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1. INTRODUCTION

Mobility restrictions are said to affect societies negatively (Hamilton & Whalley, 1984).
Since the household registration system in China (the Hukou system) tightly restricts rural-
urban migrations, it has attracted special attention from scholars. Fujita et al. (2004) and
Au & Henderson (2006a,b) argue that most Chinese cities are significantly undersized and
ascribe this under-urbanization to the Hukou system. There are also large income losses
resulting from insufficient agglomeration in rural industries (Au & Henderson, 2006b). In
addition, the Hukou system has been criticized as a major cause of rising rural-urban in-
come inequality in China and as a generator of unfair opportunities (Yang, 1999; Liu, 2005;
Whalley & Zhang, 2007; Wu & Treiman, 2004; Chan, 2009).

This paper examines an additional effect of the Hukou system that has not been explored
in the literature: its effect on human capital accumulation in rural China. In particular,
the Hukou system may play a significant role in fostering education in rural areas given
selective migration policies.

The Hukou system categorizes people as rural or urban at birth according to their parents’
status. Urban residents enjoy benefits provided by the government while rural individuals
do not. Even though rural people are allowed to temporarily migrate to urban areas to seek
better employment opportunities, migrants without local urban Hukou cannot enjoy bene-
fits such as medicare, unemployment insurance, housing subsidies, pensions, etc.

However, rural residents enrolled in technical high school or college are automatically
granted urban Hukou. Thus, individuals of rural origin have additional gains from higher
education compared to their urban counterparts, giving rural residents a greater incentive
to invest in human capital. The private returns to education in rural areas include the op-
tion value of increased probability of being able to receive urban benefits. I define these
extra gains as “institutional returns” since they stem from government constraints on mo-
bility.

Empirically, I examine institutional returns to education using a 1998 Hukou policy change.
Before 1998, individuals inherited their mother’s Hukou status. After 1998, it became possi-
ble to inherit one’s father’s status. Children under 18 years old subsequently had the chance
to transfer their Hukou to their father’s status, which differentially benefited individuals
with a rural mother and an urban father. These individuals could obtain urban Hukou and
its associated benefits without higher education. I apply a regression discontinuity (RD)
approach in this study to estimate the changes in the high school attendance rate for this
group when institutional returns to education were removed. If individuals could perfectly
predict the 1998 Hukou policy change at the time of their school decisions, all eligible in-
dividuals under the birth month rule are able to adjust their education choices accordingly.
My scenario fits into a sharp design. On the other hand, if this Hukou policy change was
fully unexpected, then it only affected the high school attendance for the group that had
not made the high school decision by the time of the Hukou reform. Unfortunately, the
data does not provide information about the date when individuals finished middle school.
I provide an extension of the traditional RD estimation that allows it to work when only
the aggregate proportion treated is available. The local average treatment effect can be ob-
tained by rescaling the first stage sharp RD estimator using the discontinuity in the treated
proportion.

Nonparametric estimates show a statistically significant drop of 8.7 percentage points in the
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probability of attending high school for those individuals satisfying the birth month crite-
rion of the 1998 Hukou policy reform. This result is based on the assumption that people
can perfectly predict this policy change at the time of their high school decision, and it can
be viewed as a lower bound of the true effect. On the other hand, if the policy change
is fully unexpected, then it only affected people’s high school decisions if they were made
after the policy change. In this case, the drop in high school attendance rate increases to
30.5 percentage points after rescaling. In both cases, the estimated effects are bigger for
males and for those able to get urban Hukou in relatively rich areas. The probability of at-
tending high school decreases by 11.3 to 31.9 percentage points for males and 12.4 to 45.6
percentage points for those getting urban Hukou in rich regions. These effects are not sig-
nificant for females and for those getting urban Hukou in relatively poor areas. In addition,
there are also signs of a negative discontinuity in the middle school graduation rate and
a positive discontinuity in the dropout rate of high school and above. The findings above
are confirmed by a series of robustness checks such as continuity assumptions required for
a valid regression discontinuity, parametric estimations and possible age induced biases.
These findings demonstrate the existence of substantial institutional returns to education
for people with rural Hukou in China.

This research contributes to a main strand in the migration literature: brain drain versus
brain gain. Contrary to the conventional view of detrimental brain drain, some theoretical
studies in the late 1990s point out the possibility of “brain gain” when there are endogenous
education choices and uncertain migration prospects (Mountford, 1997; Stark, Helmenstein
& Prskawetz, 1997, 1998; Vidal, 1998). Under certain conditions, the future chance of
emigrating to developed countries raises the expected returns to schooling, resulting in a
higher human capital stock at home (minus those who emigrated). Most empirical evidence
of this issue is derived from cross country regressions (Beine, Docquier & Rapoport, 2001,
2008, 2010). A few micro-level studies confirming the “brain gain” effect have emerged
in recent years. In order to claim causal effect, researchers often adopt a difference-in-
difference strategy (Chand & Clemens, 2008) or IV estimation (Batista, Lacuesta & Vicente,
2011). The validity of these methods requires a set of untestable exclusion restrictions. This
study overcomes these limitations by identifying the causal effect using quasi-experimental
RD analysis which requires relatively mild continuity assumptions.

Previous literature analyzes human capital formation in a situation when only educated
workers have positive probability of emigration, and compares it with the benchmark of
a closed economy with no emigration. The results of the literature can be interpreted
as the impact of selective migration on the source country’s human capital investment.
This paper complements previous studies by using free migration as the benchmark. I
investigate human capital dynamics in a situation with migration restrictions and selective
migration, and then I compare it with the case when all workers are free to move regardless
of education levels.

This study is also closely related to the literature on the private returns to education and
individuals’ schooling choices. In particular, this paper analyzes the institutional returns to
education, which are defined as educational benefits stemming from overcoming geograph-
ical1 and/or occupational2 labor mobility restrictions. These returns include both market

1The returns to education under geographical migration restrictions are well documented in the brain gain
literature (Mountford, 1997; Stark, Helmenstein & Prskawetz, 1997, 1998; Vidal, 1998).

2See Sicherman & Galor (1990) for a theoretical and empirical discussion of returns to education in the
form of increase probability of occupational upgrading. Such returns will be amplified by the occupational
mobility restrictions associated with the Hukou system in China.
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returns, such as higher wages, widened job choices and increased access to social welfare
programs, and nonmarket returns, such as improved health, enhanced political representa-
tion, better marriage market outcomes and benefits for one’s offsprings. Even though the
institutional returns in China are hard to quantify, the paper supports the existence of such
returns. The magnitude of institutional returns constitute a significant portion of rural re-
turns to education in China given that a removal of these returns results in a significantly
lower investment in human capital.

This study has policy implications for contemporary China. In order to mitigate the un-
balanced development between rural and urban areas, a few provinces have used uniform
identity Hukou to replace the original rural/urban dichotomy since 2003. The elimination
of rural/urban Hukou status erases the institutional returns to education for the previous
rural Hukou holders, which may in turn negatively affects their investment in human capi-
tal.

The rest of this paper is structured as follows: Section 2 provides the background of the
Hukou system, reviews related literature, and describes the main data source used in this
study. Section 3 presents a simple human capital accumulation model. The identification
strategy and local linear regression results for regression discontinuity approach are pro-
vided in Section 4 and Section 5, respectively. In Section 6, I conduct a series of robustness
checks including the continuity assumption required for valid RD and other potential prob-
lems. Section 7 briefly discusses welfare effects, and section 8 concludes.

2. BACKGROUND

This section briefly describes the development of the Hukou system in China and summa-
rizes a few attempts in the literature to relate the Hukou system to educational attainment.
A description of the main data set used in this study is provided at the end of this sec-
tion.

2.1 Household registration system3

China’s household registration system (the Hukou system) is one of the strictest popula-
tion regulation mechanisms in the world. Unlike most of the unsuccessful attempts made
by other countries to regulate migration, the Hukou system, combined with China’s food
rationing policy, effectively tied people to their registered residency place.

At the early stage of development in the 1950s, the Hukou system was used for civil records.
People were allowed to migrate freely until 1958, when the system was formally incorpo-
rated into law. The two most important pieces of information of Hukou record are Hukou
status (urban/rural) and legal residence address, which were inherited from one’s mother
until 1998, when inheritance from one’s father was permitted. This information is regis-
tered at birth for every legal Chinese citizen, follows a person for his/her lifetime, and is
extremely hard to change.

Rural people relied on their land to support themselves while the government provided
housing, food, pension, etc. to urban residents. It was almost impossible to migrate with-
out legally changed Hukou because of rigid food rationing and the absence of commodity

3Please refer to Wu & Treiman (2004) and Chan (2009) for a detailed description of the Hukou system.
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markets. The ways of changing one’s Hukou status from rural to urban were mainly through
a job assignment after military service, enrollment in technical high school or tertiary ed-
ucation, or employment through the states, all of which were subject to small quotas and
were exceedingly difficult for peasants to achieve.

The profound economic reform launched in 1978 altered the pattern of the Hukou system in
a significant way. People temporarily migrating to urban areas could apply for a temporary
resident permit, which granted them legal residency for a few months and was subject to
renewal. Abolishment of government subsidized food rations during the late 1980s, along
with newly evolved commodity markets, enabled abundant rural labor to seek employment
opportunity in cities, boosting the temporary migrants stock to 147.35 million in 2005.4

However, the loosened migration restriction only guaranteed controlled and limited mo-
bility for rural labor. These temporary migrants normally took up low-pay jobs with poor
working conditions, and they were still denied access to urban social welfare benefits (Wang
& Zuo, 1999). This situation persists today.

As mentioned above, higher education is one of the few ways of obtaining urban Hukou.
After finishing nine years of compulsory primary and middle school education, students can
either attend high school or work directly. There are two types of high school: regular
and technical. Even though obtaining regular high school degree does not guarantee ur-
ban Hukou, it provides the opportunity for tertiary education. Newly admitted students to
technical high school, junior college and above are automatically granted urban Hukou.5,6

For rural students, the returns to high school education include not only the higher future
income, which is well-studied in the literature, but also potential dramatic social welfare
benefits associated with Hukou status change. The link between schooling and labor mobil-
ity creates stronger incentives to pursue high school education for rural residents than their
urban counterparts in China.

2.2 Hukou and education

There have been a few scholars analyzing the relation between Hukou status and educa-
tional attainment since the 1990s. Wu (2010) finds that rural people are significantly less
likely to enroll in high school after the nine years of compulsory education. Wu & Treiman
(2004) show empirically that rural family background harms future educational attainment
owing to inferior quality of previous education. They also show that higher education7 sig-
nificantly increases the odds of obtaining urban Hukou by more than four times for those of
rural origin. Even though these studies document that rural origin is one of the major de-
terminants of less schooling, and that schooling itself, especially college degrees, will help
transfer Hukou from rural to urban areas, none treats education as a choice variable.

Zhao (1997) is the first to incorporate the schooling choice into the calculation of expected
future income. She demonstrates that the incentive for pursuing higher school education

4Communique on Major Data of 1% National Population Sample Survey in 2005, National Bureau of Statis-
tics.

5Admission to these schools are based on competitive exams, which are equally available to all Chinese
citizens. However, rural children are less likely to attend these schools due to the inferior quality of primary
education in rural areas.

6Even though the Hukou transfer is voluntary, most students accept urban Hukou given the enormous
benefits associated with it. Denial of urban Hukou is rare, especially in the last century when Hukou played an
even more significant role than it does today.

7They define higher education as technical high school or tertiary education.
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is partly rooted in the chance of changing Hukou status. Using data from three villages
near the city of Beijing, she finds a decline in the high school enrollment rate in 1980s
and interprets this change as a result of increased opportunity of non-farm employment
in rural enterprises. She points out that conventional methods underestimate the returns
to education in China by ignoring the possible wage and non-wage gains associated with
transfering Hukou status. Even though her article adjusts for non-wage benefits such as
food ration coupons and subsidized housing, brought about by urban status, it does not
include other benefits, such as medicare, pensions and benefits that are inter-generational
transferable, due to data limitations. Thus, her data still underestimate the real returns to
schooling for rural people since gains from Hukou status change are not fully taken in to
account.

Using a broader survey covering four provinces, De Brauw & Giles (2008) show that in-
creased labor mobility from allowing temporary migration significantly reduces high school
enrollment in rural China. The effect of increased temporary migration is identified us-
ing the exogenous timing of issuing the national ID cards, which are necessary for rural
migrants to register as temporary residents in urban areas. However, De Brauw & Giles
(2008) only analyse the impact on high school enrollment of a relaxation of the Hukou
system, which allows rural residents to temporarily work in urban areas without any ur-
ban benefits. They do not investigate the effect of obtaining urban Hukou on schooling,
which allows peasants to permanently migrate to urban areas and enjoy associated local
benefits.

Even though scholars have realized the important role that labor mobility restrictions played
on returns to education, there are no published studies that tackle the overall effect of
Hukou on educational attainment in China. Moreover, most of the studies that take into
account the endogenous education decision only use data sets covering a few villages or
provinces. The restricted scope of the data limits the generalization of the results in these
studies. Relying on the 1998 Hukou policy reform, this paper is the first to directly address
the effect of the Hukou system on educational attainment for rural people using a nationally
representative dataset.

In China, newborn children had to inherit their mother’s Hukou status (rural/urban) until
September 19988, when inheriting father’s Hukou status was permitted by a Hukou policy
reform. Children under 18 by September 1998 who followed their mother’s Hukou then
had a chance to change it according to their fathers’. Therefore, those born in or after
September 1980 with their mother holding rural Hukou and father holding urban Hukou
are beneficiaries of this reform. In the next section, I show how this policy change affects
the returns to investment in education in a simple model.

The main data source used in this study is the 0.95 per thousand sample of China’s fifth wave
population census conducted in 2000. It contains individual level demographic information
as of November 1, 2000, such as month of birth, gender, ethnic minority status, education
level, employment status and occupation. The Hukou status of rural/urban and Hukou
location at province level are reported as well.

3. THEORETICAL FRAMEWORK

8The Hukou reform was initially proposed by the Ministry of Public Security on June 23, 1998. Even though
approved by State Council on July 22, 1998, it was not put into practice until the beginning of September.
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In this section, I present a simple human capital investment model to frame optimal school-
ing decisions for rural people in China. It allows me to illustrate the effect of transferring
Hukou status from rural to urban on schooling in a dynamic setting by analyzing changes in
returns to education.9 I proceed by first introducing the accumulation of human capital and
the sources of household income, and then analyzing the household’s utility maximization
problem. Finally I discuss the changes of returns to education for rural people once the
government grants them urban Hukou and the subsequent effect on their optimal schooling
choices.

Following De Brauw & Giles (2008), I assume each household only has one child.10 In each
period t, households make an investment decision between human capital Ht and physical
capital Kt . Ht is the sum of fixed adults’ human capital Ha and the child’s human capital
H c

t . Households’ human capital is accumulated by sending the child to school for the share
et of his/her time and paying a cost proportional to school time, P e

t et , where P e
t is the unit

price of schooling. Therefore, human capital evolves as follows:

Ht+1 = Ht +ψt G(et), (1)

where G is a human capital production function increasing in et and ψt is a positive time-
varying productivity parameter that captures differences in ability, motivation, effort level,
school quality, etc.

Households generate income from home production or labor employment in the labor mar-
ket. Home production is based on physical capital and labor according to Y h

t = θt F(Kt , La1
t , Lc1

t ),
where La1

t and Lc1
t are the amount of time used in household production by adults and the

child, respectively, and θt is an exogenous productivity parameter. Income from the labor
market can be expressed as Y w

t = w(Ha)La2
t + w(H c

t ,S)Lc2
t , where La2

t and Lc2
t are shares

of time working in the labor market for adults and children. w(Ha) is the adults’ wage
function increasing in human capital stock. The wage function for children, w(H c

t ,S), is
increasing in their human capital, H c

t , and increasing their Hukou status, S, which equals
one if a child gets urban Hukou and zero otherwise. The default status for rural children
is s = 0. Households invest all the left over income into physical capital after deducting
consumption ct and school costs from total earnings. Thus, physical capital accumulates
according to

Kt+1 = Kt + θt F(Kt , La1
t , Lc1

t ) +w(Ha)La2
t +w(H c

t ,S)Lc2
t − ct − P e

t et . (2)

Assume there are no credit markets and that households face borrowing constraints

Kt+1 ≥ 0,∀t. (3)

Children are eligible for school from t = 0 to t = T − 1 with T a fixed number of peri-
ods. They work exclusively once t = T and are not allowed to go back to school. House-
holds’ utility from period T and beyond can be written as Φ(KT , HT )+ q(H c

T )V (H
c
T ), where

Φ(KT , HT ) is the terminal value function if children do not change Hukou status to urban.

9The model presented here is based on the general human capital investment model developed by Glewwe
& Jacoby (2004). I incorporate the institutional returns to education associated with Hukou status change and
allow for market employment in addition to home production.

10This assumption is likely to be valid, particularly for the sample I use for estimation. Families with a rural
mother and an urban father are only allowed to have one child according to the one child policy in China.
This simplifying assumption will not affect critical predictions of the model. Additional control for number of
siblings is included in empirical regressions.
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It includes both pecuniary and non-pecuniary benefits from children’s education for the en-
tire household. V (H c

T ), the institutional returns to education, is a positive terminal value
function representing utility gained from transferring Hukou. It consists of the increased
wage and better employment opportunities as well as a series of other urban benefits. I as-
sume the benefits premium of an urban Hukou increases with children’s terminal education
levels, e.g. ∂ VT

∂ HT
> 0.11 The probability of obtaining urban identity, q(H c

T ), is increasing in

final human capital stock of children H c
T . I assume the transfer from rural to urban Hukou

via higher education only takes place at the beginning of period T . Thus, the probability q

does not enter children’s wage function, w(H c
t ,S), during schooling periods. Households’

current utility is a function of consumption ct , leisure of both adults and children, la
t and l c

t ,
and children’s school enrollment et . Assume time endowments for both adults and children
is normalized to one in each period, then la

t = 1− La1
t − La2

t and l c
t = 1− Lc1

t − Lc2
t − et .

Parents’ objective is to maximize expected household lifetime utility:

E0





T−1∑

t=0

δt U(ct , la
t , l c

t , et) +Φ(KT , HT ) + q(H c
T )V (H

c
T )



 , (4)

subject to constraints (1) (2) and (3), where δ is the discount factor. At time 0, households
are uncertain about future values ofψt ,θt , w(Ha), w(H c

t ,S), P e
t ,ΦT ,q(H c

T ) and V (H c
T ).

The first-order conditions for an interior solution to this maximization problem are:

Uc(t) = λt (5)

Ula(t) = λt

�

θt FLa1(t) +w(Ha)
�

(6)

Ul c(t) = λt

�

θt FLc1(t) +w(H c
t ,S)
�

(7)

Ue(t) +µtψt Ge(t) = λt

�

θt FLc1(t) +w(H c
t ,S)− P e

t

�

, (8)

where λt and µt are shadow prices of physical capital and human capital at period t,
respectively. The school demand function can be derived from these FOCs as:

e∗t = e∗
�

λt ,µt ,ψt ,θt FLc1(t),θt FLa1(t), w(H c
t ,S), w(Ha), P e

t

�

. (9)

Since utilities are additively separable across time, past and future decisions can only in-
fluence current decisions through shadow prices λt and µt . In addition, the borrowing
constraint (3) only affects intertemporal decisions conditional on λt , but not intratemporal
decisions since the coefficient of borrowing constraint vt does not appear in equation (5)
(6) (7) or (8) but only in the following intertemporal Euler equation for the physical capital
price:

λt = δEt(λt+1+ vt+1)(1+ θt+1Fk(t + 1)), (10)

where vt is the multiplier on the borrowing constraint.

Now we can trace out the impact of obtaining urban Hukou on school demand for rural chil-
dren, which consists of three effects. First, the shadow price of human capital, µt , changes.
To show this, note that the terminal condition before transferring Hukou requires that the

marginal value of human capital after the schooling period, µT =
∂ (Φ(KT ,HT )+q(Hc

T )V (H
c
T ))

∂ HT
=

11Liu (2005) finds the wage returns to education for urban Hukou holders is higher than for rural Hukou
holders. I treat his results as a sign of increasing Hukou benefits associated with higher human capital stock.
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∂ΦT

∂ HT
+
∂ qT

∂ HT
V (H c

T ) +
∂ VT

∂ HT
q(H c

T ). This marginal benefit from education investment includes

three parts: the increased households’ utility without Hukou transfer, the higher probabil-
ity of getting urban Hukou and related benefits, and a higher wage premium brought by
higher education conditional on Hukou transfer prospects. Once gaining urban Hukou, this

marginal value function simplifies to µ′T =
∂ (Φ(KT ,HT )+V (Hc

T )

∂ HT
=

∂ΦT

∂ HT
+
∂ VT

∂ HT
. The change in

the marginal value is µ′t − µt = (−
∂ qT

∂ HT
V (H c

T )) +
∂ VT

∂ HT
(1− q(H c

T )). The first term is nega-

tive, showing that directly granting individuals urban Hukou eliminates their incentive to
go for higher education with the aim of possible urban benefits. The second term is positive,
showing an increased probability of reaping the urban-status wage premium. The marginal
returns to education after schooling periods cannot be signed. Since the intertemporal Euler
equation for human capital shows that µt = δ

T−t EtµT , the expected returns to education
while in the schooling period is ambiguous after obtaining urban Hukou and the school
enrollment is uncertain.

The second effect operates through the shadow price of children’s time. Obtaining an urban
Hukou increases children’s wage at any education level from w(H c

T , 0) to w(H c
T , 1). The

increase in opportunity costs will lower investment in human capital based on equation
(8).

Thirdly, the school cost , P e
t , may change for some rural children as well. Many children of

migrant workers live with their parents in urban areas. Without local Hukou, families of
these children have to pay additional fees for the enrollment in urban schools. These extra
fees can be waived once the child obtains local urban Hukou. The reduced school cost, P e

t ,
reduces the school costs and is expected to result in higher school enrollment.12 The overall
effect of obtaining urban Hukou on schooling is the combination of all three effects. The
sign of the net impact is ambiguous and is left for empirical study.

4. EMPIRICAL STRATEGY

The 1998 Hukou policy reform granted urban Hukou to a specific group of children, allow-
ing me to identify the effect of the Hukou system on education. According to this reform,
children born in or after September 1980 who inherited their mother’s Hukou status then
had a chance to change it to their father’s Hukou, which differentially benefited individuals
with their mother holding rural Hukou and their father holding urban. Thus, the main focus
of this study is to examine whether schooling decisions are different between cohorts born
before and after September 1980 for individuals with a rural mother and an urban father.
A natural approach to estimating this is regression discontinuity (RD) design.

Assume for the moment that individuals can perfectly predict the 1998 Hukou policy change
at the time of their school decisions. Under this assumption, all eligible individuals under
the birth month rule are able to adjust their education choices accordingly. Let the assign-
ment index zi represent birth month of individual i. zi has a cutoff value of z0 =Sept.1980
and has been normalized to z0 = 0.13 For individuals with an urban father and a rural
mother, the eligibility of transferring Hukou status to urban is a deterministic function of

12This is especially true for my sample. Children with a rural mother and an urban father live in urban areas
because women normally join their husband’s family after marriage in Chinese culture.

13zi now is the difference between original zi and z0, with a negative sign indicating “before”. For example,
zi = 2 for individuals born in November 1980 and zi =−3 for individuals born in June 1980.
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individuals’ birth month according to the 1998 Hukou reform,

x i = I1i(zi ≥ z0), (11)

where I1 is an indicator function taking value of 1 if zi ≥ z0 = 0. The relationship between
an individual’s eligibility, x i, and his/her education outcome yi is described in the following
equation:

yi = αi + x i × βi + εi, (12)

where αi is the potential education outcome without the policy change; βi is the impact
of Hukou transfer eligibility on the schooling decision, and εi is a random error term. The
problem fits in sharp RD design with individuals’ treatment status defined as their eligibility
to get urban Hukou. I focus on this intent-to-treat (ITT) effect because the data are not
informative about whether an individual untilizes this opportunity to transfer Hukou status
or not.

One major advantage of RD is that the identification of the treatment effect does not re-
quire the error term εi to be uncorrelated with zi and x i. The causal treatment effect can
be nonparametrically identified by assuming smoothness in potential education outcomes,
αi, around the birth month threshold of September 1980 (Hahn, Todd & Van der Klaauw,
2001; Porter, 2003). Because identification can be achieved under relatively mild continu-
ity assumptions, RD provides more credible results compared to other conventional non-
experimental strategies that requires exclusion restrictions such as difference-in-difference
and matching.

I adopt a nonparametric RD approach for estimation based on Hahn, Todd & Van der Klaauw
(2001) and Porter (2003). They suggest estimating the left and right limits of the disconti-
nuity using local polynomial regression, which overcomes the boundary problem of kernel
regression, and then taking the difference to estimate the treatment effect. To achieve better
performance in boundary estimation, I use a triangular kernel with kernel weights K(

zi−z0

h
)

in all regressions.

The perfect prediction assumption may not apply in the context of this study. Now assume
the opposite (i.e., that no information is revealed before the announcement of the policy).
For illustration purposes, I describe the estimation method using high school attendance
outcomes. Under this new assumption, the 1998 policy change only affects the high school
attendance decision of individuals (1) born in or after September 1980 and (2) finishing
middle school in or after 1998.14,15 The treatment determination criterion is depicted in
the following equation:

x i = I1i(zi ≥ z0)× I2i(di ≥ d0),

where I2 is an indicator function taking value of 1 if the year of finishing middle school,
di, is greater than or equal to 1998 (d0) and x i is the unobserved treatment status taking
the value of 1 if individual i is eligible to transfer to urban Hukou status and able to adjust
his/her high school choice according to the new Hukou policy announced in 1998, and it
is 0 otherwise. Thus, the jump of treatment probability is less than one at the cutoff of
September 1980. Fuzzy design seems to fit this situation. However, because the timing of

14The Hukou policy reform was announced in July 1998, which took place after the high school entrance
exam in June and before the high school state date in September.

15People finishing middle school earlier had already made their high school decision when Hukou reform
was announced. Even though they may be eligible to transfer Hukou based on the birth month rule, this
eligibility does not change their high school enrollment decision.
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finishing middle school at the individual level is not reported in my data, I cannot implement
2SLS for the fuzzy design as generally suggested in the literature.

This model structure is different from both conventional sharp and fuzzy models. I pro-
vide an extension of these standard models as described in the Appendix A, in which the
treatment status is a deterministic function of the assignment index, birth month, and other
known but unobserved variables. One crucial assumption for identifying the treatment ef-
fect is the following:
Assumption 1. zi and di are independent for zi ∈ [z0, z0 + ε), where ε is a small positive

number.

This assumption means the probability of making one’s high school choice in or after 1998
is uncorrelated with the birth month for individuals born in or just after September 1980.
For this assumption to be valid, the birth month zi needs to be uncorrelated with the three
factors that determine di: the year enrolled in primary school, the legal length of primary
school, and the probability of repeating a grade.16 First of all, those reaching six years old
by August 31 each year are allowed to enroll in primary school on September 1. It indicates
that those born in August and September of the same year t are eligible for school at differ-
ent years, e.g. t + 6 and t + 7 respectively. However, this primary school enrollment cutoff
date will not cause a difference in school starting year between those born in September
and October of the same year t. Thus, it is plausible to assume there is no variation in the
distribution of age starting school for a small range of birth date no earlier than September
1. Secondly, the legal length of primary school is dependent on county policy but is inde-
pendent of birth date.17 Thirdly, Fertig & Kluve (2005) show that there is no effect of actual
age at school entry measured in months on the probability of repeating a grade in Germany,
providing some evidence of zero correlation between the probability of repeating a grade
and the time of birth. Therefore, it is reasonable to assume that di and zi are independent
just after the cutoff.

Under assumption 1, the jump of treatment probability at the cutoff of z0 =Sept.1980 can
be simplified as follows:

lim
z→z+0

E[x i | zi = z]− lim
z→z−0

E[x i | zi = z]

= lim
z→z+0

E[x i | zi = z] (since lim
z→z−0

E[x i | zi = z] = 0)

= lim
z→z+0

{E[x i | zi = z, I2 = 1]× Pr[I2 = 1 | zi = z]+

E[x i | zi = z, I2 = 0]× Pr[I2 = 0 | zi = z]}
= lim

z→z+0

Pr[I2 = 1 | zi = z]

= lim
z→z+0

Pr[I2 = 1] (assumption 1)

Thus, I can obtain the treatment effect by estimating the raw jump in the high school en-
rollment rate, as in the sharp design, and rescaling it using an estimated proportion of those
finishing middle school in or after 1998 for the birth cohort of Sept. 1980-Aug. 1981 as
illustrated in Figure 1.18 The only way to estimate this proportion is to exploit the school

16The legal length of middle school is three years for all counties.
17Primary school education in a few counties takes five years instead of the usual length of six years.
18This rescaling method is derived following Hahn, Todd & Van der Klaauw (2001). When the discontinuity
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status information of the 2000 census since the year of finishing middle school is not covered
in the questionnaire. Each individual reported the school status of “in school”, “finished” or
“dropout” in addition to highest education level obtained. People born between September
1983 and August 1984 finished middle school in 2001 or later if they are still in middle
school when the census took place in November 2000. The proportion of the Sept. 1983-
Aug. 1984 birth cohort finishing middle school in or after 2001 can be used to infer the
proportion of the Sept. 1980-Aug. 1981 cohort making a high school decision in or after
1998 under the following assumption:
Assumption 2. The distribution of the middle school finishing age is the same across birth

year cohorts.

Note that the two different assumptions I adopt represent two extreme cases. If individuals
have perfect foresight about the policy change, the sharp RD estimate provides the local
average treatment effect (LATE). In contrast, if no information is revealed before the pol-
icy change, then the treatment effect can be obtained by rescaling the first stage sharp RD
estimator using the discontinuity in the treated proportion. Given that the policy change
is hard to predict for the majority, I report empirical results based on this second assump-
tion. In addition, the impact of obtaining urban Hukou on education for all other cases
with different degrees of information limitation lies between these two estimates, one with
rescaling and the other without.

One major limitation of the estimation method adopted here is the inability to infer the
average treatment effect for the whole population. The effect identified here can only be
interpreted as the local average treatment effect for individuals finishing middle school in
or after 1998. This is equivalent to finishing middle school at an age of 17 or older for
individuals born just after the threshold of September 1980.19 On the one hand, these late
finishers may have smaller wage returns to education due to unobserved below average
ability. Thus, their institutional returns contribute to a bigger share of the returns to edu-
cation, and the 1998 Hukou policy change affects them more than average. On the other
hand, if finishing middle school late is due to credit constraint, the possible decrease in
tuition brought by local Hukou can ease this constraint, resulting in an underestimation of
the average treatment effect. Moreover, individuals with a rural mother and an urban father
are from a relatively well-off group as compared to children from typical rural households.
They are more likely to have better educated parents, especially fathers, on average.20 I
return to this generalization issue in the conclusion.

5. EMPIRICAL RESULTS

In this section, I first show the visual evidence of a drop in high school attendance rate
for those born in or after September 1980.21 I then discuss the bandwidth and polynomial

of treatment probability is less than one, they show that the local treatment effect can be identified using y+−y−

x+−x−
,

where the numerator represents the discontinuity in an outcome and the denominator is the discontinuity of
treatment probability. I bootstrap to get the standard errors.

19Age here is defined as the age at one’s last birthday. For example, the age of a child born in September 1,
1980 is 17 on any date between September 1, 1997 and August 31, 1998. His/her age reaches 18 on September
1, 1998.

20Define educated parents as those with at least some middle school education. For children with an urban
father and a rural mother, 69% of them have an educated father and 34% have an educated mother according
to my data. These proportions drop to 54% and 28%, respectively, for children with both parents holding rural
Hukou.

21High school includes technical and regular high schools. I focus on both types of high schools instead of
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choices for the nonparametric estimation and present the regression results for high school
attendance rate. For the same sample, I also examine possible changes in the middle school
graduation rate at the September 1980 threshold. At the end of this section, I also present
the additional evidence of an increased dropout rate of high school and above for those
born in or after September 1980, which also supports the existence of institutional returns
to education.

5.1 High school attendance

The group of interest is those with a father holding urban Hukou and a mother holding rural
Hukou.22 Before proceeding to formal analysis, I plot the proportion of students who ever
attended high school against month of birth for a subsample born between September 1971
and August 1986 with a father holding urban Hukou and a mother holding rural Hukou (see
Figure 2). I restrict the sample to individuals with at least some middle school education and
exclude those still in middle school at the time of the census.23 The curves show quadratic fit
to the left and right of the threshold. The visual evidence shows a clear decrease in the high
school attendance rate at the cutoff value 0, which represents September 1980.24

The next estimation issue has to do with the bandwidth and polynomial choice in the local
polynomial regression. I choose a bandwidth of 43 months for the main results based on
the leave-one-out cross-validation procedure proposed by Imbens & Lemieux (2008) and
Ludwig & Miller (2007). I also report the results using different bandwidths in Table 5. The
estimates remain similar in magnitude.

I adopt a local linear regression according to Hahn, Todd & Van der Klaauw (2001). To
support this specification, I include dummies for each value of the birth month along with
a piecewise linear control and test the joint significance of those dummies.25 If they are
jointly significant, then the piecewise linear regression is mis-specified. The test statistic
fails to reject the first order polynomial specification with a p-value of 0.9768. In addition,
based on the Akaike Information Criterion (AIC), a first order polynomial fits best compared

technical high school and college for two reasons. On the one hand, the timing of making a certain education
decision is important for estimations. High school decisions are made after middle school while college deci-
sions are made after regular high school with a delay of around three years. On the other hand, due to this
delay, many individuals in my sample had not made college decisions by the time of the census.

22The 2000 census lacks direct parent-child information for each surveyed individual, but only contains
information about the relationship of each member to household head. The criteria for identifying parent-child
relationship are described in Table B.1.

23Most of the individuals who are still in middle school were born in 1984 or later. Including them will
result in low high school enrollment rate for later birth cohorts. Nonetheless, the estimated discontinuity at the
cutoff of September 1980 is unchanged with these additional observations.

24One concern of the threshold is possible delays in nationwide policy implementation as well as timing
variations introduced by local government, which may result in a different cutoff birth date. In order to ad-
dress this issue, I perform a goodness-of-fit exercise to test for possible discontinuities along the assignment
variable following Ludwig & Miller (2007), Card, Mas & Rothstein (2008) and Ozier (2010). I use a subsam-
ple including individuals born between 43 months, the optimal bandwidth based on cross-validation method,
before and after September 1980. For each month between March 1979 and March 1982, I regress high school
enrollment/dropout on a dummy indicating born on or after this potential discontinuity and a piecewise linear
control for birth month, allowing the slope to be different on each side of the threshold. The estimated cutoff is
the one with the best fit. This method is proved to be highly consistent by Hansen (2000). As shown in Figure
B.2, September 1980 maximizes R2 and is considered to be the “true” cutoff.

25See Lee & Lemieux (2010) for detailed discussion of this test. Using dummies for bigger bins generates
similar results.
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to constant, quadratic, cubic and quartic specifications.26 Thus, local linear regression with
a bandwidth of 43 months will be used in the remaining analysis.

In the RD design, the underlying assumption guaranteeing locally random treatment is
the smoothness in the potential outcomes, which indicates agents’ inability to precisely
manipulate the assignment variable and sort around the threshold (Lee, 2008). Because
the births of affected individuals occurred around 18 years prior to the policy change, the
birth dates of individuals around the threshold cannot be manipulated. Consistent with this
argument, the density of birth dates around the cutoff date displays no noticeable jump
when I plot the number of observations of each birth month in Figure 5a with a quadratic
fit. The density smoothness test proposed by McCrary (2008) fails rejection at September
1980, providing additional support for continuous density of birth month.

The sample used here for nonparametric estimation includes people born within 43 months
before and after the threshold of September 1980 (i.e. February 1977 - March 1984) with
a father holding urban Hukou and a mother holding rural Hukou. Table 1 presents the
summary statistics of a few selected variables. Regression results are presented in Table 2a
Column 1.27 The probability of high school enrollment decreases by about 10 percentage
points for cohorts born just after the threshold of September 1980 compared to those born
just before. This result is robust to variations of bandwidth choice as shown in Table 5
Colume 1-5.

I use the school status of Sept. 1983-Aug. 1984 birth cohort to infer the probability of
treatment. 28.5% of this cohort was still in middle school when the 2000 census took place,
indicating an year of 2001 or later when making their high school decision.28 I use this
estimated percentage to approximate the proportion of the Sept. 1980-Aug. 1981 birth
cohort finishing middle school in or after 1998 and having the opportunity to adjust high
school choice according to the new policy.

The local average treatment effect can be estimated by the ratio of the probability jump of
high school attendance to the probability jump of treatment. Being eligible to change Hukou
status to urban decreases the probability of enrollment in high school by 30.5 percentage
points, as shown in Table 2b Column 1. As the 1998 policy change happened after the
annual high school entrance exam, there was no time to adjust the effort level in middle
school. Therefore, this result can be viewed as a short term effect. In the long term, the
negative impact on high school enrollment will be even bigger since individuals who get
urban Hukou will invest less time and money on their middle school education.

The estimated 30.5 percentage points drop in high school attendance rate is the local av-
erage treatment effect. However, this effect may differ by gender. Table 2 reports the
estimation results for male and female separately using a same bandwidth of 43 months.
The estimated drop in high school attendance rate is 37.9 percentage point points for males,
which is statistically significant and is bigger than the average effect. In contrast, the effect
on females is relatively smaller and is no longer significant. The stronger effect on males
indicates a higher institutional returns to education brought by the urban Hukou. One pos-
sible explanation for this return difference between genders is that males are more likely to

26See Lee & Lemieux (2010) for a discussion of the limitations of the AIC method for polynomial choice in
RD design.

27I modify Stata code provided by Imbens & Kalyanaram to allow for user specified bandwidth and apply it
to all the following nonparametric regressions.

28Among the total 414 individuals born between September 1983 and August 1984, 118 were still in middle
school at the time of the census.
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find a job in China and better utilize urban Hukou status. Among those aged 25 and above,
the employment rates for male and female are 91% and 77%, respectively.29 Another possi-
ble explanation for males’ higher valuation on the urban Hukou stems from the unbalanced
sex ratio in contemporary China. Males with urban Hukou are more likely to succeed in the
highly competitive marriage market.

The heterogeneous effects can also arise between different urban Hukou locations that one
can obtain. The value of getting an urban Hukou of a big city in coastal areas may be
different from getting an urban Hukou of a small town in the relatively poorer western
China. In order to test this hypothesis, I rank all provinces in China according to their per
capita income and categorize the top 50% as the rich region and the rest as the poor region.
I then group individuals into these two regions according to their father’s urban Hukou
locations. Table 2 shows the different effects for the two groups. The likelihood to enroll in
high school significantly decreases by 45.6 percentage points for individuals that are able
to get urban Hukou from relatively rich areas. In contrast, getting an urban Hukou from
relatively poor areas does not affect one’s high school decision much.

5.2 Middle school graduation

The sample in the high school attendance estimation includes those with at least some
middle school education. Since part of the returns to middle school education stems from
the option value of attending high school, the reduced benefits associated with high school
degree is expected to weaken the incentive to graduate from middle school. Thus, the
estimated drop in high school attendance rate can be divided into two parts: (1) a lowered
middle school graduation rate for those ever attended middle school, and (2) a decreased
likelihood for enrolling in high school for middle school graduates.

First, the visual evidence in Figure 3 shows a slightly decrease in middle school graduation
rate at the threshold of September 1980. To formally test to what extent the change in
middle school graduation rate can explain the decreased high school attendance, I run local
linear regression for middle school dropout rate using the same sample. The estimation
focuses on a bandwidth of 52 months, chosen by the leave-one-out cross-validation proce-
dure. According to the regression results in Table 3b Column 1, the change in middle school
dropout rate at the cutoff of September 1980 is small and not statistically significant. The
result is similar using different bandwidths as shown in Table 6. The lack of discontinuity
may result from the compulsory education for primary and middle school in China.

To further test whether the Hukou reform has different impacts on different people, I es-
timate the change in middle school graduation rate for each gender and each previously
defined region, separately. Among all four groups, the rich region is the only one with
statistically significant results in the first stage estimation. Being able to obtain an urban
Hukou from relatively rich areas decreases the middle school graduation rate by 2.5 percent-
age points for those born after the cutoff. After rescaling, this amounts to a 9.2 percentage
point decrease in the probability of completing middle school.

29Author’s calculation according to "China 2000 Population Census Data Assembly", National Bureau of
Statistics of China.
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5.3 Dropout of high school and above

If obtaining urban Hukou decreases the returns to high school education, the 1998 Hukou
policy reform would also affect the dropout decisions of students already in high school
and above at the time of the policy change, e.g. early finishers of middle school. I restrict
the sample to those with at least some high school education and plot the proportion of
dropouts against month of birth in Figure 4. There is an increase in the dropout rate at
the cutoff. Table 4 presents the regression results using a bandwidth of 37 months selected
by the cross-validation procedure. The dropout rate of those born just after the threshold
of September 1980 increases by 4.4 percentage points compared to those born just before.
In addition, this effect is stronger for males and for obtaining urban Hukou from relatively
rich areas.

However, this result may be contaminated by the non-smoothness of the assignment vari-
able, birth month, at the cutoff. Since individuals born just after September 1980 are less
likely to enroll in high school as documented in section 5.1, there may be fewer observa-
tions just to the right of the cutoff. This concern is confirmed by a plot of the density of
observations in Figure 5b. The discontinuity in density is not an indicator for the manip-
ulation of birth month but is the result of another regression discontinuity. Moreover, the
sample composition of individuals born after the threshold may change as well in terms
of their gender and their father’s Hukou location. Nonetheless, individuals born just after
September 1980 includes those late middle school finishers (1998 or later) choosing to en-
roll in high school regardless of the decreased returns to education. They may be less likely
to drop out compared to those born before September 1980. Thus, the increase in dropout
rate caused by early finishers may be underestimated when comparing dropout rate before
and after the birth month threshold.

Even though the true effect cannot be consistently estimated in RD without a smooth density
of birth month at September 1980, the increased dropout rate of high school and above is
in line with previous results for high school enrollment rate and middle school graduation
rate, reinforcing the existence of “institutional returns” to education and its important role
in human capital investment decision in China.

6. ROBUSTNESS CHECKS

This section presents results of robustness checks such as testing the continuity assump-
tion of the covariates required for a valid RD design, conducting local linear regressions
including these additional covariates and presenting parametric regression results taking
into account the clustered nature of the errors. Moreover, I discuss the potential issue of
age-induced variations in educational achievement. At the end of this section, I carry out a
placebo test for a group that were not affected by the 1998 Hukou reform (i.e. with both
parents holding rural Hukou) to show that the drop in high school enrollment rate for the
group with a rural mother and an urban father is not likely to be a result of other nationwide
policy changes.

6.1 Continuity of covariates around cutoff

Valid RD design requires smooth covariates over the cutoff. For the sample used in the
analysis of high school enrollment rate, I check for possible jumps over the threshold for
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parents’ education, number of siblings and gender.30 Following a brief description of these
covariates, I present the empirical results.

Parents’ education is used to capture the inter-generational education linkage that affects
chidren’s schooling.31 I construct two dummy variables for fathers and mothers holding
middle school degrees and above, respectively, and check for possible jumps of these middle
school indicators.32

Gender has also been recognized as one important determinant of educational attainment:
males may receive better childcare and educational opportunities since the Chinese culture
values boys; on the other hand, there may be cognitive differences between boys and girls.
For instance, the latter have an advantage in lower-level school since they mature earlier,
have better control of their behavior and are better able to concentrate. Thus, I also check
for the smoothness of gender composition in the sample.

The number of siblings is expected to decrease educational attainment for a given individual
since they would compete for educational resources. To calculate the number of living
siblings, I subtract one from the mother’s number of children ever born and still alive at
the time of survey.33 This method excludes adopted children34, who compete for household
resources as well. The number of children who are adopted appears to be very small.
According to Chinese law, adoption is approved if a couple does not have their own children.
Therefore, the adoption can be inferred if the calculated number of living siblings equals -1
(i.e. the mother’s number of birth equals zero). There are fewer than one percent adoption
cases in the sample. Thus, I do not distinguish between genetic and adopted children in this
study.

Figure 6 graphically presents the mean value of each covariate in 6 month bins separately
with a quadratic fit. The visual evidence shows no significant discontinuity before and after
September 1980 for all of these variables. As suggested by Lee & Lemieux (2010), I test
the joint significance of all the discontinuities at the threshold in a Seemingly Unrelated
Regression (SUR), where each equation regresses one covariate on a threshold dummy, a
constant and a fourth order polynomial of birth month. The coefficients of polynomials are
allowed to be different on each side of the threshold and errors are allowed to be correlated
across equations. This test fails to reject the hypothesis that covariates are smooth across
this cutoff.

6.2 Incorporating covariates in estimation

Valid RD estimates change little with additional covariates. Adding covariates that have
good explanatory power may help reduce variance of the RD estimator. As a robustness

30All these variables are significant at 1% level in the DID regression. An appendix reporting the full results
is available from the author upon request.

31Parents’ education ranges from no school to college in census as follows: illiteracy, primary school, middle
school, regular high school, technical high school, junior college, college, graduate and above.

32The threshold of middle school is chosen according to the DID results. They show parents with middle
school degree or higher have positive influence on their childrenÕs probability of attending high school.

33This measure has the advantage of including older children who already left the household, as compared
with the number of siblings calculated based on presence at the household. Besides, the results are largely
unchanged when I use the latter measure of the number of siblings.

34This measure excludes stepchildren as well. The identification of stepchildren is not feasible given limited
information collected by the 2000 census. However, this is unlikely to invalidate my result given the low divorce
and remarriage rates in China.
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check, I add parents’ education indicators (1 for at least middle school), number of siblings,
and gender in the original local linear regression. As reported in Table 2 column 2, the high
school attendance estimates are robust to the additional explanatory variables.

The calculation of the number of siblings is through the mother’s number of children ever
born and is based on identification of parent-child relationship, which is not directly re-
ported in 2000 census and cannot be fully exploited. Including the number of siblings as
one of the explanatory variables reduces the sample to two thirds of the original size for
both outcome variables. In order to avoid potential problems induced by fewer observa-
tions, I also report the regression results in Table 2 column 3, excluding the number of
siblings. The estimate of discontinuity remains significant at a 5% level with unchanged
magnitude. Regression results for other education outcomes are also robust to the inclusion
of these covariates.

6.3 Parametric estimation with clustered standard errors

Lee & Card (2008) study RD design with a discrete assignment variable and argue that
comparing outcomes in very narrow bins just to the right and left of the cutoff is not possible
in discrete cases. Parametric estimation is more efficient if the functional form is correctly
specified and the clustered nature of errors is taken into account. I estimate the equation
of some education outcome to be dependent on birth month and allow the errors to be
clustered at birth month level. The coefficients are allowed to be different on both sides of
the cutoff:

Yi = α+τ× Di +
∑

βl j × (zi − z0)
j +
∑

(βr i −βl j)× Di × (zi − z0)
j + εi ,

where Yi is a dummy variable for high school attendance or middle school graduation; zi

is the birth month with a cutoff value of z0 = Sept.1980; Di is an indicator that takes the
value of one if birth month is in or after September 1980 and τ is the estimated probability
jump of high school enrollment. I focus on quadratic and quartic models, allowing the
coefficients to be different on either side of the discontinuity.35 The OLS results for high
school attendance rate and middle school graduation rate are shown in Column 5 and
Column 7 of Table 5 and Table 6, respectively. To further check the robustness of the
estimates, I also report regression results including parents’ education, gender and number
of siblings as additional controls in Column 6 and Column 8. The estimated discontinuities
are all similar in magnitude to those obtained from the local linear regressions.

6.4 Age induced variation

The school enrollment cutoff date in China is September 1. Children who become 6 years
old before this date can enroll in primary school in the same year. Otherwise, they have
to wait for another year to start school. Therefore, children born in September are older
compared to students in the same grade while those born in August are relatively younger,
which may lead to different performance in school.

There is a broad literature analyzing the impact of school starting time on educational at-
tainment. Dobkin & Ferreira (2010) find that students who are the youngest in their school

35Both second and fourth order polynomials pass the goodness-of-fit test proposed in Lee & Card (2008).
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cohort have slightly higher educational attainment using U.S. data. However, this may be
due to age-based mandatory school attendance laws in U.S. Children starting primary edu-
cation at earlier ages have to stay enrolled longer before reaching the legal school leaving
age of 16.

Unlike the U.S., China has compulsory school laws based on years of schooling instead of
age. Sharing the same feature in mandatory school policy, research results using European
countries’ data are more suitable to make inferences for China. Black, Devereux & Salvanes
(2011) find no effect of school starting age on educational attainment in Norway. Further-
more, Fertig & Kluve (2005)’s study of Germany generates similar results. To further test
possible age induced schooling variation in China, I run local linear regression with the
same bandwidth of 43 months using the same sample but a different cutoff of September
1976, which is four years before the true cutoff. There is no significant change in high
school enrollment rate before and after this threshold.36 Hence, the probability jump of
high school enrollment at September 1980 is not likely to be caused by school entry cutoff
date.

6.5 A placebo test

Policies in China changed drastically in the last two decades as well as economic conditions.
One may argue that the drop in high school enrollment is a possible result of other changes,
such as the tuition reform and college expansion in the late 1990s or the rising unemploy-
ment problem for college graduates in 2000s. These factors likely influenced individuals’
educational achievement and could have affected individuals of all birth months, not just
the cohort born after a specific date.

Some support for the idea that the drop in human capital that is documented in the previous
sections is not caused by other nationwide changes comes from the results of a placebo test
for individuals with both parents holding urban Hukou. They should not be affected by the
1998 Hukou reform since the allowance of transferring their Hukou from mother’s status
to father’s did not change their Hukou. I use the same 43 months bandwidth and test for
possible discontinuity at the same threshold of September 1980 as I did before. If there were
other factors only affecting individuals born in or after September 1980, the high school
attendance of this placebo group should decrease as well. However, the change in high
school enrollment rate at September 1980 is small and not statistically significant for this
placebo group.37 Therefore, the drop in high school enrollment for the beneficiaries of the
1998 Hukou reform is not likely to have been caused by other nationwide reforms.

7. DISCUSSION

The significant role that the Hukou system plays in fostering education in rural areas may
partially correct the potential underinvestment problem in China. Economists argue that the
social benefits from education may significantly exceed the private benefits resulting from
substantial positive externalities of knowledge (Weisbrod, 1962; Acemoglu, 1996, 1998;
Lucas Jr, 1998). When taking into account the spill-over effect, social returns may be
well above private returns even if the government subsidy is included in the calculation

36The point estimate is 0.025 with a standard error of 0.042.
37The estimated discontinuity is -0.017 with a standard error of 0.017.
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(Psacharopoulos & Patrinos, 2004). This is likely to be the case in China given its low
education subsidy.38 Liu (2007) is the first to empirically test for a human capital spill-
over effect in China using individual level data. He finds substantial external benefits of an
additional year of schooling. These range from an 11% to a 13% increment in wages caused
by externalities, which is at least as great as the private benefits. His finding, combined
with a low subsidization index39 of 1.04 to 1.31 in China40(Hossain, 1997), implies that
the social returns exceed the private returns to education. This perception is in line with
Heckman (2003)’s argument that China invested too little in human capital compared to its
investment in physical capital.

Now, China is replacing the rural/urban Hukou with uniform identity Hukou. The gap
between social and private returns to education may be widened, which will hinder the
human capital accumulation in China. According to Fleisher, Li & Zhao (2010), if the
portion of workers with at least some high school education decreases by one percentage
point, the total factor productivity (TFP) decreases by about 0.5 percentage point a year
in China. Therefore, the slow down of human capital accumulation may influence China’s
long run economic growth pattern.

8. CONCLUSION

This paper analyzes the institutional returns to education under labor mobility restrictions.
Higher education serves as a tool to escape from poverty if it increases the probability of
obtaining identity in more developed areas. In particular, I estimate the additional returns
to education in China under the Hukou system.

As shown in this study, removing the institutional returns to education by directly grant-
ing urban Hukou decreases the high school attendance rate substantially by 8.7 to 30.5
percentage points among those holding rural Hukou and with at least some middle school
education. This negative effect is stronger for males and for those getting urban Hukou
in relatively rich areas. The drop in the high school attendance rate is mainly due to de-
creased high school enrollment rate for middle school graduates, except that the middle
school completion rate also drops for those obtaining urban Hukou in rich areas. In addi-
tion, there is suggestive evidence of an increased dropout rate for high school and above as
well. Therefore, the Hukou system has played an important role in encouraging high school
education after the nine years of mandatory schooling.

Unfortunately, the data do not allow for analyzing long term effects of obtaining urban
Hukou on other outcomes such as employment perspectives, wage earnings or marriage
market performance. Many individuals in my regression sample were still in school at the
time of the survey and most of them were under the legal marriage age in China.41 The
effects of obtaining urban Hukou on other long-term outcomes are important aspects for
future research.

Another limitation of this study is the generalizability of the results. On the one hand, an

38As one indicator, according to United Nations Educational, Scientific, and Cultural Organization (UN-
ESCO) Institute for Statistics, the Chinese government spent 1.9% of GDP on Education in 1999. This figure is
well below the world average of 4.2%.

39The index of public subsidization on education shows the ratio of social costs to private costs.
40The subsidization indices estimated by Hossain (1997) are 1.25, 1.04 and 1.31 for primary, secondary and

higher education respectively.
41The legal marriage age in China is 22 for male and 20 for female.
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individual with a urban father and a rural mother comes from an advantaged background
compared to a typical rural child with both parents holding rural Hukou. In addition,
their families are more likely to locate in urban areas, which grants easy access to better
education opportunities. On the other hand, late middle school finishers are likely to have
lower than average ability. Their response to obtaining urban status may be different from
early middle school graduates. Nonetheless, one thing that can be drawn from this study
is the existence of institutional returns to education. The Hukou system creates stronger
incentives for rural households to invest in human capital in China.

A few provinces have used uniform identity Hukou to replace the original rural/urban di-
chotomy since 2003. Understanding Hukou’s role in fostering education is crucial for China
during this transitional period. Because the elimination of the rural/urban Hukou status
erases the additional returns to high school education, human capital investment for rural
people may be negatively affected in terms of the high school attendance rate, the mid-
dle school graduation rate and the dropout rate for high school and above. Even though
individuals with rural origin are able to enjoy urban benefits and higher wages instantly,
their potential for career development and long term income will be restricted by limited
education. In addition, this low education trap is transferable across generations as a result
of positive correlation between education levels of parents and children. Even though the
disparity between rural and urban areas may be removed by uniform identity, within-urban
inequality may emerge based on different education levels.
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Figure 1: Treatment Determination Criteria
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Notes: According to the 1998 Hukou reform, individuals born in or after September 1980 inherited their mother’s Hukou would be eligible to change Hukou status according to

their father’s. Thus, children born in or after September 1980 with a mother holding rural Hukou and a father holding urban Hukou then had a chance to obtain urban status

immediately (criterion 1). However, not all these children’s high school enrollment decision would be affected by this policy change. Only those finishing middle school in or after

1998 had the chance to adjust their high school enrollment decision according to the new policy (criterion 2) as indicated in the shaded areas in this graph. The year distribution

is drawn according to the China Health and Nutrition Survey, which may differ from the information found in the 2000 census.
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Figure 2: Discontinuity in High School Attendance Rate
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Notes: High school enrollment rate for children with a father holding urban Hukou and a mother holding rural

Hukou. Sample used here includes individuals born between September 1971 and August 1986 with at least

some middle school education. Those still in middle school are excluded. Birth month is normalized with

Sept .1980= 0. The estimated discontinuity is reported in absolute value.

Figure 3: Discontinuity in Middle School Graduation Rate

0.
70

0.
80

0.
90

1.
00

M
id

dl
e 

S
ch

oo
l G

ra
du

at
io

n 
R

at
e

−100 −75 −50 −25 0 25 50 75

Birth month

Quadratic fit 95% C.I.
Six−month bin Cutoff value

Notes: Middle School dropout rate for children with a father holding urban Hukou and a mother holding rural

Hukou. Sample used here includes individuals born between September 1971 and August 1986 with at least

some middle school education. Those still in middle school are excluded. Birth month is normalized with

Sept .1980= 0. The estimated discontinuity is reported in absolute value.
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Figure 4: Discontinuity in Dropout Rate of High School and Above
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Notes: Dropout rate for children with a father holding urban Hukou and a mother holding rural Hukou. Sample

used here includes individuals born between September 1971 and August 1986 with at least some high school

education. Birth month is normalized with Sept .1980= 0. The estimated discontinuity is reported in absolute

value.
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Figure 5: Density Continuity for Birth Month with Quadratic Fit
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(b) Sample to Estimate Dropout Rate of High School and Above
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Notes: Birth month density for children with a father holding urban Hukou and a mother holding rural Hukou.

Birth month is normalized with Sept .1980 = 0. Sample used in the upper panel includes individuals born be-

tween September 1971 and August 1986 with at least middle school education. Those still in middle school are

excluded. The lower panel further restrict the sample to individuals with at least some high school education.
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Figure 6: Covariates Continuity of High School Attendance Rate
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Notes: Covariates continuity of the high school enrollment analysis for children with a father holding urban Hukou and a mother holding rural Hukou. Sample used here includes

individuals born between September 1971 and August 1986 with at least middle school education. Those still in middle school are excluded. Birth month is normalized with

Sept .1980= 0. The joint significance test using SUR fails to reject smoothness in covariates with a p-value of 0.9781.
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Table 1: Summary Statistics

SAMPLE/VARIABLE MEAN STANDARD DEV. N
Panel A: Characteristics of the full sample

Father education (middle school and above) 0.71 (0.45) 4772
Mother education (middle school and above) 0.34 (0.47) 4772
Gender (male=1) 0.63 (0.48) 4772
Number of siblings 1.36 (0.97) 3152
Panel B: Subsample used for estimations of the high school attendance rate

Father education (middle school and above) 0.74 (0.44) 2762
Mother education(middle school and above) 0.37 (0.48) 2762
Gender (male=1) 0.57 (0.50) 2762
Number of siblings 1.36 (0.98) 2191
High school attendance rate 0.46 (0.50) 2762
Panel C: Subsample used for estimations of the middle school graduation rate

Father education (middle school and above) 0.74 (0.44) 3246
Mother education(middle school and above) 0.37 (0.48) 3246
Gender (male=1) 0.57 (0.49) 3246
Number of siblings 1.36 (0.99) 2534
Middle school graduation rate 0.98 (0.13) 3246
Panel D: Subsample used for estimations of the dropout rate of high school and above

Father education (middle school and above) 0.81 (0.40) 1113
Mother education(middle school and above) 0.42 (0.49) 1113
Gender (male=1) 0.56 (0.50) 1113
Number of siblings 1.19 (0.90) 930
Dropout of high school and above 0.01 (0.12) 1113

Note: Data drawn from the 0.95h sample of the 2000 census. Panel A consists of individuals born between
September 1971 and August 1986 with a father holding urban Hukou and a mother holding rural Hukou. I
exclude respondents with education level lower than middle school and those still in middle school. Panel B,
Panel C and Panel D restrict the sample to individuals born within 43 months, 52 months and 37 months before
and after the threshold of September 1980, respectively. Panel D further restricts the sample to individuals with
at least some high school education.
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Table 2: Estimation Results for High School Attendance Rate

(a) First Stage: Sharp Design

ESTIMATION
Sample (1) (2) (3)
All -0.087∗∗ -0.0.072∗ -0.086∗∗

(0.042) (0.045) (0.041)
By Gender

Male -0.113∗∗ -0.113∗ -0.101∗

(0.054) (0.060) (0.053)
Female -0.058 -0.022 -0.069

(0.065) (0.068) (0.064)
By Region

Rich -0.124∗∗ -0.151∗∗ -0.140∗∗

(0.058) (0.061) (0.056)
Poor -0.049 -0.004 -0.034

(0.059) (0.064) (0.058)
Control Variables:

Father Education No Yes Yes
Mother Education No Yes Yes
Gender No Yes Yes
Number of Siblings No Yes No

Bandwidth (months) 43 43 43

(b) Second Stage: Rescaling

By Gender By Region
All Male Female Rich Poor

Prob. Discontinuity of -0.087∗∗ -0.113∗∗ -0.058 -0.124∗∗ -0.049
High School Attendance (0.042) (0.054) (0.065) (0.058) (0.059)
Proportion Treated 0.285 0.298 0.269 0.272 0.298
Local Average -0.305∗∗ -0.379∗∗ -0.216 -0.456∗∗ -0.164
Treatment Effect [0.143] [0.186] [0.243] [0.226] [0.206]
N 2762 1576 1186 1421 1341

Note: The sample is restricted to people with at least some middle school education, excluding those still in
middle school. Father education and mother education are measured as binary variables indicating middle
school and above. Sample used for local linear regressions with covariates as presented in panel (a) column
2 and 3 only consists of individuals with non-missing value of these additional explanatory variables. Local
average treatment effect is obtained as the ratio of the probability jump of high school enrollment to the
probability jump of treatment. The standard error of LATE is rescaled by treating the denominator as a constant
as a result of a slower convergence rate of the numerator. I also report the bootstrapped standard errors with
1000 replications in squared brackets. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1%
respectively.
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Table 3: Estimation Results for Middle School Graduation Rate

(a) First Stage: Sharp Design

ESTIMATION
Sample (1) (2) (3)
All -0.008 -0.009 -0.008

(0.010) (0.011) (0.011)
By Gender

Male -0.010 -0.011 -0.010
(0.015) (0.017) (0.015)

Female -0.007 -0.009- 0.009
(0.009) (0.010) (0.009)

By Region
Rich -0.025∗∗ -0.021∗ -0.025∗∗

(0.012) (0.012) (0.012)
Poor 0.010 0.004 0.010

(0.016) (0.017) (0.016)
Control Variables:

Father Education No Yes Yes
Mother Education No Yes Yes
Gender No Yes Yes
Number of Siblings No Yes No

Bandwidth (months) 52 52 52

(b) Second Stage: Rescaling

By Gender By Region
All Male Female Rich Poor

Prob. Discontinuity of -0.008 -0.010 -0.007 -0.025∗∗ 0.010
Middle School Graduation (0.010) (0.015) (0.009) (0.012) (0.016)
Proportion Treated 0.285 0.298 0.269 0.272 0.298
Local Average -0.028 -0.034 -0.026 -0.092∗∗ 0.034
Treatment Effect [0.035] [0.052] [0.044] [0.045] [0.052]
N 2762 1576 1186 1421 1341

Note: The sample is restricted to people with at least some middle school education, excluding those still in
middle school. Father education and mother education are measured as binary variables indicating middle
school and above. Sample used for local linear regressions with covariates as presented in panel (a) column
2 and 3 only consists of individuals with non-missing value of these additional explanatory variables. Local
average treatment effect is obtained as the ratio of the probability jump of high school enrollment to the
probability jump of treatment. The standard error of LATE is rescaled by treating the denominator as a constant
as a result of a slower convergence rate of the numerator. I also report the bootstrapped standard errors with
1000 replications in squared brackets. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1%
respectively.
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Table 4: Estimation Results for Dropout Rate of High School and Above

ESTIMATION
Sample (1) (2) (3)
All 0.044∗∗ 0.037∗∗ 0.046∗∗∗

(0.018) (0.018) (0.018)
By Gender

Male 0.046∗ 0.046∗ 0.047∗

(0.024) (0.027) (0.024)
Female 0.042∗ 0.027 0.043∗

(0.026) (0.021) (0.026)
By Region

Rich 0.050∗∗ 0.033 0.051∗∗

(0.025) (0.021) (0.026)
Poor 0.037 0.033 0.034∗

(0.024) (0.022) (0.020)
Control Variables:

Father Education No Yes Yes
Mother Education No Yes Yes
Gender No Yes Yes
Number of Siblings No Yes No

Bandwidth (months) 37 37 37

Note: The sample is restricted to those with at least some high school education. Father education and mother
education are measured as binary variables indicating middle school and above. Sample used for local linear
regressions with covariates as presented in column 2 and 3 only consists of individuals with non-missing value
of these additional explanatory variables. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1%
respectively.
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Table 5: Bandwidth Sensitivity of High School Attendance Rate (First Stage)

Parametric

Quadratic Quartic
Sample Nonparametric No Cont. Controls No Cont. Controls
Bandwidth
(months)

20 30 40 50 - - - -

All -0.114∗ -0.097∗∗ -0.089∗∗ -0.077∗∗ -0.092∗∗ -0.067∗∗ -0.127∗∗ -0.133∗∗

(0.061) (0.049) (0.043) (0.038) (0.037) (0.033) (0.054) (0.046)
By Gender

Male -0.162∗∗ -0.140∗∗ -0.120∗∗ -0.092∗ -0.116∗∗ -0.076 -0.163∗∗ -0.217∗∗∗

(0.079) (0.064) (0.056) (0.050) (0.049) (0.051) (0.074) (0.080)
Female -0.052 -0.046 -0.053 -0.062 -0.060 -0.054 -0.077 -0.026

(0.094) (0.077) (0.067) (0.060) (0.066) (0.060) (0.101) (0.090)
By Region

Rich -0.164∗ -0.144∗∗ -0.128∗∗ -0.112∗∗ -0.115∗∗ -0.141∗∗∗ -0.129∗ -0.206∗∗∗

(0.085) (0.069) (0.060) (0.053) (0.054) (0.053) (0.076) (0.073)
Poor -0.065 -0.049 -0.049 -0.040 -0.061 0.013 -0.127∗ -0.083

(0.086) (0.070) (0.061) (0.055) (0.053) (0.057) (0.076) (0.085)

Note: Sample restricted to those with at least high school education. Father education and mother education are measured as binary variables
indicating middle school and above. Sample used for local linear regressions with covariates as presented in column 2 and 3 only consists of
individuals with non-missing value of these additional explanatory variables. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1%
respectively.
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Table 6: Bandwidth Sensitivity of Middle School Graduation Rate (First Stage)

Parametric

Quadratic Quartic
Sample Nonparametric No Cont. Controls No Cont. Controls
Bandwidth
(months)

30 40 50 60 - - - -

All -0.007 -0.008 -0.008 -0.006 -0.019∗ -0.020∗ -0.006 -0.004
(0.013) (0.011) (0.010) (0.009) (0.011) (0.012) (0.017) (0.016)

By Gender
Male -0.011 -0.010 -0.010 -0.009 -0.027∗ -0.027∗ -0.012 -0.002

(0.022) (0.018) (0.016) (0.014) (0.015) (0.015) (0.025) (0.025)
Female -0.004 -0.007 -0.008 -0.004 -0.011 -0.011 -0.001 -0.008

(0.009) (0.009) (0.009) (0.009) (0.012) (0.013) (0.012) (0.014)
By Region

Rich -0.022 -0.023∗ -0.025∗∗ -0.023∗∗ -0.034∗ -0.023 -0.022 -0.018
(0.016) (0.014) (0.012) (0.012) (0.018) (0.016) (0.032) (0.024)

Poor 0.009 0.008 0.009 0.011 -0.003 -0.014 0.011 0.012
(0.021) (0.018) (0.016) (0.014) (0.017) (0.020) (0.025) (0.028)

Note: Sample restricted to those with at least high school education. Father education and mother education are measured as binary variables
indicating middle school and above. Sample used for local linear regressions with covariates as presented in column 2 and 3 only consists of
individuals with non-missing value of these additional explanatory variables. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1%
respectively.
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Appendices

A. REGRESSION DISCONTINUITY WITH UNOBSERVED TREATMENT VARIABLE

A.1 Sharp and fuzzy regression discontinuity design

There are two types of regression discontinuity design in the literature: sharp and fuzzy.
Sharp design requires the probability of treatment jumps from zero to one at the cutoff
point of the assignment variable. It could be illustrated in the following model:

yi = αi + x i × βi + εi

x i =

(

1 if zi ≥ z0

0 if zi < z0,

where
yi is the outcome variable;
x i is the treatment indicator taking the value of one if individual i is treated and zero
otherwise;
εi is a random error term;
zi is the assignment variable with a cutoff value of z0.
For all zi ≥ z0, the probability of treatment is one. For all zi < z0, the probability of
treatment is zero.

Fuzzy design only requires that E[x i | zi = z] = Pr[x i = 1 | zi = z] is discoutinuous
at z0, allowing the jump of the probability of treatment to be less than one. x i is not
a deterministic function of zi anymore. Instead, it is determined by zi along with other
unknown variables.

Following Hahn, Todd & Van der Klaauw (2001), RD design is valid under the following
assumptions:

Assumption RD:

(i) The limits x+ ≡ limz→z+0
E[x i | zi = z] and x− ≡ limz→z−0

E[x i | zi = z] exist.

(ii) x+ 6= x−.

Assumption A1

E[αi | zi = z] is continuous in z at z0.

Assumption A3

(i) (βi, x i(z)) is jointly independent of zi near z0.
(ii) There exists ε > 0 such that x i(z0 + e) ≥ x i(z0 − e) for all 0< e < ε.

The treatment effect of fuzzy design could be identified as

β f uzz y = lim
e→0+

E[βi | x i(z0 + e)− x i(z0 − e)] =
y+ − y−

x+− x−
,

which identifies the local average treatment effect for whose treatment status changes dis-
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continuously at z0. A special case is sharp design:

βsharp = y+ − y−

Given consistent estimators ŷ+, ŷ−, x̂+ and x̂−, the treatment effect can be consistently esti-

mated by ŷ+− ŷ−

x̂+− x̂−
. Local linear regression is a common choice here to overcome the boundary

problem of kernel regression. Under certain assumptions, the asymptotic distribution can
be derived as:

Theorem 1:

n
2
5 (β̂ f uzz y − β f uzz y ) = n

2
5 (

ŷ+ − ŷ−

x̂+− x̂−
−

y+ − y−

x+− x−
)→ N(µ f , Ω f )

42 (A.1)

Theorem 1’:

n
2
5 (β̂sharp − βsharp) = n

2
5 ( ŷ+ − ŷ− − (y+ − y−))→ N(µs, Ωs) (A.2)

A.2 Weighted sharp design

In sharp design, zi perfectly predicts x i. There is no need to collect data on x i. In fuzzy
design, however, individual level of x i is required to perform 2SLS using zi to instrument
x i and estimate x+ and x−. There are also cases between these two when aggregate level
information of x i is enough for estimation. I call it weighted sharp regression discontinuity

design. It has the following structure with I1 as an indicator function of zi and I2 as an
indicator function of the other treatment determinant di:

yi = αi + x i × βi + εi

x i = I1(zi ≥ z0)× I2( f (di, d0)≥ 0),

where d0 is a known constant. The treatment effect can be identified as:

βweighted =
limz→z+0

E[yi | zi = z]− limz→z−0
E[yi | zi = z]

limz→z+0
E[x i | zi = z]− limz→z−0

E[x i | zi = z]

=
y+ − y−

x+ − x−

=
y+ − y−

x+
(since x− = 0)

There are two potential ways to estimate the treatment effect. On the one hand, if informa-
tion on di is available and f (·) is known, sharp design fits the scenario using a subsample
with I2(·) = 1. On the other hand, if di is unobserved but x i is known, we can use zi to
instrument x i and implement 2SLS as in fuzzy design. However, neither of the conventional
methods is applicable when both x i and di are unobserved.

Even though the rescaling formula above is similar to fuzzy RD, weighted sharp RD design
has a different nature from fuzzy case. In fuzzy RD, x i is a random variable given zi . In

42Please refer to Hahn, Todd & Van der Klaauw (2001) for detailed expression.
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weighted sharp case, however, the treatment determination process is clear(or “sharp”).
The only problem is the observability of di. The transparent treatment determination rule
allows for the estimation with aggregate data on di.

In order to estimate x+
i

, I rewrite it as

x+
i
= lim

z→z+0

E[x i | zi = z]

= lim
z→z+0

{E[x i | zi = z, I2 = 1]× Pr[I2 = 1 | zi = z]+

E[x i | zi = z, I2 = 0]× Pr[I2 = 0 | zi = z]}
= lim

z→z+0

Pr[I2 = 1 | zi = z] .

The third equality is derived since E[x i | zi = z, I2 = 1] = 1 and E[x i | zi = z, I2 = 0] = 0.
Without individual observations of di, I can calculate x+ using conditional probability of
I2 = 1. A simple case is when zi is independent to di for zi ≥ z0. Then

x+
i
= Pr[I2 = 1] .

A.3 Estimation of the simple case

Pr(I2 = 1) can be estimated if another data set is available from the same population with
the same sampling rule. Consider the following simplified model:

yi = αi + x i × βi + εi (A.3)

x i = I1i(zi ≥ z0)× I2i(di ≥ d0)
43 (A.4)

Assumption 1:

zi and di are independent for zi ∈ [z0,∞).44

Assumption 2:

I2i is i.i.d. with E[I2i] = µd and Var[I2i] = σ
2
d
.

By Central Limit Theorem,
µ̂d −µd

σd/
p

n
→ N(0, 1) .

Therefore,

n
1
2 ( x̂+− x+) = n

1
2 (µ̂d

+ −µ+
d
)→ N(0,σ2

d)

with a convergence rate of n
1
2 . From Hahn, Todd & Van der Klaauw (2001) Theorem

43In this paper, yi is the high school enrollment decision for each individual. zi denotes for birth month with
a threshold of z0=Sept. 1980, and di is the age making high school decision with d0=17. x i is the treatment
status which equals to one if individual was born in/after Sept. 1980 AND finished middle school at an age no
less than 17.

44The context of this study only satisfies this independence assumption locally as discussed in Section 4.
Thus, I bootstrap to get standard error in the empirical analysis.
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1’,

n
2
5 ( ŷ+ − ŷ− − (y+ − y−))→ N(µs, Ωs)

with convergence rate of n
2
5 . Because ( ŷ+ − ŷ−) converges at a slower rate than x̂+, it is

easy to show that

n
2
5 (

ŷ+ − ŷ−

x̂+
−
(y+ − y−)

x+
)→ N(

µs

µd

,
Ωs

µ2
d

) . (A.5)

Only sample mean µd is required for estimation. This result can be applied to situations
where individual level treatment information is missing but aggregate level data (proportion
treated) is available either in original data set or in additional data set using same sampling
rule.

A.4 Treatment effect

The model setting of weighted sharp design is another form of departure from the clas-
sic sharp design in addition to the fuzzy design. A two-step procedure is suggested: first
estimate outcome discontinuity at a threshold using the sharp design estimator shown in
equation (A.2); then rescale it with the proportion treated (weight). The effect identified
could be explained as the average treatment effect on treated(ATT) for the subgroup with
di = 1. The major drawback of this method is that the estimated effect cannot be used
to infer the average treatment effect(ATE) for the population. Nevertheless, it is no worse
than the local average treatment effect(LATE) obtained in the fuzzy design using 2SLS. Con-
sider the following fuzzy setup with observed x i and zi but unknown relationship between
them:

yi = αi + x i × βi + εi (A.6)

x i = f (zi) + νi, (A.7)

where νi is a pure random error and all other notations are the same as before. The local
linear estimator for fuzzy design is numerically equivalent to IV estimator using zi as instru-
ment for x i. The estimated LATE is only applicable to the subgroup whose treatment status
changes when zi moves from below z0 to above. This is exactly the same effect identified
using weighted sharp setup if treatment status in equation (A.7) is truly determined by zi

and di as shown in equation (A.4).

In order to compare the results obtained from fuzzy estimator (A.1) and weighted sharp
estimator (A.5), I use each method separately to estimate the treatment effect using the
same randomly generated data:

• zi is uniformly distributed in [−50,50];

• P[di = 1] = 0.5 if zi ≥ 0 and P[di = 1] = 0 otherwise;

• treatment status x i = I1i(zi ≥ 0)× I2i(di = 1)

• α = 0.5 and the underlying real treatment effect β is -0.3;

• yi = α+ x i × β + εi with εi normally distributed with mean 0 and variance 1.

I use data on yi, zi , and di in weighted sharp estimation and yi , zi , and x i in fuzzy estima-
tion. I draw 1000 observations each time, and repeat the estimation procedure for 5000
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times with a bandwidth of 18. As shown in Figure B.1, the two methods generate similar
results.

A.5 Generalization

This result could be generalized to situations with more than one additional variables de-
termining treatment status:

x i = I1i(zi ≥ z0)× I2i( f (d1i, d2i · · ·dki, d0)≥ 0)

where d ji for j = 1, · · · , k could be either discrete or continuous. If d jis are jointly indepen-
dent of zi near z+0 , then aggregate level statistics is enough for estimation.

The “quasi-experimental” regression discontinuity design could be applied to more empir-
ical cases, especially for research on developing countries where the observability of indi-
vidual level data is a prevalent problem.
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B. ADDITIONAL FIGURES AND TABLES

Figure B.1: Comparison Between the Weighted sharp and Fuzzy estimators
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Figure B.2: Discontinuity Search in High School Attendance Rate
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Table B.1: Criteria for Identifying Parent-Child Relationship

RELATIONSHIP FATHER IDENTIFICATION MOTHER IDENTIFICATION

Household head
Relationship: parent Relationship: parent
Gender: male Gender: female

Sibling
Relationship: parent Relationship: parent
Gender: male Gender: female

Spouse
Relationship: parent in law Relationship: parent in law
Gender: male Gender: female

Child
Relationship: HH head/spouse Relationship: HH head/spouse
Gender: male Gender: female

Grandchild

Relationship: Relationship:
child/son in law child/daughter in law
Gender: male Gender: female
If relationship to HH head If relationship to HH head
is child, he/she has to be is child, he/she has to be
the only child the only child

Note: “Relationship” refers to relationship to household head. The indentification criteria are based on the
individual’s relationship to household head listed in the first column. For example, the father of a household
head can be identified if one’s relationship to household head is “parent” and gender is “male” in a given
household. The mother of the spouse of a household head can be identified if one’s relationship to household
head is “parent in law” and gender is “female”.
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C. DIFFERENCE IN DIFFERENCE ESTIMATION

C.1 Identification Strategy

According to the Hukou reform in 1998, Children under 18 by September 1998 who fol-
lowed their mother’s Hukou then had a chance to change it according to their father’s.
Therefore, those born in or after September 1980 with their mother holding rural Hukou
and father holding urban Hukou are beneficiaries of this reform. Nevertheless, their high
school attendance decisions could only be affected if they were made after the reform if the
1998 Hukou policy change is fully unexpected.

China has a school starting date of September 1. Children reach six years old before Septem-
ber 1 that year are eligible to start nine years of mandatory education, with six years of
primary school and three years of middle school. The majority of students finish middle
school at an actual age of 15 or older, where the actual age is defined as the age at one’s
last birthday.45 I use the sub-sample born between September 1979 and August 1983 with
at least some middle school education in the following analysis. The 1998 Hukou reform
affected the high school decisions of most of the Sept.1982-Aug.1983 cohort, part of the
Sept.1980-Sept.1981 and Sept.1981-Sept.1982 cohorts, and none of those born between
September 1979 and August 1980. The high school attendance rate is expected to drop
for people born in later academic years. The effect of policy change could be identified by
comparing cohort born in the first academic year in the sub-sample and those born in the
last.

However, simple comparison of high school attendance outcomes across birth year cohorts
cannot disentangle the effect of obtaining urban Hukou on one’s education from the time
trend. Chinese government expanded educational investment in 1990s. Private investment
increased as well due to the relaxed of school regulations. The dramatic increase in supply
side may lead to an increase in educational attainment, disguising the decreased demand.
Figure C.3 shows the proportion enrolled in high school for cohorts born in different aca-
demic years. It drops at first then rises for the treatment group. The youngest cohort was
slightly more likely to enroll in high school than the oldest cohort whose high school deci-
sions were not affected by the new policy.

I use a difference in difference strategy in order to capture unobserved changes that affect
schooling decision across time. The control group includes children born between Septem-
ber 1979 and August 1983 with both parents holding urban Hukou. They should not be
affected by the 1998 Hukou reform. I also include year dummies and province dummies
for additional control. As shown in Figure C.3, the high school enrollment gap between the
treatment and control groups increased from around 26 percentage points to 35 percentage
points across birth years.

45For example, the actual age of a child born in September 1, 1980 is 17 on any date between September 1,
1997 and August 31, 1998. His/her actual age reaches 18 on September 1, 1998.
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C.2 Regression Specifications

I estimate the effect of obtaining urban Hukou on education using the following regression
model:

Yi t j = α×
∑

t i + β ∗
∑

(t i × Ii(M = rural)) + γ× Ii(M = rural)+

η×
∑

PROVI + δ× x i t j + εi t j (C.8)

where Yi t j is a binary variable taking value of one if person i born in academic year t

with family type of j( j = 1 if mother’s hukou is rural) attend high school. t is are birth
year dummies indicating if individual i was born in 1979-1980, 1980-1981, 1981-1982
or 1982-1983 birth year with the oldest cohort as default. All birth years are measured
in academic calendar year. For example, people born between Sept.1979 and Aug.1980
are assigned birth year of 1979-1980. Ii is an indication function taking value of 1 if the
mother of individual i’s holds rural Hukou. PROVi is a set of province dummies indicating
where the individual i’s Hukou belongs when taking high school entrance exam. X i t j is a
vector of individual characteristics including gender, minority status, number of siblings,
parent’s education and occupation of father. εi t j is assumed to be exogenous and captures
unexplained variations of the dependent variable. The interaction term

∑

(t i × I(M =

rural)) for t i=1982-1983 is the variable of interest. Its coefficient captures the effect of
the policy change on education of the treatment group.

Hukou province dummies are used to control for different competition level across province
since there’s admission quota for each province. The census data only report current Hukou
location at the time of survey. It might be different from Hukou location at the time of
taking the high school entrance exam as a result of transferring Hukou to father’s side or
changing through enrollment of technical school/college. Since Hukou is inherited from
mother for newborn children, mother’s Hukou location recorded in 2000 census is used
here for approximation. It is also relatively consistent over time.

Parents’ educations are used to capture inter-generational education linkage that affects
Yi. In addition, mother’s education influenced the variable of interest: mother’s Hukou
type. Excluding mother’s education may cause omitted variable bias. I use dummies for
each education level46 instead of years of school to better account for possible nonlinear
relationship of education across generations.

Lacking of income information in the 2000 census, I use father’s occupation variable to
proxy financial capability. There are two occupation variables used: dummy variable of em-
ployment status and social rank variable. I convert the Chinese census 3-digit occupational
code to the International Standard Classification of Occupations (ISCO68), and then con-
vert the ISCO code to International Social-Economic Index (ISEI) following Ganzeboom, De
Graaf and Treiman(1992) and Deng and Treiman(1997). The ISEI score scales occupations
by the average level of education and average earnings of jobholders from 0 to 100. I use
it as proxy for income. Mother’s occupation may affect children’s educational attainment
as well. However, it may be determined by the variable of interest, mother’s Hukou type. I
exclude mother’s occupation to avoid potential biases.

I first estimate equation (C.8) using ordinary least square (OLS) with robust standard error.

46They range from no school to college in census as following: illiteracy, primary school, middle school,
regular high school, technical high school, junior college, college, graduate and above. I combine the last two
categories, as there are few observations in each of them.
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The Linear Probability Model is simple to estimate and allows for heteroscedasticity in error
terms.

However, the predicted probability in OLS models may exceed the range between zero
and one. A nonlinear probability model has the advantage of restricting probability within
[0,1]. Assuming error terms are normally distributed, I estimate the following equation
using Probit regression with latent variable Y ∗i t j. It is more efficient than OLS given correctly
specified error distribution.

Y ∗i t j = α×
∑

t i + β ∗
∑

(t i × Ii(M = rural)) + γ× Ii(M = rural)+

η×
∑

PROVi + δ× x i t j + εi t j (C.9)

Yi t j =

(

1 if Y ∗i t j ≥ 0

0 if Y ∗i t j < 0

The Probit results may be biased if the error distribution is not normal. I re-estimate the
model using semi-parametric Klein and Spady estimator,47 which allow for more flexible
functional form and does not impose any restriction on the structure of error terms. It
achieves root N convergence rate under the single index assumption: the probability that
the dependant variable is equal to one is a function only of the index Z ′

i t j
Γ, where Zi t j is the

vector of all explanatory variables in previous specification and Γ denotes their respective
coefficients.

Yi t j = f (Z ′i t jΓ) + εi t j (C.10)

C.3 Estimation Results

The descriptive statistics for major variables used in regression is shown in Table C.2 for
treatment group, control group and total sample separately. There are significant dif-
ferences in demographic characteristics between the treatment and control groups. Even
though high school choice for these two groups are different, the effect of the policy change
could be correctly estimated as long as the time trend of high school enrollment is the same
across groups.

As show in Table C.3 Column 1-4, All three methods discussed above show significant 7 to
10 percentage points drop of high school attendance rate given the opportunity to change
Hukou status. It implies that future chance of obtaining urban Hukou amounts for a con-
siderable portion of returns to high school education.

One concern is the county level variation of the primary school length. Primary school takes
six years in most counties while some lasts for five years in rural China. Those attending five
years of primary school graduate from middle school one year earlier than their counterpart,
thus the birth year variable fails to predict whether they are influenced by 1998 policy or
not. The 2000 census does not have information regarding the length of primary school
each individual attended. However, I could infer the primary school pattern for each county
from another nationwide survey: the Household Income Project (CHIP) 2002. It does not
directly ask for primary school length but contains information about years of schooling.
For a subsample with only middle school degree, the length of primary school is expected

47For detailed information, please refer to Klein, R. and R. Spady (1993)
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to be five if there are more people obtaining eight years of schooling instead of nine in
each county. Since both 2000 census and CHIP2002 share the same area code, I can match
counties across datasets and infer the length of primary school for each county in 2000
census. I exclude those attending five years of primary school and re-estimate equation
(C.9) using Probit.

Based on this data mapping method, 600 individuals are identified as attending five years
of primary school, which accounts for 7% of the total sample of 8478. I re-estimate the
Probit model excluding these individuals as a robustness check. The results are presented
in Table C.3, Column 5 with the average marginal effects reported in Column 6. There is
9 percentage points drop in the high school attendance rate due to decreased returns to
education. Even though only part of the 1981-1982 birth cohort are able to change high
school decision according to the new Hukou policy, their high school attendance rate also
significantly decreases by 6 percentage points.
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C.4 Figures

Figure C.3: High School Enrollment Rate by Birth Years
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C.5 Tables

Table C.2: Summary Statistics for 2000 Census

TREATMENT CONTROL FULL SAMPLE
Variables Mean Std. dev. Mean Std. dev. Mean Std. dev.

Father Education

Literacy 0.004 (0.062) 0.001 (0.035) 0.002 (0.041)
Primary School 0.204 (0.403) 0.107 (0.309) 0.122 (0.327)
Middle school 0.408 (0.492) 0.455 (0.498) 0.448 (0.497)

Reg. High school 0.170 (0.376) 0.213 (0.410) 0.207 (0.405)
Tech. High School 0.154 (0.361) 0.075 (0.264) 0.087 (0.282)

Junior College 0.051 (0.220) 0.111 (0.314) 0.102 (0.303)
College and Above 0.003 (0.056) 0.032 (0.175) 0.027 (0.163)
Mother Education

Literacy 0.027 (0.162) 0.008 (0.090) 0.011 (0.105)
Primary School 0.468 (0.499) 0.164 (0.370) 0.210 (0.407)
Middle school 0.320 (0.467) 0.443 (0.497) 0.424 (0.494)

Reg. High school 0.100 (0.301) 0.231 (0.421) 0.211 (0.408)
Tech. High School 0.005 (0.068) 0.071 (0.258) 0.061 (0.240)

Junior College 0.001 (0.028) 0.048 (0.214) 0.041 (0.198)
College and Above 0.000 (0.000) 0.012 (0.108) 0.010 (0.100)
Number of Siblings 1.328 (0.902) 0.523 (0.789) 0.646 (0.858)
Gender(Male=1) 0.561 (0.496) 0.521 (0.500) 0.527 (0.499)
Minority(Yes=1) 0.086 (0.281) 0.074 (0.261) 0.075 (0.264)

Father Employment
0.845 (0.362) 0.826 (0.379) 0.829 (0.377)

(Yes=1)
Father ISEI 38.392 (24.361) 37.689 (22.188) 37.796 (22.534)

N 1295 7183 8478

Note: This is a subsample drawn from 0.95ä of 2000 census based on birth month and parentsÕ Hukou type as

described in text. I exclude respondents with education level lower than middle school and those still in middle

school. The subsample is restricted to individuals with non-missing information of all the variables listed in first

column.

App. 13



Table C.3: Estimation Results of Difference in Difference Approach

OLS PROBIT KLEIN & SPADY
PROBIT

(6 yrs pri. sch.)
Variables (1) (2) (3) (4) (5) (6)

Father Education

Literacy -0.011 -0.047 -0.013 0.072 -0.204 -0.059
(0.123) (0.427) (0.453)

Primary School 0.089 0.262 0.064 -0.044 0.222 0.054
(0.069) (0.198) (0.218)

Middle school 0.155∗∗ 0.457∗∗ 0.120 -0.008 0.426∗∗ 0.110
(0.068) (0.196) (0.215)

Regular High school 0.213∗∗∗ 0.654∗∗∗ 0.146 0.064 0.615∗∗∗ 0.136
(0.069) (0.199) (0.218)

Technical High School 0.224∗∗∗ 0.713∗∗∗ 0.143 0.091 0.651∗∗∗ 0.131
(0.070) (0.206) (0.225)

Junior College 0.246∗∗∗ 1.007∗∗∗ 0.180 0.184 0.975∗∗∗ 0.172
(0.069) (0.212) (0.231)

College and Above 0.223∗∗ 1.064∗∗∗ 0.168 0.131 0.973∗∗∗ 0.157
(0.070) (0.273) (0.290)

Mother Education

Literacy -0.012 -0.087 -0.024 -0.086 -0.138 -0.039
(0.060) (0.159) (0.169)

Primary School 0.070∗∗ 0.157∗ 0.041 -0.006 0.101 0.026
(0.033) (0.091) (0.094)

Middle school 0.109∗∗∗ 0.284∗∗∗ 0.075 0.019 0.237∗∗ 0.062
(0.032) (0.091) (0.095)

Regular High school 0.170∗∗∗ 0.549∗∗∗ 0.127 0.092 0.511∗∗∗ 0.117
(0.033) (0.098) (0.102)

Technical High School 0.196∗∗∗ 0.923∗∗∗ 0.163 0.217 0.894∗∗∗ 0.157
(0.034) (0.138) (0.144)

Junior College 0.220∗∗∗ 1.469∗∗∗ 0.193 0.244 1.406∗∗∗ 0.186
(0.034) (0.225) (0.228)

College and Above 0.194∗∗∗ 1.120∗∗∗ 0.167 0.048 1.043∗∗∗ 0.159
(0.038) (0.363) (0.368)

Number of Siblings -0.087∗∗∗ -0.293∗∗∗ -0.079 -0.126 -0.289∗∗∗ -0.076
(0.007) (0.022) (0.023)

Gender(Male=1) -0.051∗∗∗ -0.208∗∗∗ -0.056 -0.093 -0.200∗∗∗ -0.053
(0.008) (0.034) (0.035)

Minority(Yes=1) 0.025 0.072 0.019 0.041 0.093 0.024
(0.018) (0.068) (0.070)

Father Emp.(Yes=1) -0.058∗∗∗ -0.203∗∗∗ -0.051 -0.082 -0.195∗∗∗ -0.048
(0.020) (0.068) (0.071)

Father ISEI 0.002∗∗∗ 0.009∗∗∗ 0.002 0.003 0.009∗∗∗ 0.002
(0.000) (0.001) (0.001)

Treatment(Yes=1) -0.154∗∗∗ -0.422∗∗∗ -0.128 -0.171 -0.391∗∗∗ -0.116
(0.030) (0.088) (0.093)

Y80-81*treatment -0.033 -0.102 -0.029 -0.030 -0.136 -0.038
(0.041) (0.120) (0.127)

Y81-82*treatment -0.043 -0.153 -0.044 -0.057 -0.215 -0.062
(0.040) (0.115) (0.121)

Y82-83*treatment -0.074∗ -0.321∗∗∗ -0.097 -0.100 -0.311∗∗ -0.093
(0.041) (0.119) (0.126)

N 8478 8477 8478 7877
(Pseudo) R2 0.204 0.200 - 0.203

Notes: Coefficients for birth cohort and Hukou province dummies are not reported. Column 1-4 reports re-
gression results based on a full sample of 8478 while the last two columns excludes individuals attending
five year primary school. Coefficients reported in Column 3 and column 6 are calculated marginal effect for
corresponding Probit model. Asterisks ∗, ∗∗ and ∗∗∗ denote significant levels of 10%, 5% and 1% respectively.
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