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Abstract 

This paper examines how the competitiveness of distinct college majors at a student’s college 

affects her major choice and other college outcomes.  To mitigate the selection problem, we 

control for very flexible application-admissions pattern fixed effects to account for student 

unobservables, as well as school-specific fixed effects to account for typically unobservable 

institutional characteristics that are plausibly correlated with peer quality and student outcomes.  

We find that students initially interested in pursuing a science major respond to the 

competitiveness of both the broad science and non-science major tracks.  Weaker, non-minority 

students typically respond to greater competition in the sciences by shifting their major choice.  

Under-represented minorities tend to persist in the sciences regardless of competition, but suffer 

– often substantially -- in terms of college grades and the likelihood of graduating.  JEL Codes: 

I21, J24 
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I.  INTRODUCTION  

 In the United States, ethnicity is a strong predictor of who becomes a scientist.  While 

young whites are not quite twice as likely as young blacks to earn a bachelor’s degree, whites are 

nearly seven times as likely as blacks to earn a doctorate in science (Bureau of the Census, 

2003).  A number of social scientists, and more recently the U.S. Commission on Civil Rights, 

have suggested that at least part of this disparity can be explained by a phenomenon called 

“science mismatch.”  The argument is that student learning, interest, and performance are all 

affected by one’s peers; stronger peers often have positive effects, but if a student’s peers in, say, 

college courses are on average much better prepared than the student is, then the student will fall 

behind, learn less, and perform badly.  In the sciences, this problem may be particularly severe 

because professors presuppose a particular level of technical skill in each course, courses are 

graded rigorously, and many courses build on prerequisites in the same sequence.  Large racial 

preferences granted by elite college admissions offices may thus have the effect of placing a 

large proportion of the most talented black and Hispanic science students in environments where 

they are likely to struggle and either fail to graduate or switch to a non-science major. 

A good deal of research has documented the high attrition of blacks (and sometimes 

Hispanics) from the sciences at elite schools (e.g., Astin and Astin 1993; Elliott and Strenta, 

1996).  But there are significant challenges in fully testing the mismatch hypothesis: one must 

compare students facing different levels of peer competition while at the same time controlling 

for the academic preparation of those students and for the unique characteristics of each college 

campus.  In this paper, we take advantage of a very large dataset covering all freshmen enrollees 

at the eight undergraduate campuses of the University of California over a nine-year period. 
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These campuses have many functional similarities – they are all public, they are similar in size, 

they have common entrance requirements and a common administration – but they embrace a 

wide range of student competitiveness.  At UC Berkeley, the median student has SAT scores that 

place her at the 91st
h
 percentile of all American students taking the SAT; at the least elite UC 

campuses, the median student has SAT scores that place her at the 62nd
th

 percentile.  While all 

UC students are academically stronger than the average American college student, this range of 

entering credentials is much broader than that observed in most other studies of peer effects.  

Because of the extremely rich data we have on application and admission patterns across all 

eight campuses, we are able to effectively address selection problems by building upon and 

improving a strategy used by Dale and Krueger (2002) in their well-known study of the effects of 

college eliteness on earnings.  Specifically, we control for very flexible application-admissions 

pattern fixed effects to account for student unobservables, as well as school-specific fixed effects 

to account for typically unobservable institutional characteristics that are plausibly correlated 

with peer quality and student outcomes.  We find strong support for the role of peer effects, and 

significant support for the mismatch effect as it is usually defined. We also suggest issues to 

pursue in future research. 

 

II.  RELATED LITERATURE 

 The notion that at college it might be better to be a big frog in a little pond, rather than the 

reverse, has been around in sociology since the 1960s (Davis, 1966), and in economics since at 

least the early 1970s (Sowell, 1972).  But empirical research on peer effects in college only 

began in the mid-1990s (e.g., Loury and Garman, 1995), and has accelerated in recent years.  
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 A range of studies have consistently found that black, Hispanic, and white high school 

seniors are more or less equally likely to aspire to careers in the sciences or engineering, often 

referred to generally as “STEM” fields (for “Science, Technology, Engineering and 

Mathematics) (Astin and Astin, 1993).
1
  Elliott et al (1996) and Arcidiacono et al (2011) have 

both shown that white, black, and Hispanic college freshmen at very elite schools all intend to 

major in STEM fields at similar rates, but that Hispanics and particularly blacks leave those 

fields at much higher rates. Consequently blacks end up being about half as likely as whites at 

these elite schools to secure a bachelor’s degree in a STEM field.  

 One potential explanation for these different attrition rates by race/ethnicity is that racial 

preferences in college admissions have tended to push minorities into academic environments in 

which their lower level of high school preparation has made it more difficult for them to 

compete.  This disparity between a student’s own level of academic preparation and that of her 

peers is typically referred to as ‘mismatch’ within the literature.  Smyth and McArdle (2004), 

focus in some depth on the question of whether mismatch particularly affects college student 

success in the sciences.  Using longitudinal data from students at twenty-eight colleges, ranging 

from moderately elite to very elite, they conclude that preference programs tend to put STEM-

interested black and Hispanic students into college environments where it was harder for them to 

compete effectively; had all the black and Hispanic students in their sample enrolled at schools 

where their credentials were close to the class-wide averages, then 45% more of the female 

minorities, and 35% more of the male minorities, would have completed STEM degrees.  

Conversely, Ost (2010) examines longitudinal data from a single large elite research university 

                                                 
1
 Asian-American high school seniors are substantially more likely than other groups to aspire to STEM careers, and 

go on to very high rates of college study, college graduation, and graduate study in STEM fields 
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and finds that the students that are less likely to persistent in the sciences particularly benefit by 

taking courses with more persistent science peers.    

Studies that attempt to identify mismatch effects face the strong challenge of dealing with 

endogeneity resulting from the college admission and enrollment process.  Specifically, 

mismatch is typically measured by using observable measures of student relative ability and 

academic preparation.  However, students with weaker observables that attend more competitive 

institutions are more likely to have stronger unobservables than students with comparable 

observable characteristics who attend less competitive schools.  

Because of concerns about potential selection bias resulting from non-random college 

enrollment patterns, research on more general peer effects in higher education have tended to 

examine particular academic settings where certain peer groups are randomly or quasi-randomly 

assigned.   Using data from a middle-sized public university in southern Italy, Brunello et al. 

(2010) find that students with academically stronger roommates achieved significantly higher 

grades in the hard sciences; they also found no measureable peer effect upon grades achieved in 

the humanities and social sciences. Similarly, Carrell et al. (2009) find positive academic peer 

effects resulting from squadron assignment at the United States Air Force Academy, with such 

effects being largest in math and science courses.  Additionally, these authors find that lower 

ability students appear to particularly benefit from having higher-quality peers in their assigned 

squadron.  Other studies, such as Sacerdote (2001) and Foster (2006), that have looked at 

roommate and residential peer groups find no or limited resulting effects at other particular 

academic institutions.  

A necessary limitation of studies that focus on roommates or smaller peer groups is that 
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they may not provide us with relevant information that would allow us to project how an 

individual’s outcomes would differ if his or her entire cohort of peers were to change (as would 

result from a change in college attended).  Specifically, the peer dynamics that occur between 

roommates and within smaller college peer groups (which might promote group study, 

development of good study habits, and peer tutoring) are likely to be quite different from those 

that occur at the more macro peer group level (where peer competition in the classroom is more 

likely to be a driving force).  In our analysis we focus on major groupings as the relevant peer 

groups that determine persistence in the sciences.  The key contribution of our work is that we 

are able to take advantage of a rich dataset that allows us take a number of steps to ensure that 

our findings are not contaminated by selection bias. Furthermore, this data allows us to examine 

major group peer effects in a broader range of academic institutions.  

 

   III.  DATA 

 The University of California Office of the President (UCOP) maintains extensive and 

largely consistent databases on every student that has enrolled at the university since 1992.  In 

2007, a group of economists approached UCOP about studying the effects of Proposition 209 

(which banned race preferences at the university for cohorts admitted in 1998 and later) upon 

academic outcomes.  In 2008 and 2010, UCOP released a public-use version of its database.  

Most relevant for our purposes, the dataset contains nearly forty variables on every freshman 

applicant to a UC campus from 1995 through 2003. Among the variables are the identity of each 

campus to which a student applied, which campuses admitted the student, and whether (and 

where) the student enrolled.  The data also includes information on each student’s planned field 
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of study and a range of information about high school and standardized test performance.  For all 

enrollees, the dataset includes information on college grades, final field of study, and time to 

graduation (if the student graduated). 

For privacy reasons, UCOP collapsed student observations in a variety of ways.  SAT 

scores are reported in fifty-point ranges, for example, and college GPAs are reported in one-tenth 

point increments.  However, this data does include an exact academic index score, which UCOP 

constructed as a linear combination of each student’s high school GPA, SAT I verbal, and SAT I 

math scores based on pre-assigned weights.  A potential issue with this index score is that the 

way that it weights these three measures of high school credentials is not necessarily appropriate 

for an investigation of the determinants of success in the sciences.
2
  Therefore, we use these two 

sets of information on high school credentials to impute precise high school GPA, SAT verbal, 

and SAT math scores and use these imputed variables in the analysis that follows.  Details on the 

methodology used to impute high school grades and SAT scores are reported in the Appendix. 

Another data issue, also arising from UCOP’s privacy concerns, is the grouping of 

student observations into three-year cohorts (the cohorts of interest here are freshmen entering in 

1995-97, 1998-2000, and 2001-03).  The measures of peer characteristics that we use in our 

analysis thus pertain to these three-year cohorts instead of more refined entering-class cohorts.  

UCOP does provide annual data on average entering-class characteristics via its StatFinder 

webpage.
3
  A regression analysis of this data suggests that in using peer variables based on three-

year cohorts we lose less than 2 percent of the total variation of comparable peer measures based 

                                                 
2
 In particular, the index weights verbal and math SAT scores equally.  However, we argue that math skills are more 

predictive of success in the sciences and that verbal skills are more predictive of success in other disciplines 

(and, therefore, possibly of selection out of the sciences).  
3
 http://statfinder.ucop.edu/statfinder/default.aspx 
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on entering-class cohorts.  Therefore, it does not appear that the aggregation of students into 

three-year cohorts meaningfully weakens our analysis. 

Finally, the data does not contain information on gender and does not distinguish between 

black and Hispanic students, categorizing both as under-represented minorities.  We would 

definitely expect student ability and preferences towards the sciences to vary by gender and 

possibly by minority subgroups.  Because we do not observe this information in the data, it is 

again important that we use an identification strategy that accounts for unmeasured student 

qualifications and/or preferences that might influence both the selection of a student’s enrollment 

campus and his or her subsequent outcomes. 

 We have restricted our sample to students that are not missing information on personal 

characteristics and college outcomes.  Summary statistics for this sample are presented in Table 

I.  On average, UC students that intend to major in the sciences have stronger high school 

credentials (in terms of SAT I scores and high school grades) than students intending to pursue a 

non-STEM major.  However, these same students achieve a slightly lower graduation rate and 

lower cumulative college GPA than students intending to pursue a non-STEM major. 

Only 49 percent of intending science majors actually graduate with a science degree.  The 

outflow of students from the sciences is not counterbalanced by a comparable inflow of students 

from other fields.  Only 10 percent of students that do not initially intend to pursue a STEM 

major end up doing so.  

 

IV.  EMPIRICAL STRATEGY 

The following framework guides our thinking about how major peer groups affect college 
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outcomes.    

IV.A.  Conceptual Framework  

In deciding on their college major, students are faced with a degree progress production 

function: 

 
*

( ),( , , )ij ij i j j ijd d a a η−=  (i) 

where the degree progress of student i in major j is determined by her own ability ( a ) in major j, 

the average major-specific ability of the other students studying major j ( ( )i j− ), and a random 

shock η .  The student successfully obtains a degree in major j if her degree progress exceeds the 

minimum standard (k) for that major set by the college:  

 1
ij

d =  if 
*

ij ijd k≥  (ii) 

A student receives current and future utility (V): 

 

 ( ( , ), ( , ))
ij ij j ij ij j ij

V V Y d e d uα=  (iii) 

where this utility is a function of the pecuniary (Y) and non-pecuniary (α ) benefits that student i 

receives from studying major j.  Specifically, we can think of Y as a vector of the lifetime 

earnings stream that student i receives from having pursued studies in major j.  Similarly, we can 

think of α  as a vector of the lifetime non-pecuniary benefit stream that i experiences as a result 

of studying major j.  Each of these benefit streams potentially depend on whether the student 

successfully obtains a degree in major j and a series of random shocks e and u.  A student 

chooses a major j* that maximizes expected current and future utility:  

 * arg max [ ]
i ij

j
j E V=  (iv) 



10 

 To further simplify things, let us assume that students choose between two majors: STEM 

and non-STEM.  Whether a student obtains a STEM degree is dependent on both her utility-

maximizing decision and how successful the student is in meeting the minimum requirements of 

her desired major. It follows that the reduced form model of this outcome is: 

 , , , ( ), ( ), , , , ,( , , , , , , , , )
i STEM i STEM i NON i STEM STEM i NON NON i STEM i NON i STEM i NON i

d f a a a a k k v v ε− −=  (v) 

where ,i STEM
v and ,i NON

v represent preference parameters of student i for each major and 
iε

represents a composite random shock. 

   
IV.B.  Empirical Specification  

In order to estimate an empirical model of STEM degree attainment, we use SAT I math 

and verbal scores as measures of major-specific skills for STEM and non-STEM majors.
4
  The 

basic specification that we use in our empirical analysis is:  

 
'

( ) ( )1 2 3 4i STEM kc i NON kcikca i i ic k ac ikcay math verbal math verbal X Aα α α α µ ε− −= + + + + Γ + + +  (vi) 

where we look at a number of outcomes of interest,  
ikcay .  Our analysis focuses on four key 

outcomes: whether a student graduates, whether a student intending to major in science persists 

in science, whether students achieve both science-persistence and graduation, and what GPA a 

student attains.  

 The main independent variable of interest, ( )i STEM kcmath− , is the average math score of 

other intending STEM majors at campus k in cohort c.  Similarly, ( )i NON kcverbal−  is the average 

                                                 
4
  Bettinger (2010) finds that math ACT score is the strongest predictor of persistence in the STEM majors, even 

after controlling for science ACT score.  He also finds that the English and reading component of overall ACT 

score is negatively correlated with the likelihood of staying in a STEM major.   Arcidiacano (2004) also finds 

that high math ability leads college students to select in natural science and business majors, while high verbal 

ability leads students to select into social science and humanities majors. 



11 

verbal score of those intending to study non-STEM majors.  We define major peer groups 

according to the intended major each student states on her college application to her enrollment 

campus.  Given that the within-campus-cohort variance in these peer measures is extremely 

small, we cluster our standard errors by campus-cohort.   

 Our main concern in trying to identify the effects of major peer groups on different 

college outcomes is that students selectively enroll in colleges with different peer characteristics.   

Peer characteristics are likely to be correlated with other institutional characteristics (e.g. campus 

resources, faculty quality, academic standards, etc.) that affect student outcomes.  In order to 

account for these institutional differences, our specification includes enrollment campus fixed 

effects (
kµ ).  

 In addition, the preferences and/or abilities of a student that drive the selection of the 

enrollment campus are also likely to directly affect his or her subsequent outcomes.  Our 

empirical model includes a vector of observable student characteristics (
icX ) that control for high 

school GPA, parental education, and family income.
5
  We also include in our specification very 

flexible application-admissions pattern fixed effects (
acA ) to account for student unobservables.  

The UCOP data provides us with information on which UC campuses each student submitted 

applications to, whether the stated major on each application was a STEM major, and whether 

the application was accepted.  For each of the 8 UC campuses, each student has seven possible 

application-admission outcomes: (1) did not apply, (2) applied with an intended non-STEM 

major and rejected, (3) applied with an intended STEM major and rejected, (4) applied with an 

                                                 
5
 Family income is reported as a categorical variable and in nominal terms.  Therefore, we include in our 

specification a set of family income category by cohort fixed effects.  These fixed effects additionally account for 

any general time trends in the data. 
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intended non-STEM major and accepted, (5) applied with an intended STEM major and 

accepted, (6) applied with an intended non-STEM major and admissions outcome missing, and 

(7) applied with an intended STEM major and admissions outcome missing.  While there are 7 to 

the 8
th

 power application-admission patterns that are theoretically possible, we only observe 

11,281 unique combinations for intending STEM majors and 30,803 for all students in our 

sample.  Additionally, we allow these fixed effects to vary by whether the student was eligible 

for an admissions preference and by cohort, since the admissions regime employed by the UC 

system changed over time.
6
   

 

V.  RESULTS  

We begin by examining the effect of major competiveness on the likelihood that students 

graduate with a science degree.  These results are presented in Table II.  A student’s own high 

school credentials are highly statistically significant predictors of whether he or she graduates 

with a science degree.  As expected, students with higher math SAT scores are more likely to 

obtain science degrees while students with higher verbal SAT score are less likely. 

When a student attends a campus where the sciences are more competitive, he or she is 

less likely to graduate with a science degree.  Specifically, we find that increasing the average 

math SAT score of intending science majors by 10 points decreases the likelihood of graduating 

with a science degree by a little over one percentage point.  Conversely, attending a college 

                                                 
6
 Prior to the adoption of Prop 209 and continuing through the 1997 cohort, all underrepresented minorities received 

admissions preferences which varied by campus.  Beginning with the fall of 2001, the UC system guaranteed the 

top 4 percent of students in the graduating class of every California high school UC eligibility if they had 

completed 11 specific college prep courses by the end of their junior year.  This policy, known as “Eligibility in 

the Local Context” or ELC, was implemented to encourage students who had excelled academically in 

disadvantaged high schools to attend UC campuses; we are able to observe the ELC status of students after this 

policy is adopted.   
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where the non-sciences are more competitive increases the likelihood that students pursue and 

obtain a STEM degree.  Increasing the average verbal SAT score of students intending non-

STEM majors by 10 points increases the likelihood of graduating with a STEM degree by 

slightly more than one percentage point. Both of these peer effects are highly statistically 

significant. 

The results in Table II and subsequent tables are able to improve upon the identification 

strategy used in Dale and Kruger (2002).  Dale and Kruger used information on student 

applications, and on which colleges accepted them, to compare students who were accepted by 

similar schools but in fact attended schools with differing levels of eliteness.  We are able to go a 

step further.  Because we have such a large number of observations in the UC dataset, and 

successive cohorts at each of the institutions we study, we are able to compare students who 

applied to, and were accepted by, the exact same sets of schools, and we also use college fixed 

effects, which accounts for potential differences that influence both the enrollment decision of 

students and their subsequent outcomes.  It is worth noting that our results are robust to 

alternative strategies of accounting for student unobservables. 

In Table II, the coefficient estimates for the racial (or ethnic) categories reflect any 

residual differences across groups that are not explained by the student and institutional 

characteristics for which we have otherwise controlled.  The coefficients suggest that URMs 

(blacks and Hispanics) are more likely to earn a science degree than comparable white students; 

but it appears this result is driven by differences across groups in initial “field of study” 

preferences.  In other words, blacks and Hispanics who enter a UC school with strong credentials 

– credentials close to the white and Asian averages – are much more likely to intend to major in 
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STEM fields, and thus receive STEM degrees in proportionately higher numbers than whites. 

In Table III, we use the model with the most stringent set of controls in Table II (Model 

4), and do two things: first, we break students into those who, as high school seniors, intended to 

major in STEM fields, and those who did not; second, we examine several college outcomes: 

GPA, graduating, and graduating with a STEM degree, and ending one’s UC career (with or 

without a degree) as a STEM major. 

These results tell us several valuable things.  First, we can see that the peer-effect results 

in Table II – although they hold for all students – are largely driven by students who initially 

intend, upon starting college, to major in STEM fields.
7
  That is to say, the coefficients for the 

“peer ability effects” in Table III are generally highly significant for intending STEM majors and 

not so for other students. 

Table III also allows us to explore the multiple ways in which a student may fail to obtain 

a science degree.  One possibility is that an intending science major changes fields but still goes 

on to graduate from college.  Another is that the student fails to graduate in any field.
8
  Whether a 

student continues with her intention to major in the sciences appears to depend on the ability of 

similarly interested students at the college.  Specifically, increasing the average math SAT score 

of other intending STEM majors by 10 points increases the likelihood that a student switches to a 

                                                 
7
 In these analyses, we have classified a student’s intended major based on the choice she made on the college 

application to the campus in which she eventually enrolled.  Some students express different intentions on 

different applications – they may list a STEM field in their application to UC Davis, but humanities in their 

application to Berkeley.  If one classifies as an “intending STEM” major anyone who indicates a STEM 

preference on any UC application, this picks up more students – but it does not have much effect on the results in 

Table III.  Conversely, if one classifies as an intended STEM major only those student who indicate a STEM 

preference on all UC applications, this produces a small number of students, but again the results we have shown 

hold steady. 
8
 The UCOP data does not tell us the timing or history of changes to a student’s intended field of study.  We only 

observe the student’s entering preferences and her final major, which is the last official major registered by the 

student before she exited the UC system (either by graduating or dropping out). 
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non-STEM field by two percentage points.  Intending science majors also appear to weigh the 

competitiveness of outside fields at their enrollment campus when making the decision to either 

stay in or exit the sciences.  Increasing the average verbal SAT score of students intending non-

STEM majors by 10 points increases the likelihood that an intending STEM major stays in 

STEM by almost three percentage points.  

The strength of one’s STEM peers at a college also affects the chances that an intending 

STEM major will graduate from college with any degree (including a non-STEM degree).  

Increasing the average math SAT score of other intending science majors by 10 points decreases 

the likelihood that an intending STEM major graduates from college (in any field) by around 1.8 

percentage points.  The magnitude of this effect is similar to the effect upon major-switching 

(leaving a STEM field).  One way to think about this is that students who face difficult 

competition in a STEM field must make a choice:  they can switch to a non-STEM field, which 

will probably entail staying in college longer; they can persist in the major, perhaps with low 

grades, or they can drop out.  One would expect to see each of these results for some students 

facing a high level of mismatch.  

  Unfortunately, the UCOP data does not include direct measures of grades within a major 

or an alternative measure of degree progress within a major that might enable us to closely 

scrutinize the interaction of grades with the student’s choices.  While we do know the student’s 

“final GPA” – measured, like final major, when a student graduates or exits from UC – the GPA 

data is based on very heterogeneous college paths, and therefore is a very noisy measure of 

learning and achievement.   Consider, for example, a student who starts out as a science major, 

runs into stiff peer competition, and then switches to a major in communications, with a resulting 
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boost to her grades; here stronger science peers could lead to higher final GPAs.  Perhaps not 

surprisingly, we therefore find small peer effects on student grades. While the coefficients on 

peer effects are negative, as predicted, they are small, and even when they are statistically 

significant they are driven by subsets of students (as we shall discuss below, in examining Table 

V).   

 A priori, we might expect that having strong non-science peers at a college would have 

mixed, conflicting effects on the likelihood that intending STEM majors will graduate.  The 

greater non-science competition makes it less appealing to bail out of the STEM fields when the 

going gets rough – perhaps increasing STEM persistence – but correspondingly may make it 

harder to survive if one does switch to a non-STEM field.  And in fact, the coefficients in Table 

III show a small, positive, and marginally statistically significant effect on the likelihood that 

intending science majors graduate from college. 

There are several interesting conditional racial differences in Table III.  While Asian students 

are more likely to graduate than comparable whites, they tend to earn lower GPAs.  This might 

be driven by the higher proportion of Asian students with language issues (not measured in our 

data); note the GPA gap is larger in non-scientific fields, where English proficiency is probably 

more often crucial.  However, it also appears that Asian students are more likely to persist in 

college than otherwise comparable whites; this, too, could produce lower final GPAs.  We find 

no independent effect of “URM” status on one’s likelihood of continuing in the science track.   

But we do find significantly lower graduation rates and GPAs among URMs than among 

comparable whites – a pattern we return to below. 

Finally, it is worth noting that a given increase in a student’s math SAT score predicts a 
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larger increase in her cumulative GPA if she intends to major in science than does a comparable 

increase in their verbal SAT score.  The opposite is true for students intending non-STEM 

majors.  Since intending STEM majors are likely to take more science courses and other students 

more non-science courses, these results seem to validate our use of math and verbal scores as 

measures of, respectively, science and non-science skills. 

Our results suggest that intending science majors have a 4 percentage point greater 

likelihood of graduating with a science degree (e.g., 50% versus 46%) when they face peer 

competition levels similar to those found at UCLA during the period of our study, compared with 

those found at Berkeley.  When we break our analysis down by racial/ethnic groups, our results 

suggest that a similar shift in peer competitiveness increases the likelihood that blacks and 

Hispanics persist and graduate with science degrees by 11 percentage points.
9
  This is striking, 

because both Berkeley and UCLA are almost universally viewed as “elite” schools, and yet the 

difference in academic preparation among “peer” students appears to be sufficient to have rather 

important effects on science completion. 

 Another interesting lens for considering our results is to consider UC Davis with UC 

Santa Barbara.  These two schools are both viewed as moderately elite colleges, and indeed the 

academic preparation of science majors at the two schools is very similar.  However, the non-

science students at UC Santa Barbara have, on average, significantly strong academic 

preparation than comparable students at UC Davis, and our models suggest that this has 

significant, positive effects upon science completion at UC Santa Barbara: specifically, a 5.5 

percentage point increase in persistence for science-intending students overall, and an 8 

percentage point increase in the rate at which blacks and Hispanics persist and graduate with 

                                                 
9
 Corresponding model estimates for distinct racial/ethnic groups are presented in Table V. 
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science degrees. 

 

V.A. Heterogeneous Effects by Student Ability (Evidence on Mismatch Effects) 

To this point, we have found that the college outcomes of intending science students are 

influenced by peer effects on average.  However, we have not considered the possibility that 

these peer effects might be moderated by a student’s own ability.  The mismatch literature has 

specifically suggested that placing students in strong academic environments might have large 

and negative effects on less academically prepared students.  To test for this possibility, we 

include interaction terms between “own ability” and peer ability in our specifications. 

In accord with the mismatch hypothesis, we find that a student’s persistence in science is 

particularly hurt by stronger peers when the student’s own math ability is relatively low.  As 

shown in Table IV, the interaction term between a student’s own math SAT and the SAT of her 

peers is substantial and negative.  If the math SAT scores of a student’s peers rises by 10 points, 

the student’s likelihood of having a STEM “final major” drops 2.4 percentage points if the 

student’s own math SAT is 550, but only 1.9 points if the student’s own math SAT is 650.  Since 

admissions preferences within the UC system often have the effect of increasing the math SAT 

scores of one’s peers by 100 points, this is a substantial effect. 

While own math ability does appear to moderate the effect that peer math ability has on 

persistence in science, it does not appear to influence peer effects on the likelihood of graduating 

or on cumulative college grades.  It also does not appear to be the case that own ability 

moderates the effect of attending a campus with stronger non-STEM peers.  Here, we have 

evaluated whether peer effects are heterogeneous by own ability by including a simple linear 
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interaction term.  We find very similar results when we express own ability as a series of dummy 

variables and interact these dummy variables with average peer ability. 

 

V.B. Heterogeneous Effects by Race 

Up until this point, our findings have suggested that weaker students are more likely to 

switch majors when faced with greater competition in the sciences. Black and Hispanic (“URM”) 

students might seem to be particularly vulnerable; they tend to have lower credentials than their 

peers, and our earlier analyses showed grade and graduation gaps that may reflect unobserved 

racial differentials in college preparation.  However, our analyses suggest that URM students are 

less likely than other students to switch from STEM to non-STEM fields; they are more likely to 

persist than their non-URM peers, but they pay a price in lower graduation rates…. 

 Because of racial preferences in college admissions, it is also important to evaluate how 

different racial groups are affected by major competitiveness in terms of their college outcomes.  

Results, broken down by race, are presented in Table V.  Faced with stronger peers in the non-

STEM majors, intending science majors from all racial-ethnic groups are more likely to persist in 

the sciences.  However, white students are much more likely to exit the sciences when faced with 

stronger peer competition compared to Asians and, particularly, under-represented minorities. 

Being more persistent in the face of greater peer competition comes with a cost for 

minority student groups.  The Table V results imply that attending a college with stronger science 

peers leads Asians, blacks, and Hispanics who are interested in science to have lower cumulative 

college GPAs and lower odds of graduating from college.  The negative effect of strong peers is 

particularly severe for under-represented minorities (URMs).  Increasing the average math SAT 
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score of other intending science majors by 10 points decreases the likelihood that URM intended 

STEM majors graduate from college by around 4.6 percentage points.  The same change in 

science peer ability decreases the cumulative college GPA of black and Hispanic intended 

science majors by 0.042 points 

Much of the peer-effect literature measures outcomes in terms of first-year grades, while 

the principal grade outcome we examine is final GPA.  Carrel et al (2009) is an exception; these 

authors found that a 100-point increase in the Verbal SAT scores of freshmen squandron 

members raised the cumulative grades of U.S. Air Force Academy cadets by approximately 0.25 

grade points.  Our findings imply that a 100-point increase in the Verbal SAT scores of non-

science peers at a University of California campus decreases the cumulative GPAs of black and 

Hispanic intending science majors by 0.15 grade points.  A 100-point increase in the Math SAT 

scores of science peers lowers the final GPA of black and Hispanic intending science majors by 

0.46 points.  As noted earlier, our findings are not at all necessarily in conflict with those like 

Carrel et al, because a squadron is a relatively small and cohesive group, and a squadron member 

is likely to have many different types of interactions, and thus many more diverse effects, upon 

one’s academic performance than a college classmate on a large campus. 

 

V.C. Robustness to Alternative Definitions of Peer Group and Peer Ability 

Our analysis to this point has defined relevant peer groups based on intended major and 

has defined peer ability by Math SAT scores of science students and Verbal SAT scores of non-

science students.—that is, measures of skill relevant to the respective major fields.  Our results 

are not sensitive to these particular definitions. Table VI presents results using broader 
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definitions of the relevant peer group(s) and peer ability.  The general magnitude, sign, and 

statistical significance of our estimated effects do not vary much with these measures.   

A significant finding of this paper is that peer effects stand out more clearly when we use 

narrow, rather than broad measures of both peer groups and peer skills.  Past research on peer 

effects has often examined outcomes for entire college classes, using general measures of 

competitiveness such as overall SAT scores or high school grades.  In our analysis, such broad 

definitions would mask the most important peer effects, which are strong and significant when 

we split students into science and non-science majors, and consider the differential effects of 

peers with high math, or high verbal, SAT scores.  Scholars examining these issues should be 

careful to test for disaggregated effects like these. 

 

VI.  CONCLUSION 

 Using a rich dataset on the universe of University of California students who enrolled  

between 1995 and 2003, we examine how the competitiveness of distinct college majors at a 

student’s  campus affects his or her major choices and other college outcomes.  We find that 

students initially interested in pursuing a science major respond to the competitiveness of both 

the broad science and non-science major tracks.  Attending a campus with a stronger group of 

intending science majors lowers the likelihood that students graduate with a science degree.  

While some of these students who leave the sciences simply shift their course of study, others 

fail to graduate at all.  We take strong measures to ensure that these findings are not driven by 

peer group endogeneity.   

 Consistent with mismatch theories, we find that weaker students are particularly 
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adversely affected by attending colleges where the sciences are more competitive.  Perhaps most 

striking, we find that minorities – especially underrepresented minorities – are much less likely 

than whites to respond to mismatch by switching majors.  Instead, minority students interested in 

science are much more likely to drop out when they are placed among more competitive peers, 

and, if they do graduate, they take a very substantial hit on their GPAs.  What accounts for this 

race effect?  Perhaps minority students, relative to whites, have a stronger commitment to 

pursuing science and are willing to bear the risk of not graduating in order to pursue their dream 

of becoming a scientist.  Or perhaps, minority students are less likely to know how to maneuver 

the college landscape.  Perhaps they underestimate the risks of mismatch until they feel they are 

too far invested in a STEM major to switch, or perhaps they interpret the stiff competition they 

face as a sign of their own generalized academic weakness.  Our data does not allow us to 

evaluate these alternate hypotheses.  Future research in this area should evaluate whether these 

particular patterns of minority attrition hold in other instances of “science mismatch.” The 

general problem of science attrition, as shown by this and other research, is sufficiently serious 

that universities should attempt careful measurement of evolving student attitudes and outcomes 

– especially of students vulnerable to mismatch – as they enter and advance through college. 
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VIII.  TABLES 

 

TABLE I   

Sample Means (Standard Deviations in Brackets) 

  All Intended Major 

  Students Science Non-science 

Asian 38% 46% 34% 

Black or Hispanic 17% 14% 18% 

White 37% 32% 39% 

Other 8% 8% 9% 

Math SAT Score 613 636 601 

[89] [87] [88] 

Verbal SAT Score 578 580 577 

[93] [94] [92] 

UC-Adjusted HS GPA 3.77 3.86 3.72 

[0.43] [0.41] [0.44] 

Declared Science as Final Major 28% 61% 11% 

Graduated from College 82% 81% 82% 

     in the Sciences 24% 49% 10% 

Cumulative College GPA 3.01 2.92 3.06 

[0.59] [0.60] [0.58] 

        

Observations 241,062 84,466 156,596 
 

Notes:  The sample consists of three cohorts of students that enrolled in one of 8 UC campuses for 

the periods 1995-1997, 1998-2000, and 2001-2003.       
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TABLE II  

Determinants of Graduating with a Science Degree 

 

          

VARIABLES (1) (2) (3) (4) 

          

Peer Ability: 

     (Average Math SAT Score of -0.0139*** -0.0154*** -0.0192*** -0.0112*** 

      Intended Science Majors)/10 [0.00359] [0.00397] [0.00309] [0.00227] 

     (Average Verbal SAT Score of 0.0159*** 0.0188*** 0.0178*** 0.0125*** 

      Intended Non-science Majors)/10 [0.00417] [0.00397] [0.00382] [0.00335] 

Own Characteristics: 

     (Math SAT Score)/10 0.0121*** 0.0118*** 0.0118*** 0.00691*** 

[0.000647] [0.000636] [0.000692] [0.000443] 

     (Verbal SAT Score)/10 -0.00358*** -0.00352*** -0.00388*** -0.00237*** 

[0.000286] [0.000265] [0.000241] [0.000176] 

     UC-Adjusted High School GPA 0.174*** 0.163*** 0.153*** 0.102*** 

[0.0118] [0.0104] [0.00925] [0.00717] 

     Asian 0.0752*** 0.0563*** 0.0564*** 0.0382*** 

[0.00611] [0.00535] [0.00584] [0.00470] 

     Black or Hispanic 0.0328*** 0.0222*** 0.0189*** -0.00336 

[0.00473] [0.00473] [0.00470] [0.00430] 

     Other Non-white Race/Ethnicity 0.0319*** 0.0250*** 0.0247*** 0.0191*** 

[0.00426] [0.00375] [0.00399] [0.00370] 

College Fixed Effect Yes Yes Yes Yes 

Application Pattern Fixed Effect No Yes No No 

Application-Admission Pattern Fixed Effect No No Yes No 

Application-Admission Pattern Fixed Effect No No No Yes 

     (w/ Application Major Preferences) 

Observations 241,062 241,062 241,062 241,062 

R-squared 0.113 0.128 0.160 0.403 
 

Notes: Each column contains coefficient estimates from separate regressions.  Each regression also contains controls 

for parental education and family income by cohort.  Robust standard errors, clustered by campus-cohort, are 

reported in brackets.   *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE III 

Determinants of College Outcomes by Intended Major 

 

  Intending STEM Majors Not Intending STEM Majors 

VARIABLES Graduated Final Major Graduated Cumulative Graduated Final Major Graduated Cumulative 

in Sciences Science GPA in Sciences Science GPA 

                  

Peer Ability: 

  (Average Math Score -0.0247*** -0.0200*** -0.0175*** -0.0135 -0.00253 -0.00332 0.00239 0.00562 

   of Intended STEM  [0.00390] [0.00529] [0.00356] [0.00794] [0.00209] [0.00223] [0.00391] [0.00509] 

   Majors)/10 

  (Average Verbal Score 0.0279*** 0.0273*** 0.00837** -0.0119* 0.00316 0.00241 0.00144 -0.00928 

   of Intended Non-STEM [0.00453] [0.00542] [0.00344] [0.00595] [0.00304] [0.00302] [0.00397] [0.00852] 

   Majors)/10 

Own Characteristics: 

  (Math SAT Score)/10 0.0115*** 0.0113*** 0.00158*** 0.00850*** 0.00494*** 0.00527*** 0.000491** 0.00265*** 

[0.000588] [0.000615] [0.000290] [0.000453] [0.000396] [0.000398] [0.000192] [0.000381] 

  (Verbal SAT Score)/10 -0.00242*** -0.00270*** -0.000107 0.00616*** -0.00219*** -0.00241*** 7.82e-05 0.00989*** 

[0.000322] [0.000370] [0.000262] [0.000394] [0.000218] [0.000236] [0.000242] [0.000308] 

  UC-Adjusted HS GPA 0.212*** 0.121*** 0.162*** 0.542*** 0.0604*** 0.0589*** 0.122*** 0.462*** 

[0.00857] [0.0117] [0.00735] [0.0100] [0.00632] [0.00626] [0.00674] [0.00872] 

  Asian 0.0437*** 0.0277*** 0.0224*** -0.0475*** 0.0335*** 0.0349*** 0.0218*** -0.0741*** 

[0.00696] [0.00678] [0.00477] [0.00819] [0.00413] [0.00433] [0.00436] [0.00618] 

  Black or Hispanic -0.0242** -0.00947 -0.0307*** -0.106*** 0.00118 0.000997 -0.0226*** -0.101*** 

[0.00905] [0.00983] [0.00764] [0.0134] [0.00375] [0.00394] [0.00579] [0.0104] 

  Other non-White 0.0252*** 0.0197** 0.00993 -0.0250*** 0.0157*** 0.0177*** 0.00200 -0.0237*** 

  Race/Ethnicity [0.00835] [0.00778] [0.00712] [0.00800] [0.00351] [0.00371] [0.00206] [0.00511] 

Observations 84,466 84,466 84,466 83,683 156,596 156,596 156,596 153,010 

R-squared 0.306 0.289 0.306 0.435 0.266 0.273 0.200 0.392 
 

Notes: Each column contains coefficient estimates from separate regressions.  Each regression also contains controls for parental education, family income by 

cohort, enrollment campus, and UC application-admission pattern fixed effects that account for the intended major listed on each application.  Robust standard 

errors, clustered by campus-cohort, are reported in brackets.   *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE IV 

Determinants of College Outcomes for Intended Science Majors 

w/ Own Ability-Peer Ability Interactions 

 

  Graduated Final Major Graduated Cumulative 

VARIABLES in Sciences Science GPA 

          

(Average Math SAT Score  -0.0586*** -0.0542*** -0.0165** -0.0225* 

 of Other Intended Science Majors)/10 [0.00720] [0.00920] [0.00658] [0.0112] 

(Own Math SAT Score)/10 -0.0217*** -0.0223*** 0.00253 9.90e-06 

[0.00571] [0.00747] [0.00456] [0.00700] 

(Average Math Score of Other Intended  0.000526*** 0.000531*** -1.50e-05 0.000134 

 Science Majors * Math Score)/100 [8.81e-05] [0.000116] [7.21e-05] [0.000108] 

(Average Verbal SAT Score  0.0363*** 0.0363*** 0.00891* -0.0168*** 

 of Intended Non-science Majors)/10 [0.00632] [0.00560] [0.00500] [0.00514] 

(Own Verbal SAT Score)/10 0.00591 0.00622 0.000462 0.00102 

[0.00590] [0.00675] [0.00436] [0.00563] 

(Average Verbal Score of Intended  -0.000146 -0.000156 -9.80e-06 8.86e-05 

Non-science Majors * Verbal Score)/100 [0.000100] [0.000113] [7.40e-05] [9.51e-05] 

Marginal Effect of 10 Point Increase in Average  

 Math Score of Other Intended Science Majors: 

     Own Math SAT Score = 550 -0.0297*** -0.0250*** -0.0173*** -0.0151* 

[0.00412] [0.00531] [0.00379] [0.00829] 

     Own Math SAT Score = 650 -0.0245*** -0.0197*** -0.0175*** -0.0137 

[0.00396] [0.00517] [0.00353] [0.00812] 

Observations 84,466 84,466 84,466 83,683 

R-squared 0.306 0.289 0.306 0.435 

 
Notes: Each column contains coefficient estimates from separate regressions.  Each regression also contains controls 

for race/ethnicity, UC-adjusted high school GPA, parental education, family income by cohort, enrollment campus, 

and UC application-admission pattern fixed effects that account for the intended major listed on each application.  

Robust standard errors, clustered by campus-cohort, are reported in brackets.   *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE V 

Determinants of College Outcomes for Intended Science Majors by Race/Ethnicity 

 

 

  Asian Black or Hispanic White 

VARIABLES Final Major Graduated Cumulative Final Major Graduated Cumulative Final Major Graduated Cumulative 

Science GPA Science GPA Science GPA 

                    

Peer Ability: 

  (Average Math Score -0.0177* -0.0171*** -0.0154* -0.00866 -0.0461*** -0.0418** -0.0213*** -0.0134 -0.00360 

   of Intended STEM  [0.00943] [0.00581] [0.00861] [0.0189] [0.0117] [0.0179] [0.00579] [0.00875] [0.0149] 

   Majors)/10 

  (Average Verbal Score 0.0263*** 0.00582 -0.0131** 0.0346** -0.00408 -0.0193* 0.0282*** 0.0204* -0.00964 

   of Intended Non-STEM [0.00718] [0.00358] [0.00569] [0.0131] [0.00966] [0.0107] [0.00701] [0.00988] [0.0125] 

   Majors)/10 

Own Ability: 

  (Math SAT Score)/10 0.0103*** 0.00258*** 0.0118*** 0.0127*** -0.000432 0.00328* 0.0116*** 0.000968** 0.00601*** 

[0.000584] [0.000410] [0.000696] [0.00120] [0.00131] [0.00168] [0.000904] [0.000391] [0.000700] 

  (Verbal SAT Score)/10 -0.00310*** 0.000714* 0.00622*** -0.00165* 0.00120 0.00800*** -0.00294*** -0.000562 0.00686*** 

[0.000578] [0.000352] [0.000651] [0.000862] [0.00105] [0.00173] [0.000850] [0.000413] [0.000912] 

  UC-Adjusted HS GPA 0.144*** 0.159*** 0.548*** 0.117*** 0.195*** 0.481*** 0.0967*** 0.152*** 0.584*** 

[0.0123] [0.0195] [0.0223] [0.0251] [0.0164] [0.0249] [0.0152] [0.0123] [0.0165] 

Observations 38,676 38,676 38,525 12,114 12,114 11,956 27,206 27,206 26,786 

R-squared 0.347 0.375 0.481 0.484 0.489 0.561 0.335 0.345 0.458 

 
Notes: Each column contains coefficient estimates from separate regressions.  Each regression also contains controls for parental education, family income by 

cohort, enrollment campus, and UC application-admission pattern fixed effects that account for the intended major listed on each application.  Robust standard 

errors, clustered by campus-cohort, are reported in brackets.   *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE VI 

Determinants of College Outcomes for Intended Science Majors  

w/ Different Peer Group/Ability Measures 

 

 

  Graduated Final Major Graduated Cumulative 

VARIABLES in Sciences Science GPA 

          

Baseline Peer Group/Ability Definition: 

     (Average Math SAT Score of -0.0247*** -0.0200*** -0.0175*** -0.0135 

      Intended Science Majors)/10 [0.00390] [0.00529] [0.00356] [0.00794] 

     (Average Verbal SAT Score of 0.0279*** 0.0273*** 0.00837** -0.0119* 

      Intended Non-science Majors)/10 [0.00453] [0.00542] [0.00344] [0.00595] 

Alternate Peer Group Definition: 

     (Average Math SAT Score of -0.0283** -0.0218* -0.0265*** -0.0139 

      All Matriculants)/10 [0.0107] [0.0125] [0.00871] [0.0130] 

     (Average Verbal SAT Score of 0.0275*** 0.0279*** 0.0105* -0.0150 

      All Matriculants)/10 [0.00852] [0.00976] [0.00558] [0.00876] 

Alternate Peer Ability Definition (I): 

     (Average Combined SAT Score of -0.0218*** -0.0158*** -0.0141*** -0.0110** 

      Intended Science Majors)/10 [0.00359] [0.00466] [0.00219] [0.00513] 

     (Average Combined SAT Score of 0.0298*** 0.0258*** 0.0119*** -0.00233 

      Intended Non-science Majors)/10 [0.00487] [0.00594] [0.00258] [0.00547] 

Alternate Peer Ability Definition (II): 

     (Average UC-Adjusted HSGPA of -0.0298*** -0.0257*** -0.0147*** -0.0125 

      Intended Science Majors)/0.05 [0.00680] [0.00848] [0.00299] [0.00890] 

     (Average UC-Adjusted HSGPA of 0.0312*** 0.0241*** 0.0173*** 0.0122 

      Intended Non-science Majors)/0.05 [0.00638] [0.00760] [0.00461] [0.0106] 

          

 
Notes: Each of the peer group/ability definition groupings and each column contains coefficient estimates from 

separate regressions.  Each regression contains controls for race/ethnicity, SAT I math and verbal scores, UC-

adjusted high school GPA, parental education, family income by cohort, enrollment campus, and UC application-

admission pattern fixed effects that account for the intended major listed on each application.  Robust standard 

errors, clustered by campus-cohort, are reported in brackets.   *** p<0.01, ** p<0.05, * p<0.1. 
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IX.  APPENDIX 

 

IX.A.  Imputation of SAT I Scores and High School GPA 

 

Instead of reporting the exact high school GPA and SAT I scores for students the UCOP 

contains an academic index, which is a weighted linear combination of SAT I math (m) and 

verbal (v) scores and high school GPA (g): 

 
* * *

, , ,i m m i v v i g g iIndex c w x w x w x= + + +  (vii) 

Each of the weights (w) and the constant (c) in this equation are known, while the x* terms 

represent the unobserved true values of a student’s SAT scores and high school GPA. 

 The UCOP data also reports categorical ranges for each student’s scores and GPA, with 

these ranges having an upper ( x ) and lower ( x ) bound: 

 
0 * 0

, , ,j i j i j ix x x≥ ≥  for each [ , , ]j m v g∈  (viii) 

where the zero superscript represents that these bounds are those that are initially reported in the 

data. 

 We can rearrange the terms in equation (ix) to express the unknown math score as a 

function of known and unknown inputs: 

 * * *

, , ,

1 gv
m i i v i g i

m m m m

wwc
x Index x x

w w w w

       
= − − −       
       

 (x) 

Similarly, we can write this expression for verbal score and high school GPA.  Given the initial 

upper and lower bounds reported in the data and equation (xi), we first attempt to tighten the 

bounds around the true values of each unobserved variable by iteratively running the following 
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algorithm: 

 1 1 1

, , , ,

1
min ,

gr r r rv

m i m i i v i g i

m m m m

wwc
x x Index x x

w w w w

− − −
        

= − − −         
        

 (xii) 

1 1 1

, , , ,

1
min ,

gr r r rm

v i v i i m i g i

v v v v

wwc
x x Index x x

w w w w

− − −
        

= − − −         
        

 

 

1 1 1

, , , ,

1
min ,r r r rv m

g i g i i v i m i

g g g g

w wc
x x Index x x

w w w w

− − −
        

= − − −                        
 

 

1 1 1

, , , ,

1
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gr r r rv

m i m i i v i g i

m m m m

wwc
x x Index x x

w w w w

− − −
        

= − − −         
        

 

 

1 1 1

, , , ,

1
max ,

gr r r rm

v i v i i m i g i

v v v v

wwc
x x Index x x

w w w w

− − −
        

= − − −         
        

 

 

1 1 1

, , , ,

1
max ,r r r rv m

g i g i i v i m i

g g g g

w wc
x x Index x x

w w w w

− − −
        

= − − −                        
 

 

until all bounds converge (e.g. 
1

, ,

R R

j i j ix x
−= and 

1

, ,

R R

j i j ix x
−= for each [ , , ]j m v g∈ ).  In running this 

algorithm, we additionally take advantage of the discrete nature of SAT scores and high school 

GPA to further tighten the revised upper and lower bounds implied by the data for each of our 

unobserved measures. 

 One can envision constructing imputed measures as weighted averages of the revised 

upper and lower bounds: 

 
*

, , ,
ˆ (1 )

R R

j i j j i j j ix a x a x= + −  (xiii) 

The question then becomes, “what is the appropriate weight (a)?”  If we plug equation (xiv) into 

equation (xv) for each unobserved variable we get: 
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 , , , , , ,

R R R R R R

i m m i m m i v v i v v i g g i g g iIndex c u x l x u x l x u x l x= + + + + + +  (xvi) 

where 
j j j

u w a= and (1 )
j j j

l w a= − for each [ , , ]j m v g∈ .  It also follows that: 

 
j

j

j j

u
a

u l
=

+
 (xvii) 

We can estimate equation (xviii) using regression analysis and construct the implied 

weights based on the corresponding coefficient estimates.  Specifically, we estimate the 

following regression model for each vigintile (q) of the academic index distribution: 

 

 0 , , , , , ,

q q q R q R q R q R q R q R

i m m i m m i v v i v v i g g i g g i i
Index x x x x x xβ β β β β β β ε= + + + + + + +  (xix) 

The correspondence between this regression model and equation (xx) implies that appropriate 

weights should be constructed such that: 

 
ˆ

ˆ ˆ

q

jq

j q q

jj

a
β

β β
=

+
, for each [ , , , , , ]j m m v v g g∈  (xxi) 

Using these weights and the revised upper and lower bounds for each unobserved variable, we 

then construct imputed values for each student’s unobserved high school GPA, math SAT score, 

and verbal SAT score. 

 

  

 

 

  

 


