θL = 0.060 and θW = 0.042. It follows that θW (0.042) corresponds to the size of

type (i) applicants, P (Ti(1) = 0, Fi = 0), and θL − θW (0.018) corresponds to the size of type (ii)

applicants, P (Ti(0) = 0, Ti(1) = 1, Fi = 0). Thus, the ratio of type (i) and type (ii) applicants in

the unmatched losers is 7 : 3(0.042 : 0.018). If these two types of applicants were to have the same

ex ante ability, we would expect the unmatched losers and winners to be balanced in their baseline

scores. However, Row (a) of Table A1 shows that the former outperform the latter by a large

margin of 0.174σ. Because of the small size of unmatched applicants (141 losers and 29 winners)

in this subsample, this difference is not statistically significant. However, as the 0.174σ difference

is entirely owing to 30 percent unmatched losers pertaining to type (ii), it indicates a difference

of 0.582σ in the average baseline scores between type (ii) and type (i) applicants. Based on these

coeffi cients, the average baseline scores of type (ii) applicants are estimated to be 0.636σ. Assuming

that false matching is independent of baseline scores, we can proxy xm by the average baseline scores

of type (ii) applicants, who account for three-quarters of all marginally retained individuals given

our prior knowledge of a false matching rate of 0.25. Row (b) of Table A1 shows the average

baseline scores of matched losers to be 0.303σ. However, in addition to always retained individuals,

the matched losers are contaminated by unretained losers with false matches, i.e., Ti(0) = 0 and

41



Fi = 1. If we assume the same false matching rate also applies to the subgroup of applicants with

Ti(0) = 0, i.e., P (Fi = 1|Ti(0) = 0) = 0.25, then the proportion of unretained losers with false

matches P (Ti(0) = 0, Fi = 1) = P (Ti(0) = 0, Fi = 0) × P (Fi=1|Ti(0)=0)
P (Fi=0|Ti(0)=0) = 0.06 × 0.25

1−0.25 = 0.02.

Given this small representation of unretained losers with false matches (0.02) among matched

losers (0.94), we thus use the average baseline scores of unmatched losers (0.303σ) to proxy for

xa. Finally, we further assume that the average baseline scores of falsely matched MSEE records

(xf ) are 0 and proxy p0 by the ratio of the two first-stage estimates in Panels A and B of Table 4,

0.197/0.340 = 0.579. Then, the extent of ability selection in baseline scores, xm−p0xa− (1−p0)xf ,
is estimated to be 0.461σ. Given our estimate of the marginal effect of baseline scores on MSEE

scores, that is, approximately 0.7, η1 is estimated to be approximately 0.322σ. With our prior

estimate of the pm/δ ratio, 0.1, the magnitude of the ability selection bias due to η1 appears to be

around 0.032σ in the IV estimate.

We next consider the second bias component, η2, i.e., γm−p0daγa−(1−p0)dfγf−[1−p0da−(1−
p0)df ]γc. As previously noted, η2 vanishes if treatment effects are homogeneous. In contexts with

heterogeneous treatment effects, η2 depends on the extent to which the ATE of marginally retained

applicants (γm) differs from that of always takers (γa), falsely matched MSEE takers (γf ), and

compliers (γc). As we cannot quantify the ATEs of different subgroups, η2 can be either positive or

negative. However, it seems implausible that the extent of heterogeneous treatment effects would

outweigh that of ability selection, which would require η2 to exceed 0.32σ in magnitude. Therefore,

the overall differential attrition bias (pm/δ)(η1 + η2) in the IV estimate should still be positive,

with its magnitude bounded by a few percent of a standard deviation. Nonetheless, despite the

potentially positive differential attrition bias, our IV estimates still provide no evidence that elite

schools confer positive academic benefits to admission lottery compliers.
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(2)
(a) Unmatched applicants 0.229 ­0.174

(0.694) (0.141)
(b) Matched applicants 0.303 0.034

(0.770) (0.033)
(c) Marginally retained individuals w/o false matches 0.636
(a1)+θW/(θL-θW)*(a2)
Number of observations 2,335 2,973

Notes : Rows (a) and (b) report the average baseline scores for lottery losers and the
win/loss difference for matched and unmatched applicants, respectively. Row (c)
reports the estimated average baseline score of marginally retained individuals without
false matches, calculated as (a1)+θW/(θL-θW)*(a2). θw denotes the proportion of
winners, estimated to be 0.042, and θw denotes the proportion of losers who are
unmatched, estimated to be 0.060. The numbers reported in parentheses are standard
deviations in odd columns and standard errors in even columns. The number of
observations reported in each column is the maximum number of observations used in
that column.

Table A1 Ability Selection in Baseline Scores of District 3 Applicants

Losers'
mean

Win/loss
difference

(1)
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Average MSEE scores (in s.d.) 2.163 ** 2.010 ** 0.112 ** 0.115 **
(0.757) (0.759) (0.049) (0.051)

Estimated value­added effect (in s.d.) ­0.780 ­0.555 ­0.002 0.011
(0.582) (0.483) (0.037) (0.033)

Number of observations 21 21 21 21 21 21

**Significant at the 5% level.

Notes : This table reports the OLS coefficients of the regressions of the dependent variables, indicated by the column
headings, on the independent variables, indicated by the row headings, and district­year fixed effects. Note that the
oversubscriptation rate, winner take­up rate, and estimated value­added effect are all measured at the school­cohort
level, whereas the average MSEE is calculated using the school's attendees over the study period except for the
cohort used in computing other measures. Standard errors are reported in parentheses.

Table A2 School Popularity, Average Achievement, and Value­Added

Dependent variable
Oversubscription rate Winner take­up rate

(1) (2) (3) (4) (5) (6)
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