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Abstract

This paper studies the sensitivity of estimates on various assump-

tions about aggregation in modeling the school�s e¤ect in child edu-

cational production. Building a structural model to control the endo-

geneity of school qualities in the production function, the authors uses

Monte Carlo simulations to evaluate the performance of a "correct"

aggregation educational production model versus simple aggregation

educational production model in estimating school resources�e¤ect on

academic outcome. Comparion of both speci�cations to the bench-

mark model without aggregation shows that the simple aggregation of

school resources over a geographic area causes serious speci�cation er-

rors, and thus generate biased estimates for the marginal contribution

of the school resources to test scores. Fortunately, such biasedness can

be minimized by using the "correct" aggregation speci�cation.

1 Introduction

Research on the estimated e¤ect of additional resources to local schools

has direct implications for tax policies and government budgets. If school
�NIH/NICHD grant (1R01HD047213) provides partial support for this research.We

thank Palmetto Cluster at Clemson University, Ithaca and Hokieone Cluster at Virginia
Tech. for their help to run large Fortran jobs crucial to the success of conducting this
research.
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policies are undertaken with a biased estimate of school inputs, they can

cause an enormous waste of society�s resources. For example, it is mentioned

in Hanushek (1997) that pupil-to-teacher ratio has been found as a major

force driving student outcome, which leads the average pupil-to-teacher ratio

in US public schools to fall from 28 percent to less than 16 percent over the

1940 to 1990 period. Even with this drop in the pupil-to-teacher ratio, the

test scores of primary and secondary school students show no improvement

across the nation during this time period.

In studying the e¤ect of schools on educational reform, the literature in-

puts a wide range of e¤orts. According to a recent review by Hanushek,

Rivkin and Taylor (1996), there were 277 separate investigations of the

school quality indicator: pupil-to-teacher ratio, and 163 studies about one

of the other quality measure of schools - expenditure per pupil. Endless re-

search e¤orts notwithstanding, little consensus has been reached about the

magnitude or even the direction of the school�s role in a child�s education.

Some studies in school performance yield a simple conclusion that there is

no strong or consistent relationship between school resources and student

performance (Childs and Shakeshaft (1986), Glass and Smith (1979)). Con-

versely, the widely publicized �ndings of Card and Krueger (1990), together

with several other studies (Johnson and Sta¤ord (1973), Link and Ratledge

(1975), Rizzuto and Wachtel (1980)) indicate that variations in school re-

sources are related to returns to education.

To explain the discrepancies of �ndings about school e¤ects, several stud-

ies proposes a number of reasons. Firstly, Todd and Wolpin (2007) posit that

most of the previous estimations of the child educational production func-

tion failed to accommodate the fact that educational policies and household

behavior interact to determine student outcomes. The positive raw corre-

lation between school spending and test outcome disappears when family

background is controlled in the estimation. Secondly, Heckman, Layne-

Farrar and Todd (1996) points out that endogeneity biases take e¤ect when

there are correlations among the di¤erent inputs from school, family, and

student preparations. For example, parents make systematic school choices

through migration, meaning that "good" parents self-select themselves into
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better school districts. This belief confounds the task of sorting out the

school�s e¤ect from the parents�e¤ect. Thirdly, Loeb and Bound (1995)1,

and Hanushek et al. (1996) show the importance of data characteristics in

explaining the con�ict in the �ndings of school e¤ectiveness studies. They

point out that signi�cant positive school e¤ects frequently appear in edu-

cational outcome studies using aggregate data, while strong school e¤ects

are not found when micro level data are used. As suggested in Hanushek

et al. (1996), aggregation can alter the magnitude of omitted variable bias

and implies upward bias of estimated school resource e¤ects.

This paper set up a structural model to simultaneously address the en-

dogeneity problem of school choices together with the aggregation problems

in measuring school resources. Folding the migration decisions of parents

into the child educational production function, we specify a random para-

meters model for the collective decisions about school choices and parental

input - i.e., in the joint estimation of school choices and the educational

production function, we allow the educational outcome to depend on the

same unmeasured family preference factor that a¤ects the family�s school

choice. Parents are assumed to choose a school district based on the quality

of that particular school district, and student outcome is achieved based on

the quality of the chosen school district. In order to show the aggregation

bias caused by assuming both the location choice outcome and student out-

come are based on the school qualities aggregated to the county level, we

compare our "correct" aggregation model with a simple aggregation model

in a Monte Carlo study based on school district information extracted from

1994 Common Core of Data2. We �nd that the widely used production func-

tion model with aggregated resources can cause serious speci�cation errors

that increase the endogeneity bias. We experiment with di¤erent assump-

tions about the heterogeneity pattern of the unobserved preference factor

on the three models and �nd that speci�cation errors generated by simple

1Loeb and Bound (1995) found large school e¤ects using division level aggregation data.
They argue that the di¤erence in data characteristics could crucially a¤ect estimation
�more than the di¤erences in outcome measures or biases from labor market in�uences�.

2Survey conducted by National Center for Educational Statistics (NCES).
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aggregation can be overcome by "correctly" aggregating the resources over

a geographic area.

The paper is organized as follows: Section II provides a brief review of

the relevant literature. Section III lists the three di¤erent modeling speci�-

cations of the joint distribution of school choice and educational production

function, and section IV applies the three models to a Monte Carlo experi-

ment. Section V provides concluding remarks.

2 Background

Early studies of school e¤ectiveness, e.g. Oates (1969) and Kain and Quigley

(1970) focus on the linear relationship between school resources and child

educational achievement or local housing value outcomes3. This group of

studies, which is recognized as "hedonic pricing" model or "linear test out-

come projections", has a number of shortcomings. The �rst is related to

the fact that school inputs and family inputs are both important factors

a¤ecting child academic achievement. Estimations of school e¤ects could be

severely biased if there is no control for family background, the models im-

plicitly assume that the marginal impact of school e¤ects is the same across

all socioeconomic background or academic skill of the students. The second

problem proven to be more crucial in the estimation arises from the fact that

school input and parental inputs are inter-correlated. The school resources

a child is receiving is endogenous because they are not "given", but "cho-

sen" by his/her parents through sorting on locations. Tiebout (1956) and

Bayer (2000) emphasizes the importance of the systematic location choice

of families and the possible impact of that on the performance of the fam-

ily members. This unobserved preference factor is quite important, as it

not only a¤ects location choice of the family, but also a¤ects the choices

concerning their children�s education, including choices among various com-

plementary programs that aid in the learning and choices of helping children

with their daily studies.

3Studies of housing values shows that school inputs have been capitalized into housing
price (Blackburn, Bloom and Freeman (1991)).

4



Hanushek et al. (1996) use a linear model under omitted variable and

measurement error assumptions to demonstrate that the aggregation of all

school characteristics to the state level in the production function unam-

biguously bias the schooling parameters upward if some of the state level

impact factors are omitted in the estimation. For example, some states may

improve teacher competence regulations that ensure the better quality of

teachers while maintain the same state average key school quality metrics4.

The estimated e¤ects of schools would undoubtedly bias upwards if the

teacher competence regulations are neglected in the estimation. Hanushek

et al. (1996) highlighted the reasons why a perfect control of between-state

school characteristics variations is hard to achieve: Schools in the United

States are organized by di¤erent states and counties and thus follow di¤er-

ent types of policies depending on state resources/preference. For example,

"Some 37 states have forms of teacher competency testing, while others do

not, and details about the requirements for teachers vary a lot", "Policies

are di¤erent across states for teacher tenures", "States also vary in terms

of requirement for graduating with high school diploma". While controlling

for these unmeasured factors is di¢ cult, these unmeasured state regulatory

heterogeneity bias the estimates upward to a certain level.

By jointly modeling the location/school choice of parents and the student

outcome, our analysis has a number of advantages Firstly, it emphasizes the

importance of the endogeneity of school characteristics on the estimation of

the e¤ect of schools on student academic achievement. Since parents valuing

better schools raise the other (unmeasured) parental inputs to their child�s

education, the unmeasured family preference on school choice a¤ects the

student test outcome. Secondly, this model has the ability to account for

the local/state level unobserved school quality indicators since families look

at both the observed (e.g., pupil-to-teacher ratio, teacher salary, dropout

rate, etc.) and unobserved (e.g., state regulations on teacher competency

test, etc.) factors when choosing a school district for their children. With

this endogeneity issue controlled for in the model, we access the performance

4Pupil-to-teacher ratio, Expenditure per pupil, and Dropout rate are frequently used
in the estimation of the production function.
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of di¤erent modeling speci�cations (aggregated versus disaggregated) on the

estimation of child educational production function. While studies usually

focused on county level or state level measures of schools, we suspect that

parents in their decision making almost certainly focus on school character-

istics at a �ner level of geographical detail. We explore a plausible modeling

speci�cation that "correctly" aggregates school resources over particular ge-

ographic areas when exact school choices of parents are unknown in the

study. This model successfully deals with two aspects of aggregation bias

in the typical examples of school e¤ective studies: 1) the bias caused by the

aggregated local public goods that a family is comparing from the choice set

when they make their residential decision. 2) The bias caused by linking the

aggregated school resources to an individual in the educational production

function.

3 Modeling Speci�cations

The model follows a simple time line: at the �rst stage, parents make a school

choices based on the local o¤er of public goods. At the second stage, the

student�s educational outcome is achieved based on the quality of schools,

family background and other preparation factors. The aim is to control the

non-random sorting of households across locations and schools, and correctly

aggregate the district information if aggregation over a certain geographic

region is required.

3.1 Full Location Information Model

Families are assumed to make their location choices within a school district�s

boundary. Each family with a child over the age of �ve is faced with a

choice from all school districts in the United States. Since about 34% of

US counties contain more than one school district, consider the following

model. Suppose that the nation has K counties where k = {1; :::;K}. For

each k labeled county, there are Jk school districts where each school district

can be described as jk ={1; :::; Jk}. Families make a location choice within
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a typical school district. In particular, they consider the school quality

of the destination 
jk , the expected income from the location, which is

idiosyncratic to the parents�characters, and the travel distance between the

current location of the family and the possible location from the choice set

(Zi;jk). There is also an unobserved preference factor, �i, showing how much

the parents care about the school qualities, that a¤ects the decision. The

expected utility of choosing each location is speci�ed as:

Ui;jk = Ui;jk(
jk ; Zi;jk ; �i) + "i;jk (1)

Assuming the error term "i;jk follows an i.i.d. extreme value distribution,

the possibility of this family i choosing school district jk for their children,

controlling the unobserved preference factor �i speci�c to the family, is spec-

i�ed as a standard conditional logit formula:

Pr(jk = j
�
k j
jk ; Zi;jk ; �i) =

exp[Ui;jk(
j�k ; Zi;j
�
k
; �i)]PJ

jk=1
exp[Ui;jk(
jk ; Zi;jk ; �i)]

(2)

The test score outcome for the children is achieved conditional on the

chosen school district�s qualities. Therefore, the student outcome is a func-

tion of the characteristics of the quality of school his/her family chooses

(
i;j�k ), personal speci�c characteristics and student preparations (Xi) such

as the age and race of the child, the mother�s AFQT score, the mother�s

working status, and the same family speci�c preference factor (�i) that af-

fects the utility function (Equation 1). For example, parents who care much

about the academic performance of the children reside in their best a¤ord-

able school district. At the same time, they spend as much time as possible

helping their children with homework and improve the test score outcome.

testi = f(testi = testi;j�k j
j�k ; Xi; �i) = f(
i;j�k ; Xi; �i) + �i (3)

Assuming error term �i follows an i.i.d. normal distribution, the like-

lihood of observing an achieved test score can be speci�ed as the standard

normal distribution formula conditional on the unobserved heterogeneity

factor �i:
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g(�i) =
1p
2���

exp[
testi;j�k � f(
j�k ; Xi; �i)

2�2�
] (4)

From simple probability theory, the joint distribution of achieving stu-

dent outcome and choosing the school district can be written as the product

of Equations 2 and 4 if heterogeneity factor �i is observed. However, �i
is unobserved, making school characteristics endogenous in the above child

educational production function (i.e., the unmeasured factors that a¤ect the

location choice of the family could also a¤ect the student test outcome).

We use a random parameters speci�cation for the utility function deter-

mining the optimal school choice (
j�k ) and the production function deter-

mining the test outcome (testi) to solve the endogeneity problem. Our func-

tional speci�cation is based on the Discrete Factor Approximation method

detailed in Mroz (1999). It is similar to McFadden and University of Califor-

nia (1973) and Train (2003)�s mixed logit random parameters speci�cations

that allows the preference of the family on school characteristics to vary

across individuals. Based on this speci�cation, we estimate the value of the

heterogeneity points that are drawn from a discrete multinomial distribution

of together with their probabilities.

We specify a linear utility function that links school quality indicators


jk and location speci�c characteristics idiosyncratic to each family (Zi;jk)

to the family�s utility. So that Equation 1 can be rewritten as:

Vi;jk = �1Zi;jk + �2(�i)
jk + "i;jk

where

�2(�i) = �
0
2 + �

1
2�i (5)

"i;jk follows i.i.d. extreme value distribution. Note that in this utility

function speci�cation, parents are di¤erentiated in terms of their attitude

on how important schools are to the educational outcome.

In the child educational production function (Equation 3), test score is

assumed to depend linearly on the chosen school characteristics (
j�k ) and
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Xi, while the family preference factor also contributes to the test outcome:

testi = f(testi = testi;j�k j
j�k ; Xi; �i) = �0 + �1Xi + �2
j�k + ��i + �i (6)

whereas in Equation 3, �i is assumed to be i.i.d. normally distributed.

The parental preference over school characteristics could also be an unob-

served input to the child educational production function.

After controlling for the common factor �i in both the utility and the

production function, we assume the two error terms "i;jk from 5 and �i from

6 are mutually independent. The unconditional likelihood function can be

obtained by integrating over the distribution of the common factor �i. With

�nite supporting points for the distribution (h = 1; :::H), we discretely ap-

proximate the true likelihood function by specifying the following likelihood

function:

Li =

HX
h=1

Pr(�h)fPr(jk;i = j�k;ij
jk ; Zi;jk ; �h)f(testi = testi;j�k j
j�k ; Xi; �i)

(7)

In equation 7, Pr(�h) is the probability of observing the preference factor

having the value �h. Assuming the exact school choice of the family is

known, this is what we call the Full Location Information Model and it will

serve as the benchmark of comparison of the following two models under

aggregation assumptions.

3.2 Correct Aggregation Model

If the data contains information about the exact school district choices,

then the Full Location Information model can be implemented empirically.

However, due to data limitations on nationwide school choice studies like this

one, economists frequently need to aggregate school resource data into some

higher level to enter into the production function. For example, because of

the con�dentiality concerns from the NLSY national survey, we only know

the county where the surveyed family is located. Under this circumstance,
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there are two pieces of information missing from the full location information

model. First, only the county of residence of the child is known to the

researcher, not the exact school district; second, while we do observe the

test score for each child, we can not link the exact school input the child

receives to the test outcome. To follow this reality, we assume the family

considers the optimal school district characteristics to make a location choice

so that the county choice is the sum of the probabilities of choosing each

school district within the county. To obtain the probability of observing a

chosen county of residence and a child�s test score outcome, we integrate

Pr(jk;i = j
�
k;i) � f(testi = testi;j�k ) over all of the school districts in county k:

Pr(ki = k
�
i & testi;k = testi;k�) =

JkX
jk=1

[Pr(jk;i = j
�
k;i) � f(testi = testi;j�k )]

(8)

Note that in this speci�cation 8, school quality information is detailed

at the school district level even though it is not directly linked to a student

in that district. Under discrete heterogeneity assumptions about the unob-

served preference factor , if estimating both the possibility of choosing the

county of residence and achieving the test score conditional on the chosen

county we model, the likelihood function of observing the chosen county and

test score can be written as:

Li =

HX
h=1

Pr(�h)f
Jk�X
jk�=1

Pr(jk;i = j
�
k;ij
jk ; Zi;jk ; �h)f(testi = testi;j�k j
j�k ; Xi; �i)

(9)

This model is speci�ed di¤erently from the Full Location Information

Model, but is derived directly from Equation 7. This model is a summation

of joint probabilities of observing the chosen county and the test score within

each county. Even though only one test score is observed and location choice

is known at the county level, this model maintains as much information as

possible by using school district level quality information and "correctly"
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speci�es the family�s incentive to move. This property of the model is con-

sistent with the individually observed Full Location Information Model pre-

sented in the last section. It should yield estimations with less bias than

the commonly used simple aggregation model we are about to discuss in the

next section. Thus, we call this model the "correct" aggregation model.

3.3 Ad Hoc Simple Aggregation Model

When location choice is partially observable to the researcher, the simple

aggregation model conveniently assumes that a family makes their county

choice through considering the county level average school qualities. The

child educational production function inputs will be simply aggregated to

the county level. This is a widely used method in the literature and is served

here as a substitute for the "correct" aggregation model.

Similarly, assuming the errors are i.i.d. extreme value distributed, the

probability that person i choosing county k is a function of the average school

characteristics in county k and other factors idiosyncratic to the person and

location (dependent on the preference factor) can be speci�ed as:

Pr(ki = k
�
i j
k; Zi;k� ; �i) =

exp[Ui;jk(
k� ; Zi;k� ; �i)]PK
k0=1 exp[Ui;jk(
k� ; Zi;k� ; �i)]

(10)

Note that aggregation causes some information loss for the production

function through the loss of the variations in 
k� .

Test score outcome, similarly, is based on the average school quality

of the chosen county 
k� along with other background factors (Xi) of the

student. Therefore, the likelihood functions for the aggregation case can

be written by specifying a discrete approximation of the distribution of the

unobserved heterogeneity:

Li =
HX
h=1

Pr(�h)fPr(ki = k�i j
k; Zi;k� ; �h)f(testi = testi;k� j
k� ; Xi; �i)

(11)

Unlike the Correct Aggregation Model, this model cannot be derived
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from the full location information model, because it is based on the assump-

tion that parents choose a school district considering the county average

school characteristics. Test score outcome is not linked to the school district

characteristics but aggregated to the county level. In the next sections, we

use a Monte Carlo method to calibrate the information loss, or speci�cation

errors of this Ad Hoc Simple Aggregation Model (Equation 11), compared

with the Full Location Information Model (Equation 7), and the Correct

Aggregation Model (Equation 9).

4 Data Generation Process in Monte Carlo

This section details the data generation process in the Monte Carlo Study for

the comparison of the models. To best approximate the geographic distribu-

tions of labor markets and the quality of school districts across locations, we

extract a sample of school districts that best matches with the distribution of

school districts across US counties. We also obtain a mean wage measure for

each of the counties in the sample to serve as an exogenous factor impacting

the parents�school district choices (Zi;jk in Equation 5). To approximate

the student preparation in the test score function, we generate the "previous

period math score" outcomes based on the distribution of 1992 PIAT math

score from the National Longitudinal Survey of Youth (NLSY) serving as

the control variable Xi in the educational production function (Equation

6). In the data-generating process, we speci�ed a number of distribution

assumptions for the unobservable heterogeneity factor �i, to accommodate

the fact that the distribution of this factor can be rather arbitrary in the real

world. Details come in the last section. For each distribution assumption we

generate 100,000 observations to approximate the asymptotic characteristics

of the data.

4.1 Data Generation for Location Choice Outcomes

School district characteristics considered to be the major factors a¤ecting the

utility function of families are Pupil-to-teacher ratio, Expenditure per Pupil
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and Dropout Rate, all at the school district level. We obtain these three

measurements of the school quality from the National Center for Education

Statistics (NCES) survey Common Core Data �les (CCD) for year 19945.

We use the 1990 Census Geo�les 6 to get the geographic occupation of these

school districts and match them into their prospective counties. Figure 1

shows the distribution of school districts among US counties in 1994. 1,065

counties have only one school district which accounts for approximately

34% of the county �le. There are 1,100 counties that have two to �ve

school districts per county and about 600 having 6 to 16 school districts per

county. Many counties have a number of school districts with very di¤erent

quality levels within the county. For example, "Cook County" in Illinois has

95 school districts where the pupil-to-teacher ratio of these school districts

ranges from 8 students per teacher to 21 students per teacher; "Bergen

County" in New Jersey has 70 school districts, and the expenditure among

these school districts goes from 1,400 dollars to 9,000 dollars per pupil.

Figure 1 also shows the distribution of school districts in our extracted

sample of counties. In order to best approximate the distribution of school

districts across counties in the real world, we extract a sample of 200 counties

that has 872 school districts to serve as the choice set in the Monte Carlo

study. In our sample, the number of counties that has only one school

districts takes about 34% of the counties, and there are also counties that

have more than one school district, up to 19.

Table 1 provides the summary statistics for the local public school dataset,

and the mean wage in the county that is used in the Monte Carlo study.

Generally, class size has a mean of 16 students in 1994, expenditures per

5The CCD from the NCES has three major survey categories for the local school
district level data in year 1994: Local Education Agency (School District) Universe Survey
Data: 1986�Present; Local Education Agency (School District) Finance Survey (F-33)
Data: 1990�Present; Local Education Agency (School District) Universe Survey Dropout
and Completion Data (1991�Present). For every local school district agency, there is a
consistent ID code called LEAID (Local Education Agency ID) assigned by NCES to the
agency.

6The Map has 15,512 local education agencies in year 1994 where 12,920 of the 15,512
are de�ned as the �Uni�ed�or primary/secondary school districts that o¤er a degree up
to high school diploma. �Standalone�school districts account for 3,582 of the total school
districts where only partial degrees (not up to 12) are o¤ered.
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pupil averages at 3934 dollars per student, and overall dropout rate over the

�rst to 12th grade ranges from zero to 39.28% per grade, averages at 7.66%

per grade. The county average wage is having a mean of $11.26 per hour.

We show the division of within and between county standard deviation of

all school districts as well. The di¤erence in the standard deviations of all

quality indicators shows that the school district qualities are not uniform

within counties. For dropout rate, the between county standard deviation

is very similar to the overall standard deviation even though this variable

experience a lot of variations across individual school districts. This prob-

ably shows that the dropout rate has little variations within county. This

has a direct impact on the performance of the Ad hoc Aggregation model.

Other school e¤ects studies mostly have a number of regressors, but we

specify the location choice decision to be made upon the Pupil-to-teacher

ratio, Expenditure per Pupil, Dropout Rate and the county mean wage.

This is to make the comparison of aggregated and disaggregated models

more straightforward and to simplify the data generating in the Monte Carlo

experiment. For the location choice, the utility function is simulated by

the sum of 1) a known part that is a linear function of the above four

characteristics, 2) a heterogeneity part (which represents the unobserved

family preference factor for school inputs) that interacts with the school

characteristics, and 3) error term that distributed i.i.d. extreme value in all

choices. More speci�cally, we de�ne equation 5 to be:

Ui;jk = �0:5(1 + �i)Pupil_Teacherjk + 0:5(1 + �i)Exp_Pupiljk (12)

�0:1(1 + �i)Dropoutjk + 0:5(1 + �i)Mean_wagejk + "i;jk

Most previous studies (Loeb and Bound (1995), and Hanushek (1997))

found the marginal contribution of the three quality factors of schools are

in the range of zero to 0.50 for the metrics we study here, so a coe¢ cient

scale of -0.5 to 0.5 is used as �true� coe¢ cients in this study. We also

parameterize the value of �� in Equation 2 to be 10. The school district

outcome is generated as the one that gives the maximum utility from a
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sorting through the utilities that each location gives according to equation

1. There are 100,000 families in our sample, all having only one child age 5

to 15.

4.2 Data Generation for Test Score Outcomes

We simulate the test score outcome to be the student PIAT percentile math

score in 1994 which is mostly used in the empirical study as the indicator of

the children�s educational achievement. We adopt the value added approach

(see Loeb and Bound (1995)) by controlling for the student�s last period

(1992) PIAT math score. To best approximate the distribution of real world

math performance of children in 1994, the value of this explanatory variable

in our sample is an expanded version of the 1992 PIAT math score (values 1-

10) of the surveyee of NLSY Child Supplement (There are 2584 data points

in that sample, we expand it to be 100,000 via random re-sorting). The

generation of test score outcome is based on 1) the chosen (optimal) school

district characteristics, and the previous time period PIAT math score, 2)

the heterogeneity preference component, and 3) an i.i.d. standard normal

random error term. Therefore, we de�ne equation 6 in the Monte Carlo data

generating to be:

testi = f(testi = testi;j�k j
j�k ; Xi; �i) = �2:5Pupil_Teacherj�k (13)

+2:5Exp_Pupilj�k � 0:25Dropoutj�k + 0:5Pr e_Mathi + 1:0�i + �i

Note that the test score outcome is generated based on the chosen school

district�s characteristics, the person i�s own characteristics, and the unob-

served heterogeneity factor, together with the normal random error.

4.3 Data Generation for Heterogeneity Factor �i

The common factor that appears in both equation 12 and equation 13 is

unobservable. To not to lose generosity in the Monte Carlo study, we allow

the heterogeneity factor �i to follow di¤erent distribution assumptions. We

15



have the following distribution assumptions on the heterogeneity factor:

1. Discrete distribution with 5 points of support. Each point takes a equal

probability for �ve discrete values in the scale 0 to 1. In this distribu-

tion, the value of Pr(�i) used in the data generating is a random draw

from values 0, 0.2, 0.4, 0.6, 0.8 and 1;

2. Uniform distribution in the range 0 to 1;

3. Normal distribution with mean 0 and variance 1. In this distribution

assumption. The value of �i used in the data generating is a random

draw from a standard normal distribution;

4. Log-normal distribution with mean e0:5 and variance (e1 � 1)e1. The
value of �i used in the data generating is a random draw from this

log_normal distribution;

5. Chi-square distribution with 4 degrees of freedom. The chi-square

distribution has mean = deg rees of freedom and variance = 2 �
deg rees of freedom.

We normalize the scale of the value of �i to fall in (0,...,1), and the

variance of the disturbance of the function (either 12 or 13) to be 10. To

do this, we are setting the fraction of the total error variance that is due

to heterogeneity to be 0.3, and 0.7 is due to the normal (or gumbo) error

�i. we �rst normalize both error components so they are variance 1, then

de�ne a weighted sum of these two variances so that the whole variance of

the disturbances is 10 (std=10).

Error = std �
s

0:3

var(�i)
� �i + std �

p
1� 0:3 � �i

=) var(Error) = std if var(vi) = 1

The number of observation in our sample is 100,000. The number of

school district in the choice set is 872 districts in 200 counties. For each
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model to consider comparison, we generate 100 sets of random outcomes

depending on the distribution of the heterogeneity factor listed above, the

results are based on the 100 repeats of the same estimation process for each

model.

5 Parameterization and Optimization Process

There are several di¢ culties in estimating parameters in the quasi-maximum

likelihood factor models like this one (see Mroz (1999)). The �rst di¢ culty

involves the parameterization and the estimation of the heterogeneity factor

�i. One can choose to impose the "uniform" distribution that all hetero-

geneity points have an equal share at the range of [0,1]. But letting the

data decide the shape of the heterogeneity distribution, and estimate both

the location and the scale of the points might be much better for real world

problems. In this study, we parameterize the points of support and the prob-

abilities for the discrete factor approximation estimation of the structural

model.

Suppose we chose H points of support for the approximation of this

rather continuous distribution of family heterogeneity. In this case, imagine

there are H di¤erent types of families in the country, each type would have

a di¤erent opinion on the importance of school inputs to their children�s

educational output on a scale of 0 to 1. It is possible for a family to fall

on any of the h point �h. We restrict the �h�s to lie on [0,1], with �1 = 0

and �H = 1. For this purpose, for the values of points in between we use

standard logit to obtain the sub optimization over the h� 2 parameters :

�h =
exp(�h)

1 + exp(�h)
; h = 2; :::H � 1

For the probability of each point of support for �h, we consider the con-

straint that those h probabilities have to sum up to 1. Also each probability

has to be non negative. We use an easy parameterization as the following

to satisfy these two constraints. De�ne:
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�h =

(
1 + sin(3�2 + �h); for h = 1; 2; ::H � 1
1 + sin(

PH�1
h0=1 �h0); for h = H

and let

Pr(�h) =
�hPH�1
h0=1 �h0

In the maximum likelihood estimation with H = 5 points discrete sup-

port, we obtain 3 estimations for �h; h= 2, 3, 4 and 4 estimations of Pr(�h);

h= 1, 2, 3, 4. According to equation 5, for the utility function we have

the marginal contribution of 
jk to the probabilities of the family choosing

a particular school district should be an average of �2(�i) across all esti-

mated points of support for the unobserved discrete factor. For example,

in estimating the Full Location Info. Model with 5 points of heterogene-

ity support in the Monte Carlo, the marginal contribution of the regressor

Pupil_Teacherjk to the utility function is calculated by:

�Pupil_Teacherjk (�) = (14)

Pupil_Teacherjk +
5X

h0=1

(Pupil_Teacherjk_MIU)h0 � �h0 � Pr(�h0)

Similarly is true for other parameters in the utility function. Results

presented in the next section are simulated marginal contributions in the

utility function calculated this way. Another di¢ culty in the estimation of

this type of simulated likelihood models, is the fact that a true global max-

imum is harder to achieve (see Mroz (1999)). We have put several e¤orts to

avoid the local optimums that frequently exists when the number of discrete

points is large and the number of parameters grows bigger when one have

more regressors: 1). We choose a fairly extensive grid for starting values.

We use more than 100 starting values for each optimization problem; 2)

We programed the �rst derivatives of the joint likelihood functions (Equa-

tion 7, 9, and 11) into the optimization process, so that the optimization is

faster with more accurate analytical �rst derivatives to consider in each it-
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eration, instead of imprecise numerical �rst derivatives that is embedded in

the optimization program; 3). We adopt a "two step" optimization process

to guarantee that the gradient of the �rst order derivatives to be close to

zero. For all the models with number of heterogeneity factors >1, we start

with 100 random set of starting values for each case, process when the good

looking function values are larger than 20. We choose the best 5 out of the

20 good starting values, optimize for 500 iterations for each of the 5 sets

of starting values, and choose the one with the largest likelihood function

value, save the results as the basis for second round optimization. In the

second step, we start by gathering all 100 cases of �rst round optimization

results, calculate the function values associated with that case and choose

the best 5 function values as the starting value for this second round, and

optimize each case for 100 more iterations. Usually this would make the

normality of the �rst partial derivatives to be very close to zero. And our

experience suggests this is adequate for eliminating most local optima.

6 Monte Carlo Results

The results from the Monte Carlo evaluations of the three models (i.e.,

estimations of Equation 7, 9, and 11) are discussed in this section. Since the

production function itself (the estimate of marginal contributions of school

inputs to the test score outcome) is of concern to most researchers/policy

makers, we present the production function estimation results in the �rst

section. The second section presents the utility function results.

6.1 Comparison of Models: Production Function Estima-
tions

6.1.1 �i Follows Discrete Distribution with 5 Points of Support

Although it is more practical to assume the heterogeneity factor �i follows

continuous distributions, it is undoubtedly true that the discrete factor ap-

proximation method works best if the true distribution of this unobserved

factor is indeed discrete. Readers would also want to know how di¤erent
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each model performs, by estimating the likelihood functions using discrete

factor approximation method compared with the popular OLS estimation

for the educational production function. In Table 2 , we present the mean,

variance, and Mean Square Error (MSE) of the production function esti-

mators out of the 100 Monte Carlo cases based on data generation process

in Equation 13, and the assumption that �i follows discrete distribution

with 5 points of support. Each of the 100 cases here is composed of a sam-

ple of 100,000 observations to approximate the asymptotic characteristics

of the data. The results listed in Table 2 strongly support the superior-

ity of Discrete Factor Approximation method over OLS. Speci�cally, OLS

gives average estimations further to the true, and higher MSE, for the bench

mark Full Location Info. Model. This shows that OLS is not the ideal tool

for estimating structural models with unobserved heterogeneity in people�s

decision making process. Comparing the estimation results for the three

models listed at the top portion of Table 2, it can be seen that the Ad Hoc

model gives more biased estimation results, though it has given more con-

sistent estimates over the 100 random cases due to aggregation. Note that

the Correct Aggregation Model follows the benchmark model very closely,

and the MSE is considerably smaller (about 3 to 4 fold) than that of the Ad

Hoc model.

6.1.2 �i Follows Various Continuous Distribution Assumptions

Table 3 presents the performance of all three models under continuous dis-

tribution assumptions for the unobserved heterogeneity factor �i. Although

the Ad Hoc Simple Aggregation Model performs poorly compared with the

other two models across all the distribution assumptions, which conforms

to our expectations, there are some interesting di¤erences in the scale of

its MSE across the distribution assumptions and the parameter estimates.

Uniform distribution is the one continuous distribution that is most similar

to our discrete case ( recall that each of the 5 points takes equal proba-

bility in the [0,1] scale for our discrete assumption). Under this distribu-

tion assumption, the aggregation model using discrete factor approximation
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method maintains a MSE of 0.892 for Pupil-to-teacher Ratio, and 0.567

for Expenditure-per-pupil. Mean estimates for these two variables are 1%

higher than the true value, which shows moderate aggregation bias. How-

ever, in other non-uniform, or asymmetric distribution assumptions, such

as the Lognormal and Chi-square distribution cases, the simple aggregation

gives much more serious MSE with an average estimates sometimes doubles

(100%) the true value. It is hard to describe the true world using one dis-

tribution, but it could be imagined that the simple aggregation would only

perform worse when the error distribution has heteroskedasticity or auto-

correlation characteristics, or with a lot of local optima and asymmetry. On

the other hand, the correct aggregation model is not a¤ected by the distri-

bution assumptions at all. Its estimates continues to stay closely to that of

the benchmark model, and its average estimates for all of the parameters are

only 0.1% or 0.2% away from the true value. This �nding strongly suggest

the justi�cation of using the correct aggregation model when aggregation is

needed and endogeneity bias are present. Drop-out rate is the variable that

experiences little within county variations according to Table 1, which is the

main reason that the estimates from the simple aggregation model has a

relatively low MSE for this variable. But the mean estimates from the 100

cases is still considerably o¤ the track for drop-out rate using the Ad Hoc

model.

6.2 Comparison of Models: Utility Function Estimations

6.2.1 �i Follows Discrete Distribution with 5 Points of Support

The task of estimating the utility function under discrete distribution as-

sumption for �i is di¤erent from continuous distribution cases in terms of

evaluating Equation 12. Since we could fully identify every one of the 5

possible values of �i and its probability in the discrete distribution, it is

possible to compare the true value of the utility function parameters with

the mean estimates through calculations of Equation 14 7.Table 4 shows

7The "true" values can not be obtained for the continuous cases since the continuous
distributions can only be approximated.
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the comparison of using discrete factor approximation method versus using

conditional logit estimation without endogeneity control. Note that both

the full location information model and the correct aggregation models per-

form well regardless of which method one chooses. This is mainly due to

the fact that the heterogeneity factor �i does not appear as an independent

variable in the utility function, so that the e¤ect of �i is achieved through

the aggregation of the 5 discrete points. Since each of the 5 discrete points

takes equal possibility in the data generating process, aggregating them is

not more than taking the mean value. Therefore, using conditional logit

method here is asymptotically equivalent to using the discrete factor ap-

proximations for the utility function estimations. Even under this extreme

condition, the simple aggregation model still yield sizable bias for most of

the parameter estimates.

6.2.2 �i Follows Various Continuous Distribution Assumptions

Table 5 shows the utlity function estimations under the assumptions that �i
follows various continuous distributions. Comparing the mean and variances

across all four sections of the table, we found that the correct aggregation

model closely follows the benchmark model in parameter estimates regard-

less of the distribution of the heterogeneity factor. On the other hand, the

performance of the ad hoc simple aggregation model is quite worrysome.

The uniform distribution is the one continous distribution that is most sim-

ilar to the discrete distribution, and the ad hoc model gives estimates 1/3 to

1/4 that of the benchmark model for the variables Pupil-to-teacher ratio and

the mean wage. For assymetric distributions like the lognormal distribution

and the Chi-square distributions, this model provide parameter estimates

that is unrealistically high in magnitude and variances, which is due largely

to the inprecise estimate of locations of the heterogeneity points.
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7 Conclusion

A trend in the literature to empirically estimate the educational production

function, under the data restrictions either in the choice set side or in the

school input side, is to frequently link the individual academic outcome to

the aggregated resources of school inputs. This Monte Carlo experimental

condition enable us to provide some insight into the e¤ect of aggregation

on the evaluation of importance of school inputs in the USA, both in terms

of family�s migration choices and the children�s academic outcomes. The

simulations of two structural models under the aggregation conditions are

compared with the benchmark model without aggregation. The estimation

results prove that the correct aggregation model could provide fairly unbi-

ased estimations of school e¤ect, while simply aggregating the resources to

the county level will cause strong bias brought by the wrong speci�cation of

incentives of parents choosing a school district.
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Figure 1: Number of School Districts within Counties, year 1994
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Table 2: Estimation Results for Production Function under Discrete Distri-
bution Assumption: Discrete Factor Approximation vs. OLS

Full Location Ad Hoc Correct
Information Aggregation Aggregation

Model Model Model
Discrete Factor Approximation

Ln Pupil-to- TrueValue -2.500 -2.500 -2.500
teacher Ratio Mean -2.417 -3.564 -2.322

Std 0.330 0.161 0.477
MSE 0.115 1.157 0.256

Ln Expenditure TrueValue 2.500 2.500 2.500
per Pupil ($1000) Mean 2.471 3.438 2.414

Std 0.357 0.132 0.352
MSE 0.127 0.897 0.130

Dropout Rate(%) TrueValue -0.250 -0.250 -0.250
Mean -0.242 -0.305 -0.224
Std 0.049 0.007 0.043

MSE 0.002 0.003 0.002
Ln Mean Wage TrueValue 0.500 0.500 0.500

$1000 Mean 0.500 0.500 0.500
Std 0.002 0.002 0.002

MSE 0.000 0.000 0.000
OLS Estimation

Ln Pupil-to- TrueValue -2.500 -2.500 -2.500
teacher Ratio Mean -3.165 -3.854 -3.106

Std 0.118 0.153 0.139
MSE 0.457 1.857 0.387

Ln Expenditure TrueValue 2.500 2.500 2.500
per Pupil ($1000) Mean 3.549 3.262 3.602

Std 0.107 0.127 0.130
MSE 1.113 0.596 1.231

Dropout Rate(%) TrueValue -0.250 -0.250 -0.250
Mean -0.434 -0.298 -0.439
Std 0.006 0.007 0.008

MSE 0.034 0.002 0.036
Ln Mean Wage TrueValue 0.500 0.500 0.500

$1000 Mean 0.500 0.500 0.500
Std 0.002 0.002 0.002

MSE 0.000 0.000 0.000
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Table 4: Estimation Results for Utility Function under Discrete Distribution
Assumption: Discrete Factor Approximation vs. OLS

Full Location Ad Hoc Correct
Information Aggregation Aggregation

Model Model Model
Discrete Factor Approximation

Ln Pupil-to- TrueValue -0.750 -0.750 -0.750
teacher Ratio Mean -0.749 -0.158 -0.746

Std 0.014 0.015 0.022
MSE 0.000 0.351 0.000

Ln Expenditure TrueValue 0.750 0.750 0.750
per Pupil ($1000) Mean 0.750 0.658 0.751

Std 0.011 0.008 0.016
MSE 0.000 0.008 0.000

Dropout Rate(%) TrueValue -0.150 -0.150 -0.150
Mean -0.150 -0.144 -0.150
Std 0.001 0.001 0.002

MSE 0.000 0.000 0.000
Ln Mean Wage TrueValue 0.750 0.750 0.750

$1000 Mean 0.751 0.233 0.748
Std 0.029 0.085 0.032
MSE 0.001 0.274 0.001

Conditional Logit Estimation
Ln Pupil-to- TrueValue -0.750 -0.750 -0.750
teacher Ratio Mean -0.765 -0.268 -0.772

Std 0.013 0.015 0.018
MSE 0.000 0.233 0.001

Ln Expenditure TrueValue 0.750 0.750 0.750
per Pupil ($1000) Mean 0.758 0.611 0.766

Std 0.010 0.007 0.013
MSE 0.000 0.019 0.000

Dropout Rate(%) TrueValue -0.150 -0.150 -0.150
Mean -0.144 -0.146 -0.144
Std 0.001 0.001 0.001

MSE 0.000 0.000 0.000
Ln Mean Wage TrueValue 0.750 0.750 0.750

$1000 Mean 0.752 3.782 0.761
Std 0.030 0.029 0.032

MSE 0.001 9.193 0.001
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