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1 Introduction

In many economic evaluation problems, causal inference is complicated by endogeneity, implying

that the explanatory or treatment variable of interest is correlated with unobserved factors that

also affect the outcome. E.g., when estimating the returns to education, the schooling choice is

plausibly influenced by unobserved ability (see for instance Card, 1999) which itself most likely

has an impact on the earnings outcome. Due to the endogenous treatment selection (also known

as selection on unobservables) the earnings effect of education is confounded with the unobserved

terms. In the presence of endogeneity, identification relies on the availability of an instrumental

variable (IV) that generates exogenous variation in the treatment.

In heterogeneous treatment effect models with a binary treatment, an instrument is conven-

tionally required to satisfy two assumptions. Firstly, it must be independent of the joint distri-

bution of potential treatment states and potential outcomes, which excludes direct effects on the

latter. A framework where this is commonly assumed are experiments with randomized treat-

ment assignment, where the assignment serves as instrument for actually receiving the treatment.

E.g., in experimental labor market program evaluations such as the Job Training Partnership Act

(JTPA) analyzed by Abadie, Angrist, and Imbens (2002), randomization ensures that the assign-

ment is independent of any variables related with the treatment and/or the outcome. Further-

more, direct effects of the mere assignment (rather than the actual treatment) on the outcome are

ruled out. Secondly, the treatment state has to vary with the instrument in a weakly monotonic

manner. E.g., assignment should weakly increase actual program participation of all individuals

in the population, i.e., globally.

Under these assumptions, Imbens and Angrist (1994) and Angrist, Imbens, and Rubin

(1996) show that the local average treatment effect (LATE) on the subpopulation of compliers,

whose treatment states react on the instrument in the intended way, is identified. This is

feasible because monotonicity rules out the existence of defiers, who react counter-intuitively

to the instrument, e.g., by participating in a program if not being assigned to it and not
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participating under assignment. The non-existence of defiers implies the identification of the

potential outcome distributions (including the means) of the compliers under treatment and

non-treatment, see Imbens and Rubin (1997). The difference in mean potential outcomes is

equivalent to the well known Wald formula that represents the LATE as ratio of the intention to

treat effect and the share of compliers.

The contribution of this paper is to show that LATEs can still be identified and

√
n-consistently estimated when relying on a condition that is strictly weaker than global

monotonicity, while maintaining joint independence. We will refer to this condition as “local

monotonicity” (LM). Crudely speaking and in contrast to (global) monotonicity, LM allows for

the existence of both compliers and defiers, but requires that they do not occur at the same

time at any support point of the outcome conditional on a particular treatment state. I.e.,

monotonicity is assumed to hold locally in subregions of the potential outcome distribution (and

may switch the sign across subregions), rather than over the entire support.

More specifically (and assuming a binary instrument), LM excludes the possibility that a

subject is a defier if the joint density of her observed outcome and being treated conditional on

receiving the instrument is larger than the respective joint density conditional on not receiving

the instrument. In fact, under the independence of the instrument, this order of the joint densities

is a sufficient condition for the existence of compliers (as outlined in Section 2). By ruling out

defiers in such regions by LM, the potential outcomes of the compliers are locally identified.

Conversely, in support regions in which the joint density of the outcome and the treatment when

not receiving the instrument dominates the joint density when receiving the instrument, defiers

necessarily exist by independence and LM rules out compliers to identify the potential outcomes

of the defiers. Equivalent results hold for the joint densities under non-treatment. Therefore, we

demonstrate that LM is sufficient for the identification of the potential outcome distributions of

the compliers and the defiers in either treatment state. Furthermore, it immediately follows that

(global) monotonicity is a special case of LM, because the former requires that the joint densities

are nested, see Kitagawa (2009).
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As defiers are no longer assumed away, one striking improvement of generalizing monotonicity

to LM is that we do not only identify the (i) LATE on the compliers, but also the LATEs (ii) on

the defiers and (iii) on the joint population of compliers and defiers. Furthermore, the existence

and proportion of defiers (and any other subpopulation) can be verified in the data to judge

the relevance of (ii) and (iii). It will also be shown that (i) and (iii) coincide with the standard

LATE with monotonicity if the defiers do not exist. However, if the defiers’ proportion is larger

than zero, (i), (ii), and (iii) generally differ and standard LATE is inconsistent due to incorrectly

invoking monotonicity. Finally, our discussion also reveals that our set of assumptions can be

partially tested in the data. In fact, a necessary (but not sufficient) condition is the satisfaction

of a particular scale constraint which has also been considered by Kitagawa (2009) and is based

on the intuition that the proportion of any subpopulation must be equal across treatment states.

If the latter is violated, point identification of LATEs is lost, while partial identification in the

spirit of Manski (1990) might still be a worthwhile alternative, see for instance Huber and Mellace

(2010).

Apart from the present work, comparably few studies have considered deviations from

monotonicity and their implications for LATE identification. Small and Tan (2007) weaken

(individual-level) monotonicity to stochastic monotonicity. The latter requires that conditional

on a set of unobservables which satisfy particular assumptions (e.g., independence of the

instrument), the probability of being a complier is weakly larger than being a defier. Conversely

to this paper, Small and Tan (2007) do not propose any novel approach to identify the LATE,

but show that the Wald estimator, albeit biased, retains some desirable properties (such as

giving the correct sign of the effect) in the limit. Klein (2010) develops methods to assess the

sensitivity of the LATE to random departures from monotonicity and to approximate the

bias under particular conditions. In contrast, our framework allows for LATE identification

under non-random violations, given that LM is satisfied. Finally, de Chaisemartin and

D’Haultfoeuilley (2012) represent monotonicity by a latent index model, see Vytlacil (2002), in

which they relax the conventional rank invariance in the unobserved terms to rank similarity,
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see Chernozhukov and Hansen (2005). This amounts to assuming that the unobserved terms

affecting the treatment (e.g. taste) may be a function of the instrument (which allows for the

existence of defiers), but have the same distribution with and without instrument conditional on

the potential outcomes. de Chaisemartin and D’Haultfoeuilley (2012) show that in this case

the probability limit of the Wald estimator identifies a causal effect on a specific mixture of

subpopulations. In contrast, our assumptions allow identifying the LATE on subpopulations

that are well defined in terms of their treatment response to the instrument.1

As a practical illustration of our methods, we present an application to the U.S. census data

considered by Angrist and Krueger (1991) to estimate the returns to education for males by using

the birth quarter as instrument for education. Arguably, among students entering school in the

same year, those who are born in an earlier quarter can drop out after less years of completed

education at the age when compulsory schooling ends than those born later (in particular after

the end of the academic year). This suggests that education is monotonically increasing in the

quarter of birth. However, the postponement of school entry due to redshirting or unobserved

school policies as discussed in Barua and Lang (2009) and Klein (2010) may reverse the relation of

education and quarter of birth for some individuals and thus, violate monotonicity. We therefore

invoke LM instead and indeed we find statistically significant shares of both compliers and defiers.

The remainder of this paper is organized as follows. Section 2 discusses the assumptions and

the identification of the LATEs on the compliers, defiers, and both populations jointly as well

as the differences/connections to the standard LATE framework with monotonicity. Section 3

considers identification in the presence of bounded non-binary instruments. Section 4 proposes

√
n-consistent and asymptotically normal estimators of the LATEs. An empirical application to

data from Angrist and Krueger (1991) is presented in Section 5. Section 6 concludes.

1A further study not assuming monotonicity is Gautier and Hoderlein (2012), who in contrast to this paper
consider a continuous instrument and put more structure on the selection into treatment, by assuming that the
treatment is a function of a linear index with a random coefficient on the instrument. Clearly, defiers may oc-
cur when the random coefficient is negative. Finally, Torgovitsky (2011) considers a nonseparable model with
a continuous endogenous treatment. He shows that if the first-stage relationship between the instrument and
the treatment is strictly monotone in unobservables, identification is obtained even if the instrument is discrete.
However, monotonicity of the treatment in the instrument need not be assumed.
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2 Assumptions and identification

Suppose that we are interested in the average effect of a binary treatment D ∈ {1, 0} (e.g., par-

ticipation in a training program) on an outcome Y (e.g., labor market success such as earnings)

evaluated at some point in time after the treatment. Under endogeneity, the effect of D is con-

founded with unobserved factors that affect both the treatment and the outcome. Identification

of treatment effects generally requires an instrument, denoted by Z, that is correlated with the

treatment but does not have a direct effect on the outcome (i.e., any impact other than through

the treatment). In this section, we will consider the case of a binary instrument (Z ∈ {0, 1}) such

as randomized treatment assignment, whereas Section 3 discusses the case of bounded non-binary

instruments. Denote by D(z) the potential treatment state for instrument Z = z, and by Y (d)

the potential outcome for treatment D = d (see for instance Rubin, 1974, for a discussion of the

potential outcome notation). For each subject, only one potential outcome is observed, because

Y = D · Y (1) + (1−D) · Y (0).

Table 1: Types

Type T D(1) D(0) Notion

a 1 1 Always takers
c 1 0 Compliers
d 0 1 Defiers
n 0 0 Never takers

As discussed in Angrist, Imbens, and Rubin (1996) and summarized in Table 1, the population

can be categorized into four types (denoted by T ∈ {a, c, d, n}), depending on how the treatment

state changes with the instrument. The compliers react on the instrument in the intended way

by taking the treatment when Z = 1 and abstaining from it when Z = 0. For the remaining

three types, D(z) 6= z for either Z = 1, or Z = 0, or both: The always takers are always treated

irrespective of the instrument state, the never takers are never treated, and the defiers only take

the treatment when Z = 0. It is obvious that we cannot directly observe the type any observation

belongs to as either D(1) or D(0) remains unknown due to the fact that the actual treatment is
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D = Z ·D(1) + (1−Z) ·D(0). This implies that any observation i with a particular combination

of the treatment and the instrument may belong to one of two types, see Table 2. Assuming an

i.i.d. framework, we will show that the potential outcome distributions of the compliers and the

defiers may nevertheless be identified under conditions that are weaker than the standard LATE

assumptions of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996).

Table 2: Observed subgroups and types

Observed values of Z and D Potential types T

{i : Zi = 1, Di = 1} observation i belongs either to a or to c
{i : Zi = 1, Di = 0} observation i belongs either to d or to n
{i : Zi = 0, Di = 1} observation i belongs either to a or to d
{i : Zi = 0, Di = 0} observation i belongs either to c or to n

To characterize the identification problem, we introduce further notation that heavily borrows

from Kitagawa (2009) who, in contrast to this paper, considers partial identification of the average

treatment effect (ATE) on the entire population. In a first step, we define shorthand expressions

for the observed joint densities of the outcome and the treatment conditional on the instrument:

p1(y) = f(y,D = 1|Z = 1), (1)

p0(y) = f(y,D = 0|Z = 1), (2)

q1(y) = f(y,D = 1|Z = 0), (3)

q0(y) = f(y,D = 0|Z = 0). (4)

I.e., pd(y) (qd(y)) represents the joint density of Y = y and D = d given Z = 1 (Z = 0).

Furthermore, denote by Y the support of Y and let f(y(d)) and f(y(d), T = t) denote the density

of the potential outcome and the joint density of the potential outcome and the type, respectively,
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with d ∈ {0, 1}, t ∈ {a, c, d, n}, and y ∈ Y. By Table 2, we have that for all y ∈ Y,

p1(y) = f(y(1), T = c|Z = 1) + f(y(1), T = a|Z = 1), (5)

q1(y) = f(y(1), T = d|Z = 0) + f(y(1), T = a|Z = 0), (6)

p0(y) = f(y(0), T = d|Z = 1) + f(y(0), T = n|Z = 1), (7)

q0(y) = f(y(0), T = c|Z = 0) + f(y(0), T = n|Z = 0), (8)

f(y(1)|Z = 1)− p1(y) = f(y(1), T = d|Z = 1) + f(y(1), T = n|Z = 1), (9)

f(y(1)|Z = 0)− q1(y) = f(y(1), T = c|Z = 0) + f(y(1), T = n|Z = 0), (10)

f(y(0)|Z = 1)− p0(y) = f(y(0), T = c|Z = 1) + f(y(0), T = a|Z = 1), (11)

f(y(0)|Z = 0)− q0(y) = f(y(0), T = d|Z = 0) + f(y(0), T = a|Z = 0). (12)

Equations (5) to (8) make immediate use of the fact that any joint density pd(y), qd(y)

observed in the data is constituted by the potential outcomes (given Z) of two different

types. Equations (9) to (12) come from the law of total probability, implying that

f(y(d)|Z = z) =
∑

t∈{a,c,d,n} f(y(d), T = t|Z = z).

We now impose the first identifying assumption which invokes independence between Z and

the joint distribution of the potential treatment states and outcomes, see Imbens and Angrist

(1994):

Assumption 1:

Z⊥(D(1), D(0), Y (1), Y (0)) (joint independence),

where “⊥” denotes independence. Assumption 1 is standard in the literature on the LATE and

implies the randomization of the instrument (such that it is unrelated with factors affecting the

treatment and/or outcome) and the exclusion of direct effects on the outcome. It follows that

not only the potential outcomes, but also the types, which are defined by the potential treatment
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states, are independent of the instrument. Therefore, equations (5) to (12) simplify to

p1(y) = f(y(1), T = c) + f(y(1), T = a), (13)

q1(y) = f(y(1), T = d) + f(y(1), T = a), (14)

p0(y) = f(y(0), T = d) + f(y(0), T = n), (15)

q0(y) = f(y(0), T = c) + f(y(0), T = n), (16)

f(y(1))− p1(y) = f(y(1), T = d) + f(y(1), T = n), (17)

f(y(1))− q1(y) = f(y(1), T = c) + f(y(1), T = n), (18)

f(y(0))− p0(y) = f(y(0), T = c) + f(y(0), T = a), (19)

f(y(0))− q0(y) = f(y(0), T = d) + f(y(0), T = a), (20)

see Kitagawa (2009) for a more detailed discussion.

To understand the implications of (13) to (20) for the identification of f(y(d), T = t), con-

sider, for instance, the always takers. (13) and (14) imply that f(y(1), T = a) cannot be larger

than min(p1(y), q1(y)), under Assumption 1. Secondly, by (19) and (20), the upper bound of

f(y(0), T = a) is f(y(0)) − max(p0(y), q0(y)) (which is, however, not observed because f(y(0))

is unknown). Similar results can be derived for all other types. E.g., f(y(0), T = n) is bounded

from above by min(p0(y), q0(y)) and f(y(1), T = n) by f(y(1))−max(p1(y), q1(y)). Furthermore,

Assumption 1 also provides information on the local existence and relative importance of com-

pliers and defiers. I.e., compliers necessarily exist locally if p1(y) > q1(y) or q0(y) > p0(y), re-

spectively, because by (13) to (16) this means that compliers dominate defiers (whose proportion

is at least zero): f(y(1), T = c) > f(y(1), T = d) ≥ 0 or f(y(0), T = c) > f(y(0), T = d) ≥ 0,

respectively. In this case, p1(y) − q1(y) or q0(y) − p0(y), respectively, provide a lower bound on

the compliers. Equivalently, p1(y) < q1(y) or q0(y) < p0(y) point to the local existence of defiers

and their dominance over compliers, such that q1(y)− p1(y) or q0(y)− p0(y), respectively, bound

their density of the defiers from below.

By (13) to (25), also any type proportion Pr(T = t) can be bounded. To this end, we define
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the following integrals also used in Kitagawa (2009) to keep the notation tractable:

δ1 =

∫
Y

max(p1(y), q1(y))dy, (21)

δ0 =

∫
Y

max(p0(y), q0(y))dy, (22)

λ1 =

∫
Y

min(p1(y), q1(y))dy, (23)

λ0 =

∫
Y

min(p0(y), q0(y))dy. (24)

I.e., δd is the integrated density envelope of (pd(y), qd(y)), while λd is the inner integrated density

envelope of (pd(y), qd(y)). Furthermore, note that

∫
Y
f(y(1), T = t)dy =

∫
Y
f(y(0), T = t)dy = Pr(T = t) ∀t = {a, c, d, n}, (25)

because very intuitively, the proportion of any type (Pr(T = t)) is necessarily equal across the

potential outcome distributions under treatment and non-treatment. This is what Kitagawa

(2009) refers to as scale constraint.

Again, consider the always takers to investigate the identifying power of Assumption 1 and

the scale constraint. As f(y(1), T = a) and f(y(0), T = a) are bounded by min(p1(y), q1(y)) and

f(y(0)) −max(p0(y), q0(y)), respectively, it follows from (22), (23), and the scale constraint(25)

that the proportion of always takers, Pr(T = a), is bounded from above by the minimum of λ1

and 1 − δ0 (with
∫
Y f(y(1))dy = 1). Concerning the latter, note that (19) and (20) imply that

max(p0(y), q0(y)) ≤ f(y(0)). Therefore, by integrating this expression we get δ0 ≤ 1, otherwise

Assumption 1 would be violated. Analogously, Pr(T = n) is bounded from above by the minimum

of λ0 and 1−δ1 (where δ1 ≤ 1). Likewise,
∫
Y p1(y)dy−λ1 = Pr(D = 1|Z = 1)−λ1 is a lower bound

on the proportion of compliers under treatment, because the lower bound on f(y(1), T = c) is

p1(y)−q1(y) if p1(y) > q1(y) and zero if p1(y) ≤ q1(y). The respective bound under non-treatment

is
∫
Y q0(y)dy − λ0 = Pr(D = 0|Z = 0) − λ0, such that the maximum of the proportions under

treatment and non-treatment provide a lower bound on Pr(T = c). Equivalently, the lower bound
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on Pr(T = d) is obtained by the maximum of Pr(D = 1|Z = 0)− λ1 and Pr(D = 0|Z = 1)− λ0.

It is obvious that Assumption 1 only allows us to derive bounds on the densities and pro-

portions of various types. To obtain point identification, we also impose a local monotonicity

assumption (LM), which rules out that compliers and defiers exist at the same time for a given

value of the potential outcomes. Put differently, it is assumed that the support of the potential

outcomes of the compliers and defiers do not overlap in either treatment state.2 However, in con-

trast to (global) monotonicity, neither of the two populations is ruled out completely.

Assumption 2:

Either Pr(D(1) ≥ D(0)|y(1), y(0)) = 1 or Pr(D(0) ≥ D(1)|y(1), y(0)) = 1 at every pair of poten-

tial outcomes (y(1), y(0)) (local monotonicity).

Assumption 2 implies that whenever compliers exist locally (Pr(T = c|Y (1), Y (0)) > 0), defiers

are ruled out (Pr(T = d|Y (1), Y (0)) = 0) and vice versa. To understand the logic of this re-

striction and its interaction with Assumption 1, several remarks are worth noting. Firstly, even

though Assumption 2 does not specify the direction of LM for particular values of the observed

outcome and the treatment, it must hold that D(1) ≥ D(0) whenever p1(y) > q1(y) under treat-

ment and q0(y) > p0(y) under non-treatment, otherwise Assumption 1 is violated. I.e., Assump-

tion 1 tells us which direction of LM is consistent with the data. Likewise, D(0) ≥ D(1) when-

ever p1(y) < q1(y) under treatment and q0(y) < p0(y) under non-treatment. By taking a look at

(13),(14) and (15),(16), respectively, we also see that D(1) = D(0) if p1(y) = q1(y) under treat-

ment and q0(y) = p0(y) under non-treatment, such that only always takers or never takers, re-

spectively, exist in this case. Therefore, Assumption 1 and 2 together imply the following:

Di(1) ≥ Di(0)|p1(Yi) ≥ q1(Yi) and Di(0) ≥ Di(1)|p1(Yi) ≤ q1(Yi) ∀ subjects i,

Di(1) ≥ Di(0)|q0(Yi) ≥ p0(Yi) and Di(0) ≥ Di(1)|q0(Yi) ≤ p0(Yi) ∀ subjects i.

This requires that, for instance, any treated complier (Di(1) > Di(0)|p1(Yi) > q1(Yi)) would live

2We thank Joshua Angrist and Toru Kitagawa for a fruitful discussion on the interpretation of LM.
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in a region satisfying q0(y) > p0(y) was she not treated (which, however, still allows for distinct

support regions of complier outcomes across treatment states).

Secondly, imposing LM and ruling out defiers when p1(y) > q1(y) or q0(y) > p0(y) entails

point identification of the compliers’ density: f(y(1), T = c) = p1(y) − q1(y) and f(y(0), T =

c) = q0(y) − p0(y), respectively, because in this case, q1(y), p0(y) only consist of always takers

and never takers, respectively. I.e., the lower bounds on f(y(1), T = c),f(y(0), T = c) under

Assumption 1 alone coincide with the point identified densities under Assumptions 1 and 2.

Equivalent arguments hold for p1(y) < q1(y) or q0(y) < p0(y), which imply the local existence of

defiers under Assumption 1 and the point identification of their densities under both assumptions,

because p1(y), q0(y) now exclusively contain always takers and never takers, respectively. It

therefore also follows that

Pr(D = 1|Z = 1)− λ1, Pr(D = 0|Z = 0)− λ0

and

Pr(D = 1|Z = 0)− λ1, Pr(D = 0|Z = 1)− λ0

are the point identified shares under treatment and non-treatment of the compliers and defiers,

respectively. Note that while Pr(D = 1|Z = 0) − λ1 > 0, Pr(D = 0|Z = 1) − λ0 > 0 imply a

deviation from (global) monotonicity conditional on the satisfaction of Assumption 1 as in our

framework, they point to a violation of either monotonicity or Assumption 1 (or both) if not even

the independence of the instrument can be ensured. This can be used to build tests for the joint

satisfaction of Assumption 1 and monotonicity in the same way as for monotonicity alone given

that Assumption 1 holds.3

Concerning the always takers, we have already discussed that f(y(1), T = a) = q1(y) if

p1(y) > q1(y) and f(y(1), T = a) = p1(y) if p1(y) < q1(y) such that min(p1(y), q1(y)) is the point

3E.g., it is easy to see that testing the null hypothesis H0 : Pr(D = 1|Z = 0)− λ1 + Pr(D = 0|Z = 1)− λ0 = 0
against the alternative H1 : Pr(D = 1|Z = 0)− λ1 + Pr(D = 0|Z = 1)− λ0 > 0 jointly verifies Assumption 1 and
monotonicity, with Pr(D = 1|Z = 0) − λ1 + Pr(D = 0|Z = 1) − λ0 being the sum of violations under treatment
and non-treatment.
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identified density under treatment, while it was the upper bound under Assumption 1 alone.

Likewise, min(p0(y), q0(y)) point identifies the density of the never takers under non-treatment.

It follows that λ1, 1− δ0 and 1− δ1, λ0 are the respective proportions under treatment and non-

treatment of the always takers and defiers. I.e., Assumptions 1 and 2 permit the identification

of all type proportions and the density functions of the compliers and defiers under treatment

and non-treatment. In contrast, the density function of the always takers is only identified under

treatment (because f(y(0)) is unknown), that of the never takers only under non-treatment

(because f(y(1)) is unknown). To visualize the results, Figure 1 displays the density functions

f(y(d)), pd(y), qd(y) as well as the locations and proportions of types defined by the intersections

and differences of these densities for a hypothetical example under treatment and non-treatment.

Figure 1: Graphical illustration of the identification of type locations and proportions

Thirdly, the (global) monotonicity assumption of Imbens and Angrist (1994) and Angrist,

Imbens, and Rubin (1996) is a special case of LM. To see this, assume that defiers do not

exist globally (i.e., assume positive monotonicity, a symmetric argument holds under negative

monotonicity when compliers are ruled out) such that (14) and (15) reduce to q1(y) = f(y(1), T =

a) and p0(y) = f(y(0), T = n), respectively, ∀ y ∈ Y. As discussed in Kitagawa (2009), this

together with (13) to (16) implies the following nested density configuration: p1(y) ≥ q1(y) and

q0(y) ≥ p0(y), ∀ y ∈ Y. Then, Assumption 2 simplifies to Pr(D(1) ≥ D(0)) = 1 which is (global)

monotonicity.
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We now formally discuss our identification results. The first proposition shows that under

Assumptions 1 and 2, the proportions of all types and the potential outcome distributions of the

compliers, defiers, and always takers under treatment as well as those of the compliers, defiers,

and never takers under non-treatment are identified.

Proposition 1. Under Assumptions 1 and 2,

1. f(y(1), T = a) = min(p1(y), q1(y)),

2. f(y(1), T = c) = p1(y)−min(p1(y), q1(y)),

3. f(y(1), T = d) = q1(y)−min(p1(y), q1(y)),

4. f(y(1), T = n) = f(y(1))−max(p1(y), q1(y))

5. f(y(0), T = n) = min(p0(y), q0(y)),

6. f(y(0), T = c) = q0(y)−min(p0(y), q0(y)),

7. f(y(0), T = d) = p0(y)−min(p0(y), q0(y)),

8. f(y(0), T = a) = f(y(0))−max(p0(y), q0(y)) for all y ∈ Y.

9. the type proportions are identified by

Pr(T = a) = λ1, Pr(T = c) = Pr(D = 1|Z = 1)− λ1,

Pr(T = d) = Pr(D = 1|Z = 0)− λ1, and Pr(T = n) = λ0.

Proof. See Appendix A.

Based on Proposition 1, the LATEs (i) on the compliers, (ii) on the defiers, and (iii) on the

joint population of compliers and defiers are identified. The intuition is that since f(y(d)|T =

t) = f(y(d),T=t)
Pr(T=t) , we can use the results of Proposition 1 to identify the potential outcome dis-

tributions under treatment and non-treatment given T ∈ {c, d} in order to identify the LATEs.

Furthermore, if defiers do not exist, (i) and (iii) coincide with the standard LATE expression(
E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0)

)
under positive monotonicity, whereas (ii) and (iii) coincide with standard
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LATE under negative monotonicity if compliers do not exist. These results are formally stated

in Proposition 2.

Proposition 2. Under Assumptions 1 and 2,

1.

E(Y (1)− Y (0)|T = c, d) =

∫
Y y · (max(p1(y), q1(y))−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0)− 2 · λ1
(26)

−
∫
Y y · (max(p0(y), q0(y))−min(p0(y), q0(y)))dy

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0)− 2 · λ1
.

2.

E(Y (1)− Y (0)|T = c) =

∫
Y y · (p1(y)−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 1)− λ1
(27)

−
∫
Y y · (q0(y)−min(p0(y), q0(y)))dy

Pr(D = 1|Z = 1)− λ1
.

3.

E(Y (1)− Y (0)|T = d) =

∫
Y y · (q1(y)−min(p1(y), q1(y)))dy

Pr(D = 1|Z = 0)− λ1
(28)

−
∫
Y y · (p0(y)−min(p0(y), q0(y)))dy

Pr(D = 1|Z = 0)− λ1
.

4. If Pr(T = d) = 0 and Pr(T = c) > 0, (26) is equivalent to E(Y (1) − Y (0)|T = c) =

E(Y |Z=1)−E(Y |Z=0)
E(D|Z=1)−E(D|Z=0) , whereas E(Y (1)− Y (0)|T = d) is not defined.

5. If Pr(T = c) = 0 and Pr(T = d) > 0, (26) is equivalent to E(Y (1) − Y (0)|T = d) =

E(Y |Z=0)−E(Y |Z=1)
E(D|Z=0)−E(D|Z=1) , whereas E(Y (1)− Y (0)|T = c) is not defined.

Proof. See Appendix A.

Our discussion has shown that if the instrument satisfies Assumption 1, LATE identification

does not necessarily rely on global monotonicity. In fact, the LATEs considered are equivalent
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to the LATE under monotonicity if the latter assumption is indeed satisfied, but can also be

identified under the weaker LM, which is partially testable. Moreover, if Assumption 2 does

not hold, neither does monotonicity, such that in terms of identification there appear to be no

gains when relying on standard LATE assumptions rather than the ones proposed in this section.

However, albeit more general than monotonicity, LM may still be restrictive in applications,

in particular with outcomes of limited support. E.g., for binary outcomes it requires that the

potential outcomes of all compliers given a particular treatment state are either zero or one while

all defier outcomes have the respective opposite value. Therefore, the plausibility of LM has to

be critically judged in the empirical problem at hand.

To judge the implications of our assumptions in a structural model, consider the following

two stage endogenous treatment selection model, with the first stage being characterized by a

random coefficient model:4

Yi = ϕ(Di, εi),

Di = I{γ0 + γiZi + νi > 0}. (29)

I{·} is the indicator function which is equal to one if its argument holds true and zero otherwise.

ϕ is a general function and εi, νi denote the unobservables in the outcome and treatment equation

and may be arbitrarily correlated. γ0, γi denote the constant term and the random coefficient on

the instrument, respectively. Our assumptions require that whenever p1(Yi) ≥ q1(Yi) or q0(Yi) ≥

p0(Yi), respectively, γi ≥ 0 such that Di(1) = I(γ0 + γiZi + νi > 0) ≥ Di(0) = I(γ0 + νi > 0),

which locally rules out defiers. For p1(Yi) ≤ q1(Yi) or q0(Yi) ≤ p0(Yi), respectively, it must hold

that γi ≤ 0 such that Di(0) = I(γ0 + νi > 0) ≥ Di(1) = I(γ0 + γiZi + νi > 0). Note that global

monotonicity would restrict γi to be either weakly positive or weakly negative of any i, while

Assumption 2 restricts γi only locally.

To give an idea about possible set ups in which LM holds while monotonicity does not, we

4We are indebted to Joshua Angrist for making valuable suggestions concerning potential models that fit our
framework.
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provide two parametric examples that put further structure on the equations in (29). Firstly,

assume that the outcome equation is characterized by the following model:

Yi = α0 + α1Di + α2Diεi + εi, (30)

where α0 is the constant and α1, α2 are the coefficients on the treatment and its interaction (cap-

turing individual effect heterogeneity) and εi is assumed to have finite first and second moments.

In this case, Yi(0) = α0 + εi, Yi(1) = α0 + α1 + (1 + α2)εi and the individual treatment effect is

α1 +α2εi. Moreover, assume that the coefficient on Z in the first stage is a deterministic function

of εi:

γi = β0 + ρεi, (31)

where β0 is a constant and ρ the coefficient on the error in the structural equation. For ρ > 0,

it follows that Di(1) ≥ Di(0) for all εi ≥ 0 and Di(1) ≤ Di(0) for all εi ≤ 0, while the contrary

holds for ρ < 0. As Yi is a monotonic function of εi (unless α2 is exactly −1 and Di = 1), the

outcomes of the compliers and defiers do not overlap conditional on the treatment state so that

LM is satisfied.

Secondly, we consider an extension of our set up to a Roy (1951)-type model, which implies

that the probability of treatment increases with the gains it creates. To this end, we maintain

the previous outcome equation (30), but modify the first stage:

Di = I{Yi(1)− Yi(0) + γiZi + νi > 0} = I{β0 + α1 + (α2 + ρZi)εi + νi > 0}, (32)

where the individual level treatment effect e.g., the returns to education or training, now influences

the selection into treatment. In this case νi, if different from zero, may be interpreted as individual

costs, disutility, or utility of the treatment not reflected by the treatment effect per se. The

instrument Z exogenously shifts participation, but the direction depends again on εi as specified
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in (31). The expression left of the equality follows from substituting Yi(1) − Yi(0) by α1 + α2εi

and using (31). Again, this model implies a non-overlapping support of the potential outcomes

of compliers and defiers due to γi being a deterministic function of εi and Yi being monotonic in

εi.

Restrictions of the kind used in our examples are of course not innocuous and raise the question

whether there exist empirical problems in which they seem realistic. A potentially interesting

application appears to be the estimation of the returns to education based on quarter of birth

instruments, see Angrist and Krueger (1991). As already discussed in Section 1, receiving a

particular level of education (D) might not be monotonic in the quarter of birth (Z) due to

postponing school entry (e.g., redshirting). Now assume that ε reflects unobserved innate ability.

Then, LM is satisfied if the wage (Y )5 is a positive function of ability and if it is ability that

also determines postponement, i.e., if high ability children are admitted to school in the same

year while low ability children are held back for another year (ρ > 0). In this case, compliers are

situated on the upper part of the wage distribution conditional on a particular level of education

and defiers on the lower part. This motivates the empirical application to the Angrist and Krueger

(1991) data presented in Section 5, which also assesses the plausibility of the assumptions after

visually inspecting the estimated outcome distributions of compliers and defiers.

We conclude this section by discussing a testable necessary, albeit not sufficient condition for

Assumptions 1 and 2, namely the satisfaction of the scale constraint (25). E.g., the proportion of

always takers must be equal under treatment and non-treatment, i.e., λ1 = 1− δ0, and the same

applies to the never takers, λ0 = 1− δ1, or any other subpopulation. Interestingly, one constraint

implies the other, which follows from Lemma A.2 in Kitagawa (2009):

δ1 + δ0 + λ1 + λ0 = 2,

because the four elements add up to the sum of the integrals of p1(y), q1(y), p0(y), and q0(y) (with

5As wage is non-negative, note that the models described before can easily be specified such that they generate
a non-negative outcome, e.g., by letting α0 in (30) be sufficiently large and letting εi be of bounded support such
that α0 + α1Di + α2Diεi + εi ≥ 0 always holds.
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∫
Y (p1(y) + p0(y))dy =

∫
Y (q1(y) + q0(y))dy = 1). Rearranging the terms yields (1 − δ0) − λ1 =

λ0− (1−δ1). Therefore, it suffices to test one scale constraint, e.g., λ1 = 1−δ0, as its satisfaction

also entails the validity of the remaining three. However, if λ1 6= 1−δ0 (or equivalently λ0 6= 1−δ1),

point identification of LATEs is generally not feasible, at least without imposing further restrictive

assumptions. It therefore appears advisable to test this implication in empirical applications and

we do so in our estimations presented in Section 5. We nevertheless need to bear in mind that

our assumptions may be violated even if the scale constraint is not rejected.

3 Non-binary instruments

This section discusses the identification of LATEs in the presence of a multi-valued instrument

with bounded support.6 Under (global) monotonicity, Frölich (2007) shows that if the support of

Z is bounded such that Z ∈ [zmin, zmax], where zmin and zmax are finite upper and lower bounds,

it is possible to define and identify LATEs on the compliers with respect to any two distinct

subsets of the support of Z. The proportion of compliers in general varies depending on the

choice of subsets and is maximized when choosing the endpoints zmin, zmax. In our framework

which allows for compliers and defiers, this result no longer holds in general without specifying

LM more tightly. To see this, let z and z′ ∈ [zmin, zmax] denote two subsets such that z 6= z′.

Define Z̃ as

Z̃ =

 1 if Z ∈ z

0 if Z ∈ z′
. (33)

As an example, consider the case that the instrument can take three values, e.g. Z ∈ {0, 1, 2},

such that instead of Assumption 1 we invoke the following independence assumption:

Assumption 1a:

Z⊥(D(2), D(1), D(0), Y (1), Y (0)).

6We thank Toru Kitagawa for very helpful comments concerning the case of non-binary instruments.

18



Without imposing any form of monotonicity, there now exist eight types according to

D(2), D(1), D(0), see Table 3. Positive monotonicity rules out types 3, 5, 6, and 7 such that only

always takers (type 1), never takers (type 8) and compliers when switching the instrument from

0 to 1 (type 2) or from 1 to 2 (type 4) exist. In this framework, one could possibly think of five

different definitions of z, z′: (i) z = {0}, z′ = {1}, (ii) z = {1}, z′ = {2}, (iii) z = {0}, z′ = {2},

(iv) z = {0, 1}, z′ = {2}, (v) z = {0}, z′ = {1, 2}. (iii) maximizes the complier proportion,

namely the joint proportion of types 2 and 4. This is the case because it may induce individuals

to react on the treatment that are otherwise always or never takers when the instrument has

less asymptotic power, i.e., operates over a smaller support, such as in (i), which only covers

type 2, and in (ii), which covers type 4. In contrast, (iv) and (v) may be chosen to maximize

finite sample power, because these set ups encounter at least as many observations as (iii), at

the cost of a weakly lower complier proportion.

Table 3: Types for Z ∈ {0, 1, 2}

Type T D(2) D(1) D(0)

1 1 1 1
2 1 1 0
3 1 0 1
4 1 0 0
5 0 1 1
6 0 1 0
7 0 0 1
8 0 0 0

Identification becomes more complicated if we abandon (global) monotonicity. Without fur-

ther restrictions, all eight types may exist, out of which two are pure compliers (types 2 and 4),

two are pure defiers (types 5 and 7) and two even switch from compliance to defiance (type 6)

or vice versa (type 3). Clearly, if LM is imposed w.r.t. D(1), D(0) only, which allows identifying

LATEs within (i), or w.r.t. D(2), D(1) only, which allows identifying LATEs within (ii), iden-

tification of LATEs in (iii) to (v) is generally not feasible. The reason is that the densities of

compliers and defiers across (i) and (ii) may net each other out when coarsening the values of the

instrument as in (iii) and (iv) or when considering endpoints only as in (v). I.e., some y(1), y(0)

might be inhabited by compliers in (i) and defiers in (ii) or vice versa such that any definition of
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z, z′ not consisting of neighboring support points in Z does in general not identify LATEs. One

possibility to establish identification is to assume that LM holds over all values in the support of

the instrument.

Assumption 2a:

Either Pr(D(2) ≥ D(1) ≥ D(0)|y(1), y(0)) = 1 or Pr(D(0) ≥ D(1) ≥ D(2)|y(1), y(0)) = 1 at

every pair of potential outcomes (y(1), y(0)).

Assumption 2a rules out types 3 and 6 globally, implying that no individuals switch their treat-

ment state in opposite directions for distinct pairs of instrument values. Furthermore, either de-

fying types 5 and 7 or complying types 2 and 4 must not exist locally for any y(1), y(0), meaning

that over the entire range of instrument values, the support of defiers and compliers never over-

laps. Under Assumptions 1a and 2a, the LATEs on types 2, 4, 5, and 7 are identified. I.e., (i)

identifies the LATEs on types 2 and 7 and (ii) those on types 4 and 5. Analogously to the set up

under global monotonicity, (iii) now maximizes both the proportions of compliers and defiers by

identifying the LATEs on the types 2 and 4 jointly as well as on 5 and 7 jointly.

4 Estimation

This section discusses estimation based on the sample analogs of (26), (27) and (28). Throughout

the exposition, we will assume that Pr(T = c) = Pr(D = 1|Z = 1)−λ1 and Pr(T = d) = Pr(D =

1|Z = 0) − λ1 are bounded away from zero, otherwise issues similar to the weak instrument

problem in standard IV models would arise that are likely to invalidate the asymptotic properties

presented below. While these issues are clearly interesting to look at, they are beyond the scope

of this paper. Note that if the outcome is discrete, all elements of the identification results

outlined in Proposition 2 can be estimated at a parametric rate, including the densities for which

estimates (denoted by p̂, q̂) can be obtained using indicator functions for the values of Y : p̂d(y) =

1∑
Zi

∑
(Zi · I{Yi = y,Di = d}) and q̂d(y) = 1∑

1−Zi
∑

((1− Zi) · I{Yi = y,Di = d}). In what

follows we will discuss under which conditions estimators are
√
n-consistent and asymptotically
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normal for the more complicated case that Y is continuous with the densities being estimated

at a slower rate than
√
n. As outlined in Appendix B, the estimators are characterized by a

semiparametric two step GMM procedure and belong to the class of MINPIN estimators, a general

class of semiparametric two step M-estimators introduced in Andrews (1994a). By applying his

results it follows that the subsequent estimators of E(Y (1)−Y (0)|T = c, d), E(Y (1)−Y (0)|T = c),

and E(Y (1)−Y (0)|T = d) (denoted by µ̂c,d, µ̂c, and µ̂d) have the desired properties given that the

(plug-in) first step estimators f̂(Yi|D = d, Z = z) satisfy particular conditions explained further

below and in Appendix B.7

µ̂c,d =

∑n
i=1 Yi · [I{p̂1(Yi) ≥ q̂1(Yi)} · (p̂1(Yi)− q̂1(Yi)) + I{p̂1(Yi) ≤ q̂1(Yi)} · (q̂1(Yi)− p̂1(Yi))]

P̂1|1 + P̂1|0 − 2 · λ̂1

−
∑n

i=1 Yi · [I{p̂0(Yi) ≥ q̂0(Yi)} · (p̂0(Yi)− q̂0(Yi)) + I{p̂0(Yi) ≤ q̂0(Yi)} · (q̂0(Yi)− p̂0(Yi))]

P̂1|1 + P̂1|0 − 2 · λ̂1

,

µ̂c =

∑n
i=1 Yi · I{p̂1(Yi) ≥ q̂1(Yi)} · (p̂1(Yi)− q̂1(Yi))

P̂1|1 − λ̂1

−
∑n

i=1 Yi · I{p̂0(Yi) ≤ q̂0(Yi)} · (q̂0(Yi)− p̂0(Yi))

P̂1|1 − λ̂1

,

µ̂d =

∑n
i=1 Yi · I{p̂1(Yi) ≤ q̂1(Yi)} · (q̂1(Yi)− p̂1(Yi))

P̂1|0 − ·λ̂1

−
∑n

i=1 Yi · I{p̂0(Yi) ≥ q̂0(Yi)} · (p̂0(Yi)− q̂0(Yi))

P̂1|0 − ·λ̂1

,

where

P̂1|1 =

∑n
i=1Di · Zi∑n
i=1 Zi

, P̂1|0 =

∑n
i=1Di · (1− Zi)∑n
i=1 (1− Zi)

,

λ̂1 =

n∑
i=1

I{p̂1(Yi) ≤ q̂1(Yi)} · p̂1(Yi) + I{p̂1(Yi) > q̂1(Yi)} · q̂1(Yi),

p̂1(Yi) = P̂1|1 · f̂(Yi|D = 1, Z = 1), q̂1(Yi) = P̂1|0 · f̂(Yi|D = 1, Z = 0),

p̂0(Yi) = (1− P̂1|1) · f̂(Yi|D = 0, Z = 1), q̂0(Yi) = (1− P̂1|0) · f̂(Yi|D = 0, Z = 0),

and f̂(Yi|D = d, Z = z) is a non-parametric preliminary estimator of f(Yi|D = d, Z = z).

7Instead of evaluating the densities at the empirical data points, asymptotically equivalent estimators can be
obtained by estimating the densities at an equidistant grid of values between the empirical lower and upper bound
of the outcome support and taking the sample analogs of Proposition 2. The asymptotic properties can be derived
in a similar manner and are not discussed here.
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Andrews (1994a) proposes a set of assumptions under which the class of MINPIN estimators

is
√
n-consistent and asymptotically normal. The assumptions include standard regularity condi-

tions (e.g., boundedness of the parameter space of the second step objects) and an orthogonality

condition between first step objects (the densities) and second step parameters (the LATEs, λ1,

and Pr(D = d|Z = z)). The latter ensures that the first step estimators of the densities f(Yi|D =

d, Z = z) do not affect the asymptotic variances of the LATEs, which requires that they conver-

gence uniformly (rather than pointwise) sufficiently fast, i.e., at least at rate n−
1
4 .8 As an ex-

ample, Andrews (1995) discusses conditions under which nonparametric multidimensional kernel

estimators satisfy this property in an estimation problem with a particular form of weak temporal

dependence. Here, the first step problem is econometrically less challenging because we only need

to estimate one-dimensional densities in an i.d.d. framework. Uniform almost sure convergence

(which implies convergence in probability) can be easily established if the support of Y is un-

bounded, see for instance Theorem 1.4 in Li and Racine (2007). If the support is bounded, the

bias of (local constant) kernel density estimators is potentially large close to the boundaries and

of lower order than in the interior. To obtain uniform convergence in this case, one may either use

specific boundary kernels designed to overcome this problem, or a local linear density estimator

(instead of local constant estimation) where the bias is of the same order at the boundaries as

in the interior, see for instance Jones (1993), or adaptive bandwidth methods for boundaries as

discussed in Dai and Sperlich (2010).9 Concerning the required rate of convergence of n−
1
4 , the

latter is easily obtained in the univariate case, where the fastest possible rate is n−
2
5 .

A further important assumption in Andrews (1994a) is the smoothness of the expectations

of the moment functions. Note that the presence of indicator functions (such as for example

I{p̂1(Yi) > q̂1(Yi)}) in the LATE estimators does not allow imposing such smoothness conditions

at the unit level as for example discussed in Newey (1994). However, as the estimators contain

averages of these indicator functions, the smoothness condition of Andrews (1994a) is satisfied

8MINPIN estimators that do not satisfy the orthogonality condition may nevertheless be asymptotically normal.
However, the variance term of the second step estimators will then also be a function of the first step estimation,
see Andrews (1991).

9We refer to Cheng, Fan, and Marron (1997) and Dai and Sperlich (2010) for a comprehensive review of the
literature on boundary corrections in kernel density estimation
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in our case. This gives rise to a stochastic equicontinuity assumption on the empirical processes

involved, which is a further requirement of asymptotic normality. Proposition 3 states that

under Assumption E in Appendix B, which adapts the assumptions of Andrews (1994a) to our

framework, the LATE estimators are
√
n-consistent and asymptotically normal.

Proposition 3. Assume that Pr(T = c) and Pr(T = c) are bounded away from zero, pd(y), qd(y)

with d ∈ {1, 0} cross a finite number of times in Y, and Assumption E in Appendix B is satisfied.

It follows that

1. µ̂c,d
p→ E(Y (1)− Y (0)|T = c, d)

2. µ̂c
p→ E(Y (1)− Y (0)|T = c)

3. µ̂d
p→ E(Y (1)− Y (0)|T = d)

4. λ̂1
p→ Pr(T = a)

5.
√
n · (µ̂c,d − E(Y (1)− Y (0)|T = c, d))

d→ N (0, Vc,d)

6.
√
n · (µ̂c − E(Y (1)− Y (0)|T = c))

d→ N (0, Vc)

7.
√
n · (µ̂d − E(Y (1)− Y (0)|T = d))

d→ N (0, Vd)

8.
√
n · (λ̂1 − Pr(T = a))

d→ N (0, Vλ1)

with Vc,d, Vc, Vd, and Vλ1 as given in Appendix C.

Proof. See Appendix B.

Chen, Linton, and Keilegom (2003) generalize the results of Andrews (1994a) to a wider class

of estimators (including the MINPIN class) and discuss the assumptions needed for the validity of

bootstrap based inference. We show in Appendix B that Vc,d, Vc, Vd, and Vλ1 can be consistently

estimated by bootstrapping under only slightly stronger assumptions than required for estimation

per se. There, we also discuss in greater detail the assumptions of Andrews (1994a) and Chen,

Linton, and Keilegom (2003) and the conditions under which they are satisfied in our setting.
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5 Empirical application

This section provides an application to the 1980 U.S. census data analyzed by Angrist and Krueger

(1991), which contain 329,509 males born between 1930 and 1939. Angrist and Krueger (1991)

assess the effect of education on wages by using the quarter of birth as instrument to control for

potential endogeneity (e.g., due to unobserved ability) between the treatment and the outcome.

The idea is that the quarter of birth instrument affects education through age-related schooling

regulations. As documented in Angrist and Krueger (1992), state-specific rules require that a

child must have attained the first grade admission age, which is six years in most cases, at a

particular date during the year. Because schooling is compulsory until the age of 16 in most

states, see Appendix 2 in Angrist and Krueger (1991), students who are born early in the year

are in 10th grade when turning 16. As the school year usually starts in September and ends in

July, these students have nine years of completed education if they decide to quit education as

soon as possible. In contrast, students born after the end of the academic year but still entering

school in the same year they turn six will have ten years of completed education at age 16. This

suggests education to be monotonically increasing in the quarter of birth.

However, the quarter of birth instrument is far from being undisputed. E.g., Bound, Jaeger,

and Baker (1995) challenge the validity of the exclusion restriction and present empirical results

that point to systematic patterns in seasonality of birth (for instance w.r.t. performance in school,

health, and family income) which may imply a direct association with the outcome. For this

reason, we will only consider quarters two and three in our analysis, i.e., the warmer seasons of

the year. We acknowledge that this may not completely dissipate all concerns about seasonality,

but nevertheless assume that Assumption 1 is satisfied for the subsample born in the second or

third quarter of the year.

Secondly, a crucial question for standard IV estimation is whether positive monotonicity

holds for all individuals. This appears unlikely in the light of strategic school entry behavior

as documented by Barua and Lang (2009), which may entail deviations from the schooling
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regulations. The authors present empirical evidence of redshirting based on 1960 U.S. census

data, implying that many parents did not enroll their children at the earliest permissible entry

age but postponed school entry. This occurred particularly often when born late in the year.

Likewise, Klein (2010) acknowledges that postponement may be also induced by schools, which

are generally not obliged to admit all children who turn six before the state-wide cutoff date.

I.e., some school districts can choose not to accept applicants that turn six late in the year and

thus delay entry for one year. As discussed in Klein (2010), both redshirting and school policies

may reverse the relation of education and the instrument for some individuals. Because children

with postponement are close to seven when entering school and will just have started 10th grade

when turning 16, some of them may decide to drop out immediately, with only nine years of

completed education. In contrast, students born earlier will be at an advanced stage of the 10th

grade when turning 16 and might therefore decide to complete the grade, thus having at least

10 years of completed education. For these individuals, compulsory schooling decreases in the

quarter of birth and therefore violates monotonicity.

The implausibility of monotonicity motivates the use of our weaker LM, while the exclusion

restriction will be maintained. As already mentioned, we confine our analysis to those males born

in the second or third quarter. The instrument Z is equal to zero if born in the second quarter

and equal to one if born in the third quarter. Our treatment D is a binary indicator that is equal

to zero if receiving high school education or less (i.e., up to 12 years of education) and one if

obtaining at least some higher education (i.e., 13 years or more). I.e., we are interested in the

returns to having at least some college education. According to our definition, roughly 60% (40%)

of our sample receive lower (higher) education. As in Angrist and Krueger (1991), the outcome

variable Y is the log weekly wage. To investigate the incidence of compliance and defiance over

birth cohorts, we perform the analysis separately for cohorts 1930-32 (53,527 observations) at the

lower end and for 1937-39 (48,794 observations) at the upper end of the data window. This also

helps tackling one concern raised in Angrist and Krueger (1991), namely that IV estimates are

likely to be downward biased when pooling all cohorts because the effect of age on wages is not
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taken into account.

Estimation is based on the sample analogs of Proposition 2. The densities pd(y), qd(y) are

estimated by kernel density estimation within subgroups defined by the treatment and the

instrument and evaluated on an equidistant grid of 1000 values between the empirical lower

and upper bounds of the outcome support. The Silverman (1986) rule of thumb is used for

bandwidth choice.10 Concerning inference, we bootstrap the parameters of interest 1999 times

to approximate their distributions. This allows us to compute p-values by assessing the rank

of the estimates in their respective re-centered bootstrap distributions. We use two-sided

hypothesis tests, see for instance equation (6) of MacKinnon (2006), to obtain the p-values of

the scale constraint and the LATE estimates and one-sided tests for the type proportions (the

theoretical lower bound of which is zero).

Table 4 presents the results separately for the oldest and youngest three cohorts. The first

column gives the estimate of 1− δ0−λ1, which tests the scale constraint and is necessarily zero if

Assumptions 1 and 2 are satisfied. With p-values of 0.77 and 0.37, respectively, the data do not

provide evidence for their violation. The second and third columns contain the estimates of the

proportions of the compliers and defiers, respectively. Interestingly, the proportion of compliers

is significantly positive at the 5% level only in the 1930-32 sample and that of the defiers only in

the 1937-39 sample, which is also reflected by the dominance of compliers (defiers) in the older

(younger) cohorts. This points to considerable variation in compliance and defiance across cohorts

which is not captured when pooling all cohorts and/or invoking global monotonicity, which would

average out complier and defier proportions. E.g., running a first stage OLS regression of D on

a constant and Z in the 1937-39 sample yields a slope coefficient of −0.0013. The latter is

asymptotically equivalent to Pr(T = c)−Pr(T = d) and would correspond to the estimated share

of individuals whose treatment is affected by the instrument had we assumed monotonicity. As

the first stage estimate is insignificant, we would incorrectly conclude that the shares of compliers

and/or defiers are not statistically different from zero due to averaging them out in the first stage,

10Undersmoothing by taking 0.75 times the bandwidth suggested by the Silverman (1986) rule of thumb does
not crucially change the results.
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while in fact both proportions are significant at the 10 % level.

The existence of defiers is accounted for by the methods based on Proposition 2 for the

estimation of the LATEs on the compliers (LATEc), defiers (LATEd), and the joint population

(LATEc,d), but ignored by the Wald estimator (LATEmon). Taking a look at the older cohorts, we

see that all effects are rather imprecise such that their values should not be taken at face value.

In the younger cohorts, LATEc and LATEc,d are significantly positive at the 5 % level, while

LATEd is only borderline significant, but of similar magnitude as the former two parameters.

This suggests a substantial increase in the wages of compliers and defiers when obtaining higher

education. In contrast, LATE(mon.) is negative due to the negative first stage and insignificant.

This demonstrates that the estimates are not robust to incorrectly invoking (global) monotonicity

when in fact both compliers and defiers are likely to exist.

Table 4: LATEs on log weekly wage by youngest and oldest cohorts

1− δ0 − λ1 Pr(T = c) Pr(T = d) LATEc LATEd LATEc,d LATE(mon.)

Cohorts 1930-32
Estimate 0.0011 0.0137 0.0031 0.1595 -2.5824 -0.3507 1.0050
P-value (0.7784) (0.0025) (0.4187) (0.4442) (0.4392) (0.8734) (0.2391)

Cohorts 1937-39
Estimate -0.0005 0.0077 0.0090 1.2721 1.0070 1.1290 -0.8752
P-value (0.3922) (0.0800) (0.0125) (0.0120) (0.1021) (0.0320) (0.3792)

Note: P-values are based on 1999 bootstrap draws.

The results indicate that monotonicity is violated and therefore, the Wald estimator is in-

consistent. However, the question is whether LM is a plausible alternative when interpreting our

results. Even though the scale constraint is not rejected, the assumption that the potential wages

of compliers and defiers do not overlap may still be violated. If there exists a reasonable theory

on which outcome regions are inhabited by compliers and defiers, then visually inspecting the

support of both groups appears to be a useful plausibility check. E.g., as discussed in Section

2, one might assume that conditional on education, individuals who earn low wages have a low

level of innate ability which also induced them to postpone schooling. This suggests that defiers

are concentrated in the lower part of the wage distribution and compliers in the upper part given

the treatment state. We may verify our presumption by plotting the estimated densities of the
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compliers and defiers.

Figure 2: Est. of f(y(1), T = c), f(y(1), T = d) and f(y(0), T = c), f(y(0), T = d)

Figure 2 displays the estimates of the joint densities of the outcome values and being a

complier or defier, respectively, under treatment (f(y(1), T = c), f(y(1), T = d), upper graph)

and non-treatment (f(y(0), T = c), f(y(0), T = d), lower graph) for the youngest cohorts (1937-

39). Positive densities represent compliers, negative ones defiers. We see that our theory is

not supported by the data. In either treatment state, several switches between compliance and

defiance occur over the support of the outcome that appear hard to justify by any reasonable

economic model. Although LM may not be convincing in the problem considered, our method at

the very least allows testing the even stronger standard LATE assumptions which are obviously

violated due to the occurrence of defiers. I.e., the data do provide us with information about

the validity of monotonicity assumptions, a fact that has so far been ignored in the applied IV

literature.
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6 Conclusion

We have demonstrated that local average treatment effects (LATEs) are identified under strictly

weaker conditions than the standard assumptions invoked in the literature, see Imbens and An-

grist (1994) and Angrist, Imbens, and Rubin (1996). Under the joint independence of the in-

strument and the potential treatment states/outcomes, (global) monotonicity of the treatment

in the instrument may be weakened to local monotonicity (LM). This brings the improvement

that defiers need no longer be assumed away such that LATEs on the defiers as well as on the

joint population of defiers and compliers are identified for the first time in addition to the ef-

fect on the compliers. Furthermore, our set of assumptions can be partially verified in the data.

Even though improving on monotonicity, it nevertheless has to be acknowledged that LM is by

no means innocuous, because it puts restrictions on the potential outcomes of latent subgroups.

Specifically, it requires that the outcome distributions of defiers and compliers do not overlap

in either treatment state. It nevertheless appears to be the weakest possible assumption under

which (along with the independence of the instrument) point identification is feasible in the het-

erogeneous treatment effect model with endogeneity.

As an empirical illustration, we have applied our methods to U.S. census data previously

analyzed by Angrist and Krueger (1991) to estimate the returns to higher education for males by

using the birth quarter as instrument for education. We have documented the presence of both

compliers and defiers, who specifically in later cohorts are of similar magnitude as the compliers.

Our results show that the LATE estimates are not robust to ignoring defiers, which illustrates the

inconsistency of the Wald estimator. While the methods proposed in this paper can be used to

test the validity of standard LATE assumptions, one needs to bear in mind that also LM imposes

strong restrictions on the data, which are only partly testable. A visual inspection of the outcome

distributions of compliers and defiers in either treatment state may help to judge the plausibility

of LM.
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A Proofs of the identification results

Proof of Proposition 1.

1. Assumption 2 together with (13) and (14) implies that f(y(1), T = a) = q1(y) if p1(y) ≥ q1(y) and

f(y(1), T = a) = p1(y) if p1(y) ≤ q1(y), therefore f(y(1), T = a) = min(p1(y), q1(y)).

2. This follows immediately by substituting f(y(1), T = a) = min(p1(y), q1(y)) into (13).

3. This follows immediately by substituting f(y(1), T = a) = min(p1(y), q1(y)) into (14).

4. Assumption 2 together with (17) and (18) implies that f(y(1), T = n) = f(y(1))−p1(y) if p1(y) ≥ q1(y) and

f(y(1), T = n) = f(y(1))− q1(y) if p1(y) ≤ q1(y), therefore f(y(1), T = n) = f(y(1))−max(p1(y), q1(y)).

5. Assumption 2 together with (15) and (16) implies that f(y(0), T = n) = q0(y) if q0(y) ≥ p0(y) and

f(y(0), T = n) = p0(y) if q0(y) ≤ p0(y), therefore f(y(0), T = n) = min(p0(y), q0(y)).

6. This follows immediately by substituting f(y(0), T = n) = min(p0(y), q0(y)) into (16).

7. This follows immediately by substituting f(y(0), T = n) = min(p0(y), q0(y)) into (15).

8. Assumption 2 together with (19) and (20) implies that f(y(0), T = a) = f(y(0))− q0(y) if q0(y) ≥ p0(y) and

f(y(0), T = a) = f(y(0))− p0(y) if q0(y) ≤ p0(y), therefore f(y(0), T = a) = f(y(0))−max(p0(y), q0(y)).

9. Integration of f(y(1), T = a) = min(p1(y), q1(y)) immediately gives Pr(T = a) = λ1 and integration of

f(y(0), T = n) = min(p0(y), q0(y)) gives Pr(T = n) = λ0. Concerning the remaining type proportions note

that the integrals over (13) and (14) give Pr(T = c) = Pr(D = 1|Z = 1) − Pr(T = a) and Pr(T = d) =

Pr(D = 1|Z = 0)−Pr(T = a). It follows that Pr(T = c) = Pr(D = 1|Z = 1)− λ1 and Pr(T = d) = Pr(D =

1|Z = 0)− λ1.

Proof of Proposition 2.

1. It suffices to show that f(y(1)|T = d, c) = max(p1(y),q1(y))−min(p1(y),q1(y))
Pr(D=1|Z=1)+Pr(D=1|Z=0)−2·λ1

since a symmetric argument can be

used to demonstrate that f(y(0)|T = d, c) = max(p0(y),q0(y))−min(p0(y),q0(y))
Pr(D=1|Z=1)+Pr(D=1|Z=0)−2·λ1

. From Proposition 1, it follows

that

f(y(1), T = c, d) = f(y(1), T = c) + f(y(1), T = d),

= p1(y) + q1(y)− 2 ·min(p1(y), q1(y)),

= max(p1(y), q1(y))−min(p1(y), q1(y)).
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Therefore,

f(y(1)|T = c, d) =
f(y(1), T = c, d)

Pr(T = c, d)
,

=
f(y(1), T = c, d)

πc + πd
,

=
max(p1(y), q1(y))−min(p1(y), q1(y))

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0)− 2 · λ1
,

which ends this part of the proof.

2. Similarly to the proof of point 1 we will just show that f(y(1)|T = c) = p1(y)−min(p1(y),q1(y))
Pr(D=1|Z=1)−λ1

. From

Proposition 1 it follows that

f(y(1)|T = c, d) =
f(y(1), T = c)

Pr(T = c)
,

=
p1(y)−min(p1(y), q1(y))

Pr(D = 1|Z = 1)− λ1
,

which ends this part of the proof.

3. The proof of this point is symmetric to the one of point 2 and is therefore omitted.

4. Under positive monotonicity,

max(p1(y), q1(y)) = p1(y),

max(p0(y), q0(y)) = q0(y),

min(p1(y), q1(y)) = q1(y),

min(p0(y), q0(y)) = p0(y),

λ1 = Pr(D = 1|Z = 0).

Therefore, (26) simplifies to

E(Y (1)− Y (0)|T = c, d) =

∫
Y y · (p1(y)− q1(y))dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
,

−
∫
Y y · (q0(y)− p0(y))dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
,

=

∫
Y y · p1(y)dy −

∫
Y y · q1(y)dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
,

−
∫
Y y · q0(y)dy −

∫
Y y · p0(y)dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
.
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Considering
∫
Y y · p1(y)dy, it is easy to see that

∫
Y
y · p1(y)dy =

∫
Y
y · f(Y,D = 1|Z = 1)dy,

=

∫
Y
y · f(Y |Z = 1, D = 1) · Pr(D = 1|Z = 1)dy,

= Pr(D = 1|Z = 1) ·
∫
Y
y · f(Y |Z = 1, D = 1)dy,

= Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1).

In a similar way it can be shown that

∫
Y
y · q1(y)dy = Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1),∫

Y
y · q0(y)dy = Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0),∫

Y
y · p0(y)dy = Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0).

Therefore,

E(Y (1)− Y (0)|T = c, d) =
Pr(D = 1|Z = 1) · E(Y |Z = 1, D = 1)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

+
Pr(D = 0|Z = 1) · E(Y |Z = 1, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

− Pr(D = 1|Z = 0) · E(Y |Z = 0, D = 1)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

− Pr(D = 0|Z = 0) · E(Y |Z = 0, D = 0)

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

=
E(Y |Z = 1)− E(Y |Z = 0)

E(D|Z = 1)− E(D|Z = 0)
,

which is the Wald formula. It is easy to see that also (27) gives the same result:

E(Y (1)− Y (0)|T = c) =

∫
Y y · (p1(y)− q1(y))dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)

−
∫
Y y · (q0(y)− p0(y))dy

Pr(D = 1|Z = 1)− Pr(D = 1|Z = 0)
,

= E(Y (1)− Y (0)|T = c, d).

Finally, since the denominator of (28) is zero, this parameter is not defined.

5. The proof of this point is symmetric to the one of point 4 and is therefore omitted.
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B Proof of the asymptotic properties of the estimators

In what follows we will just derive the asymptotic properties of µ̂c, the estimator of E(Y (1)−Y (0)|T = c), because

the asymptotic properties of µ̂c,d and µ̂d can be obtained in an equivalent way. The proof is based on the fact that

µ̂c and λ̂1 are the unique solutions of a two step semiparametric GMM optimization problem and belong to the

class of MINPIN estimators as defined in Andrews (1994a). Consistency and asymptotic normality are shown by

applying Theorem A-1 and 2 therein.

We start by introducing some notation. Define W = (Y,D,Z) to be the joint distribution of the variables.

Denote by Θ the finite dimensional parameter set (we assume Θ ⊂ R4) and by T the infinite dimensional parameter

set of the first step. We assume T to be a pseudo-metric space with pseudo-metric ρ. The true values of the unknown

parameters θ and τ are denoted by θ0 and τ0, respectively. In estimation problem, the finite dimensional parameter

vector is given by

θ =



µc

λ1

P1|1

P1|0


=



E(Y (1)− Y (0)|T = c)

λ1

Pr(D = 1|Z = 1)

Pr(D = 1|Z = 0)


,

and the infinite dimensional parameter vector is

τ(Wi) =



τ1(Wi)

τ2(Wi)

τ3(Wi)

τ4(Wi)


=



f(Yi|D = 1, Z = 1)

f(Yi|D = 1, Z = 0)

f(Yi|D = 0, Z = 1)

f(Yi|D = 0, Z = 0)


.

Let m̄n(θ, τ) =
∑
m(Wi,θ,τ(Wi))

n
be a non-random measurable vector-valued function Θ× T 7→ R4, Θ ⊂ R4, where

m(Wi, θ, τ(Wi)) =



n · γc(Wi)− µc · (P1|1 − λ1)

n · γλ1(Wi)− λ1

(Di − P1|1) · Zi

(Di − P1|0) · (1− Zi)


,

with

γc(Wi) = [Yi · I{P1|1 · τ1(Wi) ≥ P1|0 · τ2(Yi)} · (P1|1 · τ1(Wi)− P1|0 · τ2(Wi))]

− [Yi · I{(1− P1|0) · τ4(Wi) ≥ (1− P1|1) · τ3(Wi)} · ((1− P1|0) · τ4(Wi)− (1− P1|1) · τ3(Wi))],
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and

γλ1(Wi) = I{P1|0 · τ2(Wi) ≥ P1|1 · τ1(Yi)} · P1|1 · τ1(Wi) + I{P1|1 · τ1(Wi) ≥ P1|0 · τ2(Yi)} · P1|0 · τ2(Wi).

Note that the first moment condition is the difference between n times the sample counterpart of the numerator of

µc and its population equivalent (
∑n
i=1 µc · (P1|1 − λ1) = n · µc · (P1|1 − λ1)).

Given a preliminary estimator τ̂ , the estimator θ̂ solves the minimization problem

min
θ∈Θ

m̄n(θ, τ̂)′m̄n(θ, τ̂).

To show that our estimator belongs to the class of MINPIN estimators, first consider the definition of a MINPIN

estimator given in Andrews (1994a):

Definition. A sequence of MINPIN estimators {θ̂} is any sequence of random variables that satisfies

d(m̄n(θ̂, τ̂), κ̂) = inf
θ∈Θ

d(m̄n(θ, τ̂), κ̂) w.p.→ 1,

where κ̂ is similarly to τ a preliminary and possibly infinite dimensional estimator. Usually either d(·, κ) =

m̄′κm̄/2, where κ are weights, or κ does not exist as in our just identified case. Therefore, θ̂ is a MINPIN estimator

with d(m,κ) = m̄′m̄/2.

If we choose τ̂ such that Assumptions C and N of Andrews (1994a) are satisfied we can apply Theorem A-1

and Theorem 2 therein to show consistency and asymptotic normality of θ̂. For example, if the support of Y is not

bounded, one might want to estimate τ by kernel density estimation:

τ̂(Wi) =



1
l1·n·

∑n
i=1 τ̂1(Wi)

·
∑n
j=1 Di · Zi ·K

(
Yi−Yj

l1

)
1

l2·n·
∑n

i=1 τ̂2(Wi)
·
∑n
j=1 Di · (1− Zi) ·K

(
Yi−Yj

l2

)
1

l3·n·
∑n

i=1 τ̂3(Wi)
·
∑n
j=1 (1−Di) · Zi ·K

(
Yi−Yj

l3

)
1

l4·n·
∑n

i=1 τ̂4(Wi)
·
∑n
j=1 (1−Di) · (1− Zi) ·K

(
Yi−Yj

l4

)


,

where K(·) is the kernel function (e.e., the Gaussian kernel) and l1, l2, l3 and l4, are bandwidth parameters that are

assumed to be optimally chosen. If the outcome is of bounded support, one may use boundary kernels, local linear

density estimation, or adaptive bandwidth methods to overcome the poor properties of standard (local constant)

kernel density estimation at the boundaries of the support of Y , see the discussion in Section 4).

We introduce some further notation required in our Assumption E below, which adapts Assumptions C and N
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of Andrews (1994a) to our framework. Let Θ0 be a subset of Θ that contains a neighborhood around θ0 and define

υn(τ) =
√
n · (m̄n(θ0, τ)− E(m̄n(θ0, τ))),

H = lim
n→∞

1

n

n∑
i=1

∂

∂θ
E(mn(θ0, τ0)),

S = lim
n→∞

V ar(
√
n · m̄n(θ0, τ0)).

Assumption E:

1. W1 = (Y1, D1, Z1), . . . ,Wn = (Yn, Dn, Zn) is an i.i.d. sample from the joint distribution of (Y,D,Z).

2. Θ is bounded, θ0 lies in an interior of Θ and E|Y |2+η <∞ for some integer η ≥ 0.

3. E(mn(θ, τ)) is continuously differentiable in θ on Θ0 and ∂
∂θ
E(mn(θ, τ)) satisfy weak law of large numbers

over Θ× T .

4. limn→∞
1
n

∑n
i=1

∂
∂θ
E(mn(θ, τ)) and limn→∞

∑n
i=1 E(m̄n(θ,τ))

n
exist uniformly over (θ, τ) ∈ Θ0×T and Θ×T ,

respectively. The matrices S and H exist.

5. H is non singular and limn→∞

∑n
i=1 E(m̄n(θ,τ))

n
is bounded away from zero for all θ outside any given neigh-

borhood of θ0.

6. f(Y |D = d, Z = z) is absolutely continuous with respect to Lebesgue measure for d, z = 1, 0.

7. Pr(τ̂ ∈ T )→ 1 and τ̂
p→ τ .

8.
√
n · E(mn(θ0, τ̂))

p→ 0.

9. υn(τ0)
d→ N (0, S).

10. υn(·) is stochastically equicontinuous at τ0.

Assumption E(1) can be relaxed to allow for some time dependence structure in the data. The first part of

Assumption E(2) is standard and ensures that a sequence of consistent estimators of θ exists. The second part

of Assumption E(2) is required to obtain uniform convergence of the first step estimators and to apply the weak

law of large numbers and the central limit theorem. Assumptions E(3) to E(5) hold naturally under Assumptions

E(1) and E(2) for H and S given below. Assumption E(6) is required for the first step estimation. Assumption

E(7) is crucial and imposes uniform convergence of τ̂ . When Y is bounded, uniform convergence can be obtained

by using boundary kernels estimators (see Section 4). Assumption E(9) is satisfied by applying a standard central

limit theorem. Assumption E(10) is a smoothness condition on the empirical process υn(·) and is satisfied under

Assumption E(1), E(2), and E(7) and the weak law of large numbers (see Andrews, 1994a and 1994b). To see

this, consider the following pseudo-metric ρ(τ, τ∗) = limn→∞
1
n

∑n
i=1 E ‖m̄n(θ0, τ)− m̄n(θ0, τ

∗)‖. Under E(7),
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ρ(τ̂ , τ0)
p→ 0 and under E(1) and the second part of E(2), υn(τ̂)−υn(τ0)

p→ 0 by the weak law of large numbers, which

is the definition of stochastic equicontinuity given in Andrews (1994a). Finally, Assumption E(8) is an asymptotic

orthogonality condition of θ and τ , which ensures that the estimation of τ does not affect the asymptotic variance of

θ. As discussed in Andrews (1994a), E(8) holds under stochastic equicontinuity if supy∈Y |τ̂(y)−τ0(y)| = op
(
n−

1
4

)
.

Since the densities in τ are univariate, this rate of convergence can be easily obtained. Otherwise, Assumption E(8)

could be replaced by
√
n ·E(mn(θ0, τ̂))

d→ N (0, A) and in that case
√
n · (θ̂− θ0)

d→ N (0, H−1(S+A)(H−1)′). I.e.,

asymptotic normality would still hold but the variance of θ̂ would be affected by the first step density estimation.

By applying Theorem A-1 and Theorem 2 of Andrews (1994a) under Assumption E, we have that

θ̂
p→ θ0 and

√
n · (θ̂ − θ0)

d→ N (0, H−1S(H−1)′).

�

Let

µ̃c = µc · Pr(T = c)

γc(y) = y · (p1(y)−min(p1(y), q1(y)))− y · (p0(y)−min(p0(y), q0(y))),

γλ1(y) = min(p1(y), q1(y)),

hµc,P1|1 =

∫
y∈Y

y · I{p1(y) ≥ q1(y)} · p1(y)dy −
∫
y∈Y

y · I{p1(y) ≥ q1(y)} · q1(y)dy − µc,

hµc,P1|0 =

∫
y∈Y

y · I{p1(y) ≥ q1(y)} · q1(y)dy −
∫
y∈Y

y · I{p1(y) ≥ q1(y)} · p1(y)dy − µc.

Then, H and S are given by

H =



−Pr(T = c) µc hµc,P1|1 hµc,P1|0

0 −1
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy

0 0 −E(Z) 0

0 0 0 −E(1− Z)


,

and

S =

 S1 S2

S′2 S3

 ,

where

S1 =

 ∫
Y (n · γc(y)− µ̃c)2dy

∫
Y (n · γλ1(y)− λ1) · (n · γλ1(y)− λ1)dy∫

Y (n · γc(y)− µ̃c) · (n · γλ1(y)− λ1)dy
∫
Y (n · γλ1(y)− λ1)2dy

 ,
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S2 =

 Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 1)) · Z) Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 0)) · (1− Z))

Cov ((n · γλ1(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z) Cov ((n · γλ1(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z))

 ,

S3 =

 Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z) 0

0 Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

 .

Finally, note that even though one can easily obtain consistent estimators of Ω = H−1S(H−1)′ (and therefore of the

variances provided in the next section) by taking sample counterparts, it might be preferable to use the bootstrap

instead. As it has already been pointed out in Section 4, Chen, Linton, and Keilegom (2003) provide conditions

under which the variances of particular two step semiparametric estimators, including MINPIN estimators with

i.i.d. observations, can be consistently estimated by bootstrapping, see Theorem B therein. It is easy to see that

this is the case under a minor modification of our Assumption E. In particular one needs to replace “in probability”

with “almost surely” in E(7) and use the strong rather than the weak law of large numbers. Moreover, E(6) to

E(10) must hold in each bootstrap sample. Under these assumptions, Vc,d, Vc, Vd, and Vλ1 can be consistently

estimated using the bootstrap.
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C Variance formulae

Direct computation of the first and second elements of Ω gives

Vc =

∫
Y (n · γc(y)− µ̃c)2dy + 2 · µc ·

∫
Y (n · γc(y)− µ̃c)(n · γλ1

(y)− λ1)dy + µ2
c ·
∫
Y (n · γλ1

(y)− λ1)2dy

(Pr(T = c))2

+
2 · hµc,P1|1 · Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 1)) · Z)

(Pr(T = c))2 · E(Z)

+
2 · µc ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 1)) · Z)

(Pr(T = c))2 · E(Z)

+
2 · µc · hµc,P1|1 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = c))2 · E(Z)

−
2 · µ2

c ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = c))2 · E(Z)

+
2 · µc · hµc,P1|1 ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c))2 · E(Z)

−
2 · µ2

c ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c))2 · E(Z)

+
h2
µc,P1|1

· Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c))2 · E(Z)2

+
2 · hµc,P1|0 · Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 0)) · (1− Z))

(Pr(T = c))2 · E(1− Z)

+
2 · µc ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov ((n · γc(y)− µ̃c), (D − Pr(D = 1|Z = 0)) · (1− Z))

(Pr(T = c))2 · E(1− Z)

+
2 · µc · hµc,P1|0 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = c))2 · E(1− Z)

−
2 · µ2

c ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = c))2 · E(1− Z)

+
2 · µc · hµc,P1|0 ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = c))2 · E(1− Z)

−
2 · µ2

c ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c))2 · E(1− Z)

+
h2
µc,P1|0

· Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = c))2 · E(1− Z)2
,

and

Vλ1
=

∫
Y

(n · γλ1
(y)− λ1)2dy

+
E(D|Z = 1, p1(y) ≤ q1(y)) · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

E(Z)

−
2 ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

E(Z)

+

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

E(1− Z)

−
2 ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

E(1− Z)
.

38



By replacing m(Wi, θ, τ(Wi)) with

md(Wi, θ, τ(Wi)) =



n · γc(Wi)− µd · (P1|1 − λ1)

n · γλ1
(Wi)− λ1

(Di − P1|1) · Zi

(Di − P1|0) · (1− Zi)


,

it can be shown that

Vd =

∫
Y (n · γd(y)− µ̃d)2dy + 2 · µd ·

∫
Y (n · γd(y)− µ̃d)(n · γλ1

(y)− λ1)dy + µ2
d ·
∫
Y (n · γλ1

(y)− λ1)2dy

(Pr(T = d))2

+
2 · hµd,P1|1 · Cov ((n · γd(y)− µ̃d), (D − Pr(D = 1|Z = 1)) · Z)

(Pr(T = d))2 · E(Z)

+
2 · µd ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov ((n · γd(y)− µ̃d), (D − Pr(D = 1|Z = 1)) · Z)

(Pr(T = d))2 · E(Z)

+
2 · µd · hµd,P1|1 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = d))2 · E(Z)

−
2 · µ2

d ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = d))2 · E(Z)

+
2 · µd · hµd,P1|1 ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = d))2 · E(Z)

−
2 · µ2

d ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = d))2 · E(Z)

+
h2
µd,P1|1

· Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = d))2 · E(Z)2

+
2 · hµd,P1|0 · Cov ((n · γd(y)− µ̃d), (D − Pr(D = 1|Z = 0)) · (1− Z))

(Pr(T = d))2 · E(1− Z)

+
2 · µd ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov ((n · γd(y)− µ̃d), (D − Pr(D = 1|Z = 0)) · (1− Z))

(Pr(T = d))2 · E(1− Z)

+
2 · µd · hµd,P1|0 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = d))2 · E(1− Z)

−
2 · µ2

d ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = d))2 · E(1− Z)

+
2 · µd · hµd,P1|0 ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = d))2 · E(1− Z)

−
2 · µ2

d ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = d))2 · E(1− Z)

+
h2
µd,P1|0

· Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = d))2 · E(1− Z)2
.
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Similarly by replacing m(Wi, θ, τ(Wi)) with

mc,d(Wi, θ, τ(Wi)) =



n · γc(Wi)− µc,d · (P1|1 − λ1)

n · γλ1
(Wi)− λ1

(Di − P1|1) · Zi

(Di − P1|0) · (1− Zi)


,

it can be shown that

Vc,d =

∫
Y (n · γc,d(y)− µ̃c,d)2dy + 2 · µc,d ·

∫
Y (n · γc,d(y)− µ̃c,d)(n · γλ1

(y)− λ1)dy + µ2
c,d ·

∫
Y (n · γλ1

(y)− λ1)2dy

(Pr(T = c) + Pr(T = d))2

+
2 · hµc,d,P1|1 · Cov

(
(n · γc,d(y)− µ̃c,d), (D − Pr(D = 1|Z = 1)) · Z

)
(Pr(T = c) + Pr(T = d))2 · E(Z)

+
2 · µc,d ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov

(
(n · γc,d(y)− µ̃c,d), (D − Pr(D = 1|Z = 1)) · Z

)
(Pr(T = c) + Pr(T = d))2 · E(Z)

+
2 · µc,d · hµc,d,P1|1 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = c) + Pr(T = d))2 · E(Z)

−
2 · µ2

c,d ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 1)) · Z
)

(Pr(T = c) + Pr(T = d))2 · E(Z)

+
2 · µc,d · hµc,d,P1|1 ·

∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c) + Pr(T = d))2 · E(Z)

−
2 · µ2

c,d ·
∫
y∈Y I{p1(y) ≤ q1(y)} · p1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c) + Pr(T = d))2 · E(Z)

+
h2
µc,d,P1|1

· Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c) + Pr(T = d))2 · E(Z)2

+
2 · hµc,d,P1|0 · Cov

(
(n · γc,d(y)− µ̃c,d), (D − Pr(D = 1|Z = 0)) · (1− Z)

)
(Pr(T = c) + Pr(T = d))2 · E(1− Z)

+
2 · µc,d ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov

(
(n · γc,d(y)− µ̃c,d), (D − Pr(D = 1|Z = 0)) · (1− Z)

)
(Pr(T = c) + Pr(T = d))2 · E(1− Z)

+
2 · µc,d · hµc,d,P1|0 · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = c) + Pr(T = d))2 · E(1− Z)

−
2 · µ2

c,d ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Cov

(
(n · γλ1

(y)− λ1), (D − Pr(D = 1|Z = 0)) · (1− Z)
)

(Pr(T = c) + Pr(T = d))2 · E(1− Z)

+
2 · µc,d · hµc,d,P1|0 ·

∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy · Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = c) + Pr(T = d))2 · E(1− Z)

−
2 · µ2

c,d ·
∫
y∈Y I{p1(y) ≥ q1(y)} · q1(y)dy2 · Pr(D = 1|Z = 1) · Pr(D = 0|Z = 1) · E(Z)

(Pr(T = c) + Pr(T = d))2 · E(1− Z)

+
h2
µc,d,P1|0

· Pr(D = 1|Z = 0) · Pr(D = 0|Z = 0) · E(1− Z)

(Pr(T = c) + Pr(T = d))2 · E(1− Z)2
,
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where

µ̃c,d = µc,d · (Pr(T = c) + Pr(T = d)),

µ̃d = µd · Pr(T = d),

γc,d(y) = y · (max(p1(y), q1(y))−min(p1(y), q1(y)))− y · (max(p0(y), q0(y))−min(p0(y), q0(y))),

γd(y) = y · (q1(y)−min(p1(y), q1(y)))− y · (q0(y)−min(p0(y), q0(y))),

hµc,d,P1|1 =

∫
y∈Y

y · I{p1(y) ≥ q1(y)} · p1(y)dy −
∫
y∈Y

y · I{p1(y) ≥ q1(y)} · q1(y)dy

+

∫
y∈Y

y · I{p1(y) ≤ q1(y)} · q1(y)dy −
∫
y∈Y

y · I{p1(y) ≤ q1(y)} · p1(y)dy − µc,d,

hµc,d,P1|0 =

∫
y∈Y

y · I{p1(y) ≥ q1(y)} · q1(y)dy −
∫
y∈Y

y · I{p1(y) ≥ q1(y)} · p1(y)dy

+

∫
y∈Y

y · I{p1(y) ≤ q1(y)} · p1(y)dy −
∫
y∈Y

y · I{p1(y) ≤ q1(y)} · q1(y)dy − µc,d,

hµd,P1|1 =

∫
y∈Y

y · I{p1(y) ≤ q1(y)} · q1(y)dy −
∫
y∈Y

y · I{p1(y) ≤ q1(y)} · p1(y)dy − µd,

hµd,P1|1 =

∫
y∈Y

y · I{p1(y) ≤ q1(y)} · p1(y)dy −
∫
y∈Y

y · I{p1(y) ≤ q1(y)} · q1(y)dy − µd.
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