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Abstract

A growing literature has focused on inference in di�erence-in-di�erences (DiD) designs with grouped

errors. This literature has been pessimistic about obtaining hypothesis tests of the correct size, particu-

larly with few groups. We provide Monte Carlo evidence for three points. First, it is possible to obtain

tests of the correct size, even with few groups, using methods that are very straightforward to implement.

Second, the main problem in DiD designs with grouped errors is instead low power to detect real e�ects.

Third, feasible GLS estimation combined with robust inference methods can increase power considerably

whilst maintaining correct test size - again, even with few groups. These �ndings are robust to a range

of data generating processes. We therefore recommend that applied researchers think seriously about

e�ciency, rather than just consistency and test size, when using these designs.
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1 Introduction

Di�erence-in-di�erences (DiD) designs are extremely common as a way of estimating the e�ects of policies or

programmes (henceforth `treatment e�ects'). A recent literature has highlighted that failure to appropriately

quantify the uncertainty surrounding DiD estimates can lead to dramatically misleading inference (e.g.

Bertrand et al, 2004). In particular, researchers will tend to reject true null hypotheses with a probability

that is far higher than the nominal size of the hypothesis test. The literature has suggested that obtaining

tests that are close to the correct size requires non-standard techniques, and that it may not be possible

with a small number of groups (Angrist and Pischke, 2009; Bertrand et al, 2004; Cameron et al, 2008).

In this paper we report evidence from Monte Carlo simulations that suggests a di�erent conclusion. We

make three main points. First, tests of the correct size in typical DiD settings can in fact be obtained

with very straightforward methods that are trivial to implement with standard statistical software (in fact,

STATA's cluster-robust inference implements these methods by default). This is true even with few groups.

Second, these techniques have very low power to detect real treatment e�ects. Thus the real challenge for

inference with DiD designs is power rather than size. Third, we show that substantial gains in power can

be achieved using feasible GLS. Moreover, if feasible GLS is combined with robust inference methods, test

size can still be controlled in a way that is robust to having small numbers of groups, and to violations of

the parametric assumptions about the error process implicit in FGLS estimation. We therefore recommend

that applied researchers using DiD designs pay careful attention not just to consistency and test size, but

also to the e�ciency of their estimators.

DiD designs often use micro-data but estimate the e�ects of a treatment which varies only at a group

level at any point in time (e.g. variation in policy across US states). A consequence is that within-group

correlation of errors can substantially increase the true level of uncertainty surrounding the treatment e�ect

(e.g. Angrist and Pischke, 2009; Donald and Lang, 2007; Moulton, 1990; Wooldridge, 2003). Furthermore,

errors are likely to exhibit serial correlation within groups - an issue for inference highlighted in Bertrand

et al (2004). For example, in an evaluation of a labour market policy implemented at a regional level, a

researcher should worry both that people in the same region at the same time are a�ected by common labour

market shocks (unrelated to the policy), and that these regional shocks are serially correlated. In a well-cited

Monte Carlo study using US earnings data, Bertrand et al (2004) show that accounting only for grouped

errors at the state-time level whilst ignoring serial correlation led to a 44% probability of rejecting a true

null hypothesis using a nominal 5% level test.

A simple approach to deal with both cross-sectional and serial correlation in within-group errors would

be to use the formula for a cluster-robust variance matrix due to Liang and Zeger (1986). This is consistent

2



and Wald statistics which use it are asymptotically normal, but the asymptotics apply as the number of

clusters tends to in�nity. By clustering at the group level rather than the group-time level to account for

serial correlation, one is often left with few clusters. The �nite sample (i.e. few-clusters) performance of this

approach - an empirical question - then becomes crucial, and the literature to date has come to pessimistic

conclusions about it. Bertrand et al (2004) and Cameron et al (2008) use US earnings data and generate

placebo state-level treatments before estimating their `e�ects'. Forming t-statistics using cluster-robust

standard errors (CRSEs), they obtain 9% and 11% rejection rates using nominal 5% level tests with samples

from 10 and 6 US states respectively.1 This is a considerable improvement over using OLS standard errors,

when rejection rates are more than 40%. But it is still approximately double the nominal test size.

We �rst show that simple modi�cations to the above procedure can dramatically improve test size with

few clusters. One can apply a simple scaling factor to the OLS residuals that are plugged into the CRSE

formula, and use critical values from a t distribution with degrees of freedom equal to the number of groups

minus one, rather than a standard normal. When this is done, our Monte Carlo simulations show that true

test size is within about one percentage point of nominal test size with 50, 20, 10 or 6 groups. We further

show that this holds under a wide range of error processes.

Various alternative techniques for achieving correct test size have been proposed and/or tested (Bertrand

et al, 2004; Cameron et al, 2008; Donald and Lang, 2007; Bester et al, 2011). Of these, only a wild cluster

bootstrap-t procedure has been shown to produce tests of approximately the right size in the typical DiD

setup considered in this paper (see Section 2) when the number of groups is as small as six (Cameron et

al, 2008). Like using CRSEs, this is theoretically robust to heteroscedasticity and arbitrary patterns of

error correlation within clusters, and to variation in error processes across clusters. But it is less trivial

to implement, computationally more intensive, and still slightly over-rejects when the number of groups is

small.

Our second point is that, while it is straightforward to obtain the correct size, power to detect real e�ects

is a serious concern. When we plug appropriately scaled residuals into the CRSE formula and compare the

resulting quasi-t statistics to critical values from a t distribution with degrees of freedom equal to the number

of groups minus one, we �nd that DiD designs have very low power. For example, with a large 30-year panel

of US earnings data from 6 states, a policy implemented by half of the states that raised earnings by 2%

would be detected with only 7.3% probability (using a test of size 0.05). The policy would have to increase

earnings by 16% if the null of no policy e�ect is to be rejected with 80% probability.

1Both papers �rst account for cross-sectional within-group error correlation by aggregating to the group-time level, taking
mean residuals within each group-time cell from a regression of earnings on individual-level characteristics. This is a straightfor-
ward way to deal with this problem and is appropriate in typical DiD settings where the number of observations per group-time
cell is large. (It will also be the approach taken in this paper.) The remaining issue for inference is dealing with a �nite number
of groups and any serial correlation in group-time shocks.
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Finally, we show that substantial gains in power can be achieved using feasible GLS. In particular, one

can increase power by modelling the serial correlation of unobservables inherent in typical DiD designs. Test

size can still be controlled in a way that is robust to having small numbers of groups, and to violations of

the parametric assumptions about the error process implicit in FGLS estimation, using the straightforward

cluster-robust inference technique described above.

The paper proceeds as follows. Section 2 describes the standard econometric setup in DiD designs that we

consider. Section 3 details the Monte Carlo design we use to test di�erent inference methods, and outlines

the methods that we test. Section 4 presents ands discusses the results of our Monte Carlo simulations.

Section 5 summarises and concludes.

2 Setup

We follow Bertrand et al (2004), Cameron et al (2008) and Hansen (2007) in using data on women aged 25

to 50 in their fourth interview month in the Merged Outgoing Rotation Group of the Current Population

Survey. Our data include all 50 US states and the period 1979 to 2008 inclusive (i.e. G = 50 and T = 30).

We focus primarily on log(earnings) as the dependent variable. We also consider the case where a binary

employment indicator is the dependent variable in a linear probability model.2 This covers the two most

common outcomes of interest in DiD studies, according to a survey of the applied literature in Bertrand at

al (2004).

We consider the standard linear DiD model

Eigt = αg + δt + βTgt + γWigt + υigt, (1)

where αg and δt capture group (state) and time (year) �xed e�ects, β is the treatment e�ect of interest

for a treatment which varies at the group-time level only, Wigt are individual-level control variables3, and

νigt is the unobserved individual-level earnings shock.

We focus on inference. Hence we assume that the OLS DiD estimator based on equation 1 is unbiased, i.e.

E(vigt|αg, δt, Tgt,Wigt) = 0 so that E(β̂OLS) = β. This is ensured in our Monte Carlo simulations because

we generate placebo treatments randomly.

The problem we seek to address is that the νigt may not be iid within groups. Some of the variation in

νigt may occur at the group-time level. The DiD estimator is therefore e�ectively attempting to distinguish

2This gives us samples based upon the 750,127 women with strictly positive earnings and the 1,170,522 women with non-
missing employment status respectively.

3We just use a quartic in age.

4



between the e�ects of a group-time level treatment and between-group di�erences in the evolution of group-

time shocks. In addition, group-time shocks may be serially correlated. Both cross-sectional and serial

correlation in within-group shocks are highly likely in many DiD applications, including the primary example

used in this paper where groups are US states and the outcome of interest is earnings. We want to accurately

quantify the additional uncertainty about β that this causes.

As in the aforementioned papers, we account for the grouping of errors at the state-time level by collapsing

the data to this level. We run a regression using the micro-data of Eigt on Wigt, and take the mean residual

within each state-time cell.4 We denote this Ygt. The variation across state-time cells in Ygt is then essentially

due to variation in state-time shocks. Hence we proceed with the model

Ygt = αg + δt + βTgt + εgt, (2)

where εgt is the state-time shock.5,6 Rewriting the model in this way highlights that, with both a

treatment and a shock that vary at the group-time level, the OLS estimator of the treatment e�ect is

consistent only as G→∞, regardless of the number of observations in the micro-data.

3 Methods

3.1 Experimental design

In our �rst set of Monte Carlo simulations, we repeatedly resample states with replacement from the CPS

data and randomly choose half of the states to be `treated'.7 For all treated states in each Monte Carlo

replication, the placebo treatment is applied in the same randomly chosen year8 and in all subsequent years.

We estimate the `e�ect' of this placebo treatment by estimating equation 2. We initially use OLS, and

4Given large state-time cells (average cell sizes are 500 and 780 when the dependent variables are log(earnings) and em-
ployment status respectively), this averages out the iid shock component precisely. We ignore any estimation error from this
procedure.

5We recommend this �rst step not only to make the estimation simpler computationally. We �nd that, even with moderate
numbers of groups, test size can not be reliably controlled if one attempts to conduct cluster-robust inference straight from the
micro-data (i.e. if one tries to account for all cross-sectional and serial correlation in within-group errors in a single step). This
issue was also evident in the results of Cameron et al (2008) and is noted in Hansen (2007).

6If one is unsure whether this grouped error problem exists, Wooldridge (2006) points out that one could test for it. If the
error term is dropped from equation 2, this imposes a set of (GT-1) restrictions on the data which can be used to estimate β
by minimum distance. One can then test the over-identifying restrictions.

7In treating exactly half of the states, we follow the main approach in Bertrand et al (2004) and Cameron et al (2008). Note
that this is the most favourable possible choice in terms of the resulting precision of treatment e�ect estimates, as it maximises
between-group variation in treatment status. In other words, unequal numbers of treated and untreated groups would generally
imply even lower power to detect real e�ects in DiD designs than we show is the case in this paper. Note also that randomly
choosing states for placebo treatment means that there is no cross-cluster spatial correlation in treatment status. As shown
by Barrios et al (2012), this means that inference is robust to errors in correctly specifying the clusters, i.e. robust to some
correlation in the error terms across states. Hence, we will not be confusing the impacts of inadequately accounting for grouped
errors with the impacts of incorrectly specifying the groups, even though we are using real data in which there is likely to be
correlation between the earnings shocks of people in geographical proximity but in di�erent states.

8The treatment year is chosen from a uniform distribution between 1988 and 2002.
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later feasible GLS, for estimation. Our interest lies in the performance of di�erent methods for performing

inference about β, both in terms of type 1 and type 2 error (i.e. test size and power to detect real e�ects).

To examine the e�ects of having di�ering numbers of groups, we run variants where we resample 50, 20, 10

and 6 states.

We �rst report how often the null hypothesis of no treatment e�ect is rejected using tests of nominal size

0.05 when using di�erent inference methods. We show that tests of correct size can be achieved, even with as

few as six groups, by forming a t-statistic using a simple variant of Liang and Zeger's (1986) cluster-robust

standard error estimator and comparing it to critical values from a tG−1 distribution.

We check the robustness of this result to alternative data generating processes. We repeat the same

Monte Carlo design, but use simulated state-time shocks rather than those from the CPS, allowing them to

evolve according to an AR(1) process where we vary both the amount of serial correlation and the degree of

non-normality in the white noise.

Following Bertrand et al (2004) and Cameron et al (2008), we then look at power by reporting how often

the null of no e�ect is rejected when there is approximately a 2% e�ect on earnings or a 2 percentage point

e�ect on employment rates, i.e. when we add 0.02Tgt to Ygt.

For the method that we show produces tests of correct size even with as few as six groups, we look at

power in more detail. We compute minimum detectable e�ects (MDEs) as �rst de�ned in Bloom (1995): the

smallest e�ects that would lead to a rejection of the null hypothesis (of no e�ect) with a given probability.

To do this, we use the same Monte Carlo procedures as described above to simulate the distribution of the

t-statistic under the null hypothesis.9 For power of x%, the MDE depends only on the (100-x)th centile of

this distribution, the critical values from the tG−1 distribution, and the standard error estimator (see later).

We therefore recover the entire relationship between power and MDEs. We do this for DiD designs with

varying numbers of groups.

Finally, we show how power can be improved by using FGLS rather than OLS estimation. We compare

MDEs for the cases of FGLS and OLS and show that they are substantially smaller when using FGLS. Using

the same `placebo' treatment Monte Carlos as described above, we also show that the power improvement

can be gained without distorting test size, even if the parametric assumptions implicit in FGLS estimation

are incorrect.

3.2 Approaches to inference that we compare

As a baseline we show what would happen if one used the standard OLS estimator of the standard error of

β̂ and compared the resulting t-statistic to standard normal critical values. This e�ectively assumes that

9This is necessary because, with few clusters, the t-statistic generally has an unknown distribution.
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the εgt in equation 2 are iid, i.e. it ignores serial correlation.

We then focus primarily on inference based on variants of Liang and Zeger's (1986) cluster-robust standard

error (CRSE) estimator. Their formula for a cluster-robust variance matrix is

V̂CR = (X ′X)−1(

G∑
g=1

Xgugu
′

gX
′

g)(X
′X)−1, (3)

where X is the regressor matrix, Xg is the regressor matrix for group g, and ug is the vector of regression

residuals for group g. This is consistent, and Wald statistics based on it are asymptotically normal, as

G → ∞. But it is biased, and the bias can be substantial when G is small. Intuitively, residuals will tend

to be both smaller in magnitude and less correlated within clusters than the true errors because of model

over�tting. Therefore CRSEs calculated using equation 3 will tend to be biased downwards.

A typical way of attempting to reduce small-G bias (or to eliminate it under special circumstances) is

e�ectively to scale up the residuals before plugging them into equation 3. The default in STATA is to scale

by
√

G(N−1)
(G−1)(N−K) , where N is the total number of observations and k is the number of parameters.10 With

large N , this is approximately equivalent to
√
G/(G− 1): the additional

√
(N − 1)/(N − k) is a degrees of

freedom correction which makes a negligible di�erence in large samples. For brevity we refer to residuals

scaled in this way simply as
√
G/(G− 1) residuals. This would lead to an unbiased CRSE estimator only

under very special circumstances (see Bell and McCa�rey, 2002) so should be viewed as a bias-reducing

correction. The same applies to a second, data-dependent scaling of ug proposed in Bell and McCa�rey

(2002),11 and extended in Imbens and Kolesár (2012). This data-dependent scaling requires a full rank

condition for Xg which is violated in the typical DiD setup considered here, both due to the inclusion of

�xed group e�ects and because control groups are never treated. We therefore do not consider it in this

paper.

For CRSEs formed using unscaled and
√
G/(G− 1) residuals, we show rejection rates when comparing

the resulting t-statistics against critical values from both a standard normal and a t distribution with G− 1

degrees of freedom. The former reference distribution is correct asymptotically as G → ∞ (conditional on

having a consistent estimator of the standard error), so the implicit assumption when using it is that G is

large enough for the asymptotics to be a reliable guide. The latter is a common small-G correction, again

used by STATA for Wald tests and con�dence intervals. As one expects with �nite sample methods, it does

not have an exact theoretical justi�cation under very general conditions.

However, recent work by Bester et al (2011) did provide theoretical justi�cation in certain small-G

10When one uses the �vce(cluster clustvar)� option in a regression.
11This minimises the expected sum of squared di�erences between the scaled residuals and the true errors in the baseline case

where errors are iid.
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settings for the combination of CRSEs using
√
G/(G− 1)-scaled residuals and tG−1 critical values. Their

asymptotics apply as group size tends to in�nity, holding the number of groups �xed. Despite the familiar

result that a CRSE estimator is not consistent with �xed G, they show that plugging
√
G/(G− 1)-scaled

residuals into the CRSE formula nevertheless produces a covariance matrix which converges to a limiting

random variable under certain conditions. Crucially, the resulting t-statistic turns out to have an asymptotic

tG−1 distribution.12 This result relies on a homogeneity requirement which, in the context of the canonical

DiD setup with a binary treatment, would entail that each group has to be treated the same proportion of

the time.13 Clearly this is violated where some control groups are never treated. But the results we present

in the following section suggest that, in practice, the Bester et al approach extends well to the standard DiD

case (in terms of getting test size right).

For comparison, following Cameron et al (2008) we also consider the wild cluster bootstrap-t procedure.14

Those authors found this to be the best of a large number of inference techniques in settings with few groups,

in terms of test size. It outperformed various other bootstrap-based approaches, as well as inference based

upon t-statistics formed with CRSEs. But that paper did not consider the
√
G/(G− 1) residual correction,

and only standard normal critical values were used in t-tests.

4 Results

4.1 Rejection rates when the null is true

Table 1 contains results from our �rst Monte Carlo simulations, using the CPS log(earnings) data. It

shows the rate with which the null of no e�ect is rejected when generating placebo treatments, estimating

equation 2 by OLS, and using methods to perform inference about β. All hypothesis tests are of nominal

size 0.05. Hence, rejection rates that deviate signi�cantly from 0.05 indicate incorrect test size. We use

5000 replications. Simulation standard errors are shown in parentheses. The standard error for an estimated

rejection rate r̂ is se(r̂) =
√
r̂(1− r̂)/4999.

The �rst row of table 1 shows the rejection rates obtained assuming iid errors, i.e. by simply forming a

t-statistic using the OLS standard error and comparing to standard normal critical values. Rejection rates

exceed 40%, more than eight times the nominal test size. This essentially replicates the result in Bertrand

12This result is also robust to violations of the assumption of no inter-cluster correlation, as long as data are weakly dependent
and some regularity conditions are satis�ed. In the context of spatial data where clusters are geographic regions, this implies
robustness to the fact that there will be some clustering between observations which are spatially close but put into di�erent
clusters by the researcher. The intuition is that cluster size tending to in�nity would mean that most observations per cluster
are far from other clusters, and hence cluster averages will be approximately independent.

13The general requirement is that the variance of the regressor matrix, and of the score, needs to be the same across groups.
14See Cameron et al (2008) for full details of this bootstrap. We use 200 bootstrap replications, which is su�cient in this

context as bootstrap simulation error will average out across Monte Carlo replications.
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et al (2004).

Forming CRSEs using unscaled OLS residuals and comparing the resulting t-statistic to standard normal

critical values results in rejection rates that are too high, particularly with small G. Using tG−1 rather than

the standard normal as the reference distribution is enough to achieve approximately the correct test size

when G ≥ 20, but not with 6 or 10 groups.

The
√
G/(G− 1) residual correction, combined with tG−1 critical values, achieves a test size that deviates

by less than 1 percentage point from the nominal test size when G ranges between 6 and 50. The same residual

correction combined with standard normal critical values also works well for moderate G but, as expected,

these critical values result in over-rejection when G is small.

The �nal row of table 1 shows rejection rates obtained using the wild cluster bootstrap-t procedure.

We essentially replicate previous �ndings: it performs well relative to most tested alternatives, but with

over-rejection when G = 10 and particularly when G = 6.15

In summary, table 1 suggests that tests of the correct size can be obtained using very straightforward

methods even with very few groups. In particular, this is achieved by computing a t-statistic with CRSEs

that use residuals scaled by
√

G(N−1)
(G−1)(N−K) ≈

√
G/(G− 1) , and using critical values from a t distribution

with (G − 1) degrees of freedom. This is trivial to implement with statistical software. In fact, if one uses

a cluster-robust variance matrix in STATA by specifying the �vce(cluster clustvar)� option, the con�dence

intervals and p-values returned are based upon precisely this procedure by default.16 The best-performing

alternative - the wild cluster bootstrap-t procedure highlighted by Cameron et al (2008) - is less trivial to

implement, more computationally intensive and still su�ers from slight over-rejection with small numbers of

groups.

In table 2 we present results from an analagous set of Monte Carlo simulations using employment status

rather than earnings as the dependent variable.17 The performance of di�erent inference methods in data

containing varying numbers of groups is essentially the same as in Table 1. In particular, CRSEs formed

using the
√
G/(G− 1) residual correction combined with tG−1 critical values perform best, with rejection

rates always within 1 percentage point of the nominal test size. Again, the wild cluster bootstrap-t also

performs well relative to most alternatives but slightly over-rejects with few groups.

15This over-rejection was not emphasised in Cameron et al, because it was not statistically signi�cant in that study despite
very similar point estimates (we have more Monte Carlo replications and hence lower simulation standard errors).

16This is true at the time of writing (STATA version 12.1) and has been the case since at least STATA 6.
17Given that we collapse the data to the state-time level in a �rst stage, this means that Ygt now represents state-time

employment rates rather than mean state-time earnings.
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Table 1: Rejection rates for tests of nominal 5% size with placebo treatments in log(earnings) data

G=50 G=20 G=10 G=6
Assume iid 0.422 0.420 0.404 0.412

(0.007) (0.007) (0.007) (0.007)

CRSE, t(G-1) critical values 0.039 0.042 0.048 0.047
(0.003) (0.003) (0.003) (0.003)

CRSE, N(0,1) critical values 0.044 0.056 0.075 0.104
(0.003) (0.003) (0.004) (0.004)√

G/(G− 1) residuals, t(G-1) critical values 0.042 0.046 0.050 0.049
(0.003) (0.003) (0.003) (0.003)√

G/(G− 1) residuals, N(0,1) critical values 0.048 0.061 0.079 0.107
(0.003) (0.003) (0.004) (0.004)

Wild cluster bootstrap-t 0.054 0.055 0.059 0.062
(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications

Table 2: Rejection rates for tests of nominal 5% size with placebo treatments in employment data

G=50 G=20 G=10 G=6
Assume iid 0.357 0.375 0.361 0.375

(0.007) (0.007) (0.007) (0.007)

CRSE, t(G-1) critical values 0.041 0.041 0.044 0.055
(0.003) (0.003) (0.003) (0.003)

CRSE, N(0,1) critical values 0.045 0.055 0.070 0.114
(0.003) (0.003) (0.004) (0.005)√

G/(G− 1) residuals, t(G-1) critical values 0.044 0.043 0.047 0.059
(0.003) (0.003) (0.003) (0.003)√

G/(G− 1) residuals, N(0,1) critical values 0.049 0.058 0.075 0.121
(0.003) (0.003) (0.004) (0.005)

Wild cluster bootstrap-t 0.051 0.052 0.056 0.072
(0.003) (0.003) (0.003) (0.004)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications
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Robustness checks

The CPS data provide speci�c data generating processes with which to test the performance of computing

t-statistics with CRSEs that use
√
G/(G− 1) -scaled residuals and using a tG−1 reference distribution. We

have shown that our conclusions so far apply both when the outcome of interest is earnings and when it is a

binary employment status indicator - two very di�erent data generating processes. But one might still worry

how general these �ndings are.

To explore this, we now repeat our Monte Carlo simulations using simulated data. The earnings gener-

ating process still conforms with equation 2, but we now simulate the state-time shocks ourselves. In doing

so we vary their degree of serial correlation and non-normality. The state-time shocks for each state evolve

according to the AR(1) process

εgt = ρεg,t−1 + ωgt, t = 2, ..., 30

εg1 =
ωg1√
1− ρ2

,

where ωgt is iid across groups and time and is drawn from a t distribution with d degrees of freedom.

To control the degree of non-normality in the white noise, we vary d between 2 (indicating very high non-

normality) and 120 (at which point the t distribution is essentially standard normal). We generate the initial

condition (εg1) such that it has the same variance as state-time shocks in other time periods. To control the

degree of serial correlation, we vary ρ. We also examine a scenario in which the data generating process is

heterogeneous, by drawing ρg separately for each state from a uniform distribution between 0 and 1.

In each Monte Carlo replication, we �rst resample states with replacement from the CPS data and

randomly choose treated states and the year in which the placebo treatment begins, just as before. We

then regress Ygt on state and year �xed e�ects only. For each state-time combination, we simulate the

outcome variable by summing the relevant (estimated) state e�ect, the relevant (estimated) year e�ect, and

the random state-year shock generated as above. We then estimate the DiD model using the transformed

outcome and conduct the hypothesis test on β. We use 10,000 replications.

Tables 3 to 6 report rejection rates for various combinations of ρ and d, when varying the number of

groups between 50 and 6. They show that our �nding is robust to a very wide range of error processes.

Rejection rates remain within about a percentage point of the nominal test size under all of the tested

combinations of degrees of serial correlation, non-normality in the white noise, and number of groups.
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Table 3: Rejection rates for tests of nominal 5% size under various error processes with 50 groups

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=2 0.037 0.043 0.040 0.041 0.042 0.043

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=4 0.041 0.041 0.042 0.043 0.042 0.043
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.040 0.042 0.043 0.043 0.043 0.042
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.041 0.043 0.045 0.041 0.042 0.043
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.041 0.042 0.044 0.041 0.043 0.043
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Simulation standard errors in parentheses

Based on 10,000 Monte Carlo replications

Table 4: Rejection rates for tests of nominal 5% size under various error processes with 20 groups

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=2 0.039 0.045 0.047 0.046 0.043 0.047

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=4 0.043 0.047 0.045 0.044 0.043 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.044 0.048 0.046 0.044 0.043 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.045 0.049 0.045 0.044 0.045 0.046
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.046 0.049 0.044 0.044 0.046 0.045
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Simulation standard errors in parentheses

Based on 10,000 Monte Carlo replications
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Table 5: Rejection rates for tests of nominal 5% size under various error processes with 10 groups

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=2 0.040 0.045 0.048 0.045 0.046 0.048

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=4 0.044 0.048 0.047 0.045 0.048 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.047 0.047 0.047 0.046 0.047 0.046
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.045 0.051 0.046 0.047 0.048 0.046
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.048 0.049 0.044 0.046 0.048 0.047
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Simulation standard errors in parentheses

Based on 10,000 Monte Carlo replications

Table 6: Rejection rates for tests of nominal 5% size under various error processes with 6 groups

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ varies with g
d=2 0.055 0.058 0.058 0.058 0.052 0.051

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=4 0.055 0.058 0.056 0.056 0.051 0.054
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=20 0.053 0.059 0.057 0.057 0.051 0.054
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=60 0.056 0.061 0.058 0.057 0.053 0.053
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

d=120 0.056 0.060 0.057 0.057 0.052 0.052
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Simulation standard errors in parentheses

Based on 10,000 Monte Carlo replications
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4.2 Power to detect real e�ects

Given the sobering conclusions reached by the burgeoning literature on inference in DiD designs, we believe

our �ndings in the previous section are important: correct test size in the presence of grouped errors can

be achieved with straightforward methods, under a wide range of data generating processes, even with few

groups. However, we now show that power to detect real treatment e�ects with tests of correct size can be

extremely low.

Rejection rates in table 7 indicate power to detect treatment e�ects of approximately 2% on earnings

(precisely, e�ects of +0.02 on log(earnings)), as in Bertrand et al (2004) and Cameron et al (2008).18 This

is based upon the same Monte Carlo replications as table 1, but with a transformed dependent variable: we

add 0.02Tgt to Ygt.

The test that we have shown to have correct size detects a 2% e�ect with a probability of only about 1

in 5 even with all 50 US states. Power declines further with G and is just 7% when the data are sampled

from 6 states - barely greater than the size of the test. The power of other tests is no better, allowing for

the fact that they have larger (incorrect) size.

Table 7: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.02 in log(earnings) data

G=50 G=20 G=10 G=6
Assume iid 0.678 0.552 0.473 0.454

(0.007) (0.007) (0.007) (0.007)

CRSE, t(G-1) critical values 0.212 0.108 0.076 0.070
(0.006) (0.004) (0.004) (0.004)

CRSE, N(0,1) critical values 0.225 0.140 0.116 0.136
(0.006) (0.005) (0.005) (0.005)√

G/(G− 1) residuals, t(G-1) critical values 0.220 0.118 0.079 0.073
(0.006) (0.005) (0.004) (0.004)√

G/(G− 1) residuals, N(0,1) critical values 0.236 0.148 0.121 0.142
(0.006) (0.005) (0.005) (0.005)

Wild cluster bootstrap-t 0.255 0.142 0.099 0.091
(0.006) (0.005) (0.004) (0.004)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications

We now consider the minimum e�ects that would be detected (i.e. that would lead to a rejection of the

null of no e�ect) with given probabilities - a way of assessing statistical power �rst outlined by Bloom (1995).

18As with the Monte Carlos looking at rejection rates under the null, we are not considering the same set of inference methods
as those authors. The techniques that we include and which neither of those papers included are those that use CRSEs formed

using
√
G/(G− 1) -scaled residuals, and all variants which involve comparing t-statistics to critical values from a t distribution

(i.e. rows 2 and 4-6 of table 7).
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We vary power between 1% and 99% and compute the minimum detectable e�ects (MDEs) in each case. We

continue just with the hypothesis test that we have demonstrated to have approximately correct size for G

between 50 and 6: using CRSEs with
√
G/(G− 1) residuals and tG−1 critical values.

For a given level of power, x, the MDE is

MDE(x) =
ˆ

se(β̂)
[
cu − pt1−x

]
, (4)

where
ˆ

se(β̂) is the
√
G/(G− 1)-corrected CRSE estimate, cu is the upper critical value (the 97.5th

percentile of the t(G-1) distribution), and pt1−x is the (1 − x)th percentile of the t-statistic under the null

hypothesis of no treatment e�ect.

We proceed with the same Monte Carlo design underlying the results in Table 1. Monte Carlo replications

provide us with an estimate of the distribution of the t-statistic under the null. They also provide repeated

estimates of the
√
G/(G− 1)-corrected CRSE: we plug each of those estimates into equation 4 in turn, and

take the average. Due to the low computational intensity of this approach, we are able to use 100,000 Monte

Carlo replications so that simulation error is negligible. We use equation 4 to compute MDEs for power

ranging from 1% to 99%.

Figure 1 plots MDEs against power when the number of groups is 50, 20, 10 and 6. Even with earnings

data on the entire US population (50 states), one would need a treatment e�ect of about 5% in order to

detect it with 80% probability and 3.5% to have even a 50-50 chance. Power declines much further as G gets

small. With a sample from 6 US states - by no means an extreme example in the applied DiD literature -

the MDE on earnings is about 16% for 80% power and 11% for 50% power. In other words, for treatment

e�ects of typically realistic magnitude it is unlikely that one would detect e�ects using a correctly sized test,

particularly when the number of states is small.

The results using a binary employment indicator as the dependent variable lead to similar conclusions,

as shown in �gure 2. For 80% power, the MDE on the employment rate with data from all 50 states is about

2 percentage points, and this rises to 6.5 percentage points with 6 states.19

4.3 Increasing power with feasible GLS

The previous subsection argued that lack of power is a key problem in typical DiD designs. This suggests

that there may be large gains from e�orts to improve the e�ciency of estimation. The serial correlation

`problem' inherent in a typical DiD study also suggests one way to go about this: exploit this feature of the

data to increase e�ciency using feasible GLS.

19The baseline employment rate in the sample is 67%.
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Figure 1: Minimum detectable e�ects on log(earnings) using tests of size 0.05
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Figure 2: Minimum detectable e�ects on employment rates using tests of size 0.05
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A natural way to proceed is to assume an AR(k) process for the group-time shocks. FGLS can then be

implemented by estimating equation 2 using OLS, as before; estimating the k AR parameters using the OLS

regression residuals; using those estimates to apply the standard GLS linear transformations to the variables

entering equation 2; and estimating the analog of equation 2 on the transformed variables via OLS.

Two issues arise. First, estimates of the AR(k) parameters obtained by regressing OLS residuals on k lags

are inconsistent with T �xed, due to the presence of �xed group e�ects (Nickell, 1981; Solon, 1984). Hansen

(2007) derives a bias correction which is consistent as G→∞, and develops the asymptotic properties of a

FGLS estimator which uses it. But with small G, this correction may not work well. Second, one may be

worried about misspeci�cation of the error process.

Neither of these issues a�ect the unbiasedness or consistency of the FGLS estimator. And it is highly

likely that FGLS would still be more e�cient than OLS - a Mahalanobis weighting matrix based on an

incorrect parameterisation of the serial correlation process will normally still be closer to the optimal GLS

weighting matrix than the identity matrix (which is what ordinary OLS uses). But test size will generally

be compromised, because the ordinary formula for the FGLS standard error depends upon the weighting

matrix.

However, test size might still be controlled using robust inference. As noted by Wooldridge (2006), the

combination of FGLS estimation and robust inference is used relatively little in practice, but will often be

a sensible way of realising e�ciency gains without compromising test size. Hansen (2007) also considers

this approach in the context of his FGLS procedure using bias-corrected estimates of the AR(k) parameters

underlying the group-time error process. One simply plugs the FGLS residuals, rather than OLS residuals,

into the formula for a cluster-robust variance matrix.

In the DiD context, the prevailing view is that the limitation of using cluster-robust inference is that

its validity depends on having lots of groups. But one of the contributions of this paper has been to show

that simple modi�cations to standard cluster-robust inference enable test size to be controlled, even with

few groups. This suggests that it may be possible to use FGLS to improve power in DiD, whilst maintaining

correctly sized tests, in a way that is robust to misspeci�cation (or mis-estimation) of the error process, even

with a small number of groups.

We now con�rm this with our �nal set of simulations. We rerun the Monte Carlo simulations, this

time implementing FGLS (rather than OLS). We assume an AR(2) process for the group-time shocks. We

estimate the 2 AR parameters in two ways. First, we simply regress the residuals from OLS estimation of

equation 2 on two lags. With �xed T and �xed group e�ects, this produces inconsistent estimates of the

AR parameters. Second, we apply to these estimates the bias correction derived by Hansen (2007). This

correction is consistent as G goes to in�nity. We label these �FGLS� and �BC-FGLS� respectively. In both
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cases, we explore what happens when the estimator is used with and without cluster-robust inference. We

use the cluster-robsut technique that we have shown to work well even when G is small: using CRSEs with√
G/(G− 1) residuals and tG−1 critical values.

Table 8 shows rejection rates under a true null hypothesis (no treatment e�ect). The �rst row reiterates

the good size properties of OLS estimation combined with CRSEs that use
√
G/(G− 1)-scaled residuals and

tG−1 critical values (i.e. it repeats row four of Table 1). The second row shows that FGLS without the bias

correction and without robust inference gives tests at least double the nominal size. Note however that even

this size distortion is considerably smaller than with OLS without robust inference. Hansen's bias correction

for the estimated parameters of the AR process reduces this size distortion, though still returns rejection

rates that are too high without robust inference (fourth row), particularly when G is small. This is what we

would expect, because the bias correction is consistent as G → ∞. But, as with OLS, the size of the test

can be controlled using robust inference, even with few groups, using the methods described earlier in this

paper: when doing this, the rejection rate remains within about 1 percentage point of the nominal test size.

This is true both for FGLS and BC-FGLS (third and �fth rows).

Table 9 turns attention to power, showing rejection rates when there is a 2% treatment e�ect on earnings.

Again, the �rst row reiterates the earlier �nding that OLS estimation combined with a correctly sized test

provides very low power (i.e. it repeats the fourth row of Table 7 . As Hansen (2007) showed in the case where

G = 50, the FGLS procedures deliver substantial improvements in power. Combined with robust inference

which delivers the correct test size, BC-FGLS detects the treatment e�ect with 37% probability, whereas

OLS detects it with 22% probability. Table 9 shows that FGLS also delivers substantial proportionate power

gains relative to OLS with smaller G, though from a much lower base: with G = 6, power is 7.3% using OLS

and 10.3% using FGLS. Using Hansen's bias correction delivers a little more power than `ordinary' FGLS,

and more so when G is larger (again, as expected theoretically).

Figure 3 illustrates the power gains more comprehensively, plotting MDEs against power and comparing

the results for OLS and BC-FGLS estimation with varying numbers of groups (always combined with cluster-

robust inference, so that test size is correct). The power gains from BC-FGLS are substantial.

Tables 10 and 11 and Figure 4 repeat this analysis for the case where the outcome of interest is a

binary employment status indicator. This con�rms that these conclusions all hold qualitatively in that very

di�erent generating process: FGLS delivers substantial power gains over OLS, and this can be done whilst

controlling test size, even with few groups. We also re-ran the earlier robustness checks where we simulate

our own state-time earnings shocks according to an AR(1) process, varying the degree of serial correlation

and non-normality in the white noise. Again, the results were robust.20

20These are not shown in the paper but are available from the authors on request.
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Table 8: Rejection rates for tests of nominal 5% size with placebo treatments in log(earnings) data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.042 0.046 0.050 0.049

(0.003) (0.003) (0.003) (0.003)

FGLS 0.100 0.106 0.112 0.126
(0.004) (0.004) (0.004) (0.005)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.047 0.053 0.057 0.061

(0.003) (0.003) (0.003) (0.003)

BC-FGLS 0.068 0.077 0.088 0.099
(0.004) (0.004) (0.004) (0.004)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.049 0.057 0.057 0.064

(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications

Table 9: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.02 in log(earnings) data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.220 0.118 0.079 0.073

(0.006) (0.005) (0.004) (0.004)

FGLS 0.460 0.275 0.206 0.191
(0.007) (0.006) (0.006) (0.006)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.348 0.175 0.110 0.096

(0.007) (0.005) (0.004) (0.004)

BC-FGLS 0.395 0.224 0.163 0.150
(0.007) (0.006) (0.005) (0.005)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.365 0.187 0.118 0.103

(0.007) (0.006) (0.005) (0.004)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications
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Figure 3: Minimum detectable e�ects on log(earnings) using tests of size 0.05

Table 10: Rejection rates for tests of nominal 5% size with placebo treatments in employment data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.044 0.043 0.047 0.059

(0.003) (0.003) (0.003) (0.003)

FGLS 0.165 0.181 0.182 0.213
(0.005) (0.005) (0.005) (0.006)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.041 0.046 0.048 0.061

(0.003) (0.003) (0.003) (0.003)

BC-FGLS 0.124 0.140 0.146 0.179
(0.005) (0.005) (0.005) (0.005)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.042 0.046 0.049 0.063

(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications
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Table 11: Rejection rates for tests of nominal 5% size with a treatment e�ect of +0.02 in employment data

G=50 G=20 G=10 G=6

OLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.824 0.417 0.222 0.160

(0.005) (0.007) (0.006) (0.005)

FGLS 0.975 0.770 0.552 0.463
(0.002) (0.006) (0.007) (0.007)

FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.895 0.509 0.264 0.189

(0.004) (0.007) (0.006) (0.006)

BC-FGLS 0.970 0.738 0.511 0.420
(0.002) (0.006) (0.007) (0.007)

BC-FGLS,
√
G/(G− 1)-CRSEs, t(G-1) critical values 0.904 0.531 0.279 0.198

(0.004) (0.007) (0.006) (0.006)

Simulation standard errors in parentheses

Based on 5,000 Monte Carlo replications

Figure 4: Minimum detectable e�ects on employment rates using tests of size 0.05
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5 Summary and Conclusion

This paper has contributed to a growing literature on inference in di�erence-in-di�erences designs with

grouped errors. The literature has emphasised di�culties in obtaining correctly sized hypothesis tests,

particularly with few groups.

Using Monte Carlo evidence, we have made three main points. First, it is possible to obtain tests of the

correct size, even with few groups, using methods that are very straightforward to implement. In fact, when

one uses cluster-robust inference in STATA, these methods are implemented by default. Second, the main

problem in di�erence-in-di�erences designs with grouped errors is instead low power to detect real e�ects.

Third, feasible GLS estimation combined with robust inference methods can increase power considerably

whilst maintaining correct test size - again, even with few groups. These �ndings have proven robust to a

wide range of data generating processes.

We therefore recommend that applied researchers think seriously about e�ciency, rather than just con-

sistency and test size, when using di�erence-in-di�erences designs.
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