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Abstract

In virtually all countries, males show a greater dispersion in test scores relative to fe-

males. We show that this fact, together with an increase in the returns to education over

the last decades, can explain the gender gap reversal in educational attainment observed

internationally. Our model generates an accurate fit for the relationship between the

enrollment rate and the gender composition of the enrolled in each individual country.

From time-series on enrollment rates, we generate country estimates for gender differ-

ences in ability distribution parameters using our model. Our estimates highly correlate

with country-specific gender differences in test score distributions found in international

assessments. We also assess the validity of our theory against previous explanations pro-

posed by the literature. The data does not support the predictions of these alternative

hypotheses, while bringing further support to our theory.
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1 Introduction

The gender gap in educational attainment has reversed over the last decades. As we show, this

reversal has been quasi-universal, and occurred in the two tails of the educational attainment

distribution. In the upper tail, females progressively surpassed males among participants to

tertiary education. In the lower tail, males are now the majority among secondary school non-

completers, while females used to be over-represented in secondary school non-completion.

This paper establishes empirically these two quasi-universal facts and proposes a com-

prehensive theory to account for them. The gender gap reversal in participation to tertiary

education has been established for the US, and for the Nordic countries by Pekkarinen (2012)1.

We show in this paper that this reversal is actually a quasi-universal phenomenon observed

in virtually all developed countries, and in the majority of developing countries. In addition,

we report an analogous reversal in the lower tail of the educational achievement distribu-

tion, among secondary school non-completers. We establish that the gender composition of

secondary non-completers has reversed from female majority to male majority over the last

decades, and that this reversal is also quasi-universal. To the best of our knowledge, this

second fact has not been touched upon by the literature.

Understanding the origins of the gender gap reversal in education is important in its own

right, but also for efficiency purposes. In particular, it is crucial to know whether these

differences in outcomes observed between genders originate from discrimination and other

forms of distortions, or from optimizing behavior based on gender differences in preferences,

attitudes, or ability distributions. In addition, explaining the dynamics of the gender gap in

education may help understanding gender inequality of outcomes in other areas, in particular

on the labour market. This is crucial from both a theoretical, and a policy point of view.

Our explanation for these reversals builds on the insights of Becker et al. (2012). Using the

fact that males’ test score distribution is more spread out than females’, the proposed higher

male dispersion theory generates a relationship between the enrollment rate into education

and the gender composition of the enrolled. It relies on two main building blocks. The

first building block is the larger variance of males’ test score distribution, which has received

strong empirical support. The second building block is the optimal choice of education made

by individuals based on ability, and on the exogenous benefits to education that vary across

cohorts.
1
For evidence for the US, see among others...
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Our theoretical framework builds on the behavioral model described in Card (1994), in

which the optimal length of schooling chosen by individuals is increasing in individual ability,

and in the net benefits to education common to all individuals in the cohort. At the aggregate

level, our basic mechanism relies on two ability distributions - one for each gender - whose

common ability threshold for truncation determines which individuals enroll into education.

The ability threshold decreases with the net benefits to education, as it becomes optimal for

less and less able individuals to enroll when the returns to education education increase. In

this framework, the net benefits to education and the test score distribution of males and

females in the population determine the total enrollment rate and the gender ratio among the

enrolled. Since the ability distribution for males and females are assumed to differ, a change

in the ability threshold for enrollment not only affects the fraction of individuals enrolling,

but also the gender composition of the enrolled.

The relationship between the total enrollment rate and the gender composition generated

by our model provides an accurate fit for empirical data. In particular, we are able to repro-

duce the gender gap reversal observed in both the upper tail and the lower tail of educational

attainment. Importantly, we show that the larger dispersion of males’ test scores is the only

necessary condition required about ability distributions to generate the reversal observed in

the data. We demonstrate that no further restriction is needed on the gender difference in

mean test score, as long as this condition about the variance holds. Using time-series data

for more than 40 countries, we are able to capture the dynamics of the gender ratio of both

the upper tail and the lower tail of educational attainment. For the upper tail, our model

provides an accurate fit for the joint evolution of the total enrollment rate into tertiary edu-

cation and the gender composition of the enrolled. In the lower tail, it is also able to replicate

the joint evolution of the secondary school non-completion rate and the gender composition

of non-completers for all countries in the sample.

Fitting enrollment rate data with our model also allows to extract estimates for country-

specific gender differences in test score distribution parameters. To assess the validity of our

theory, we confront model estimates to gender differences in test score distributions found

in PISA. We find a strong correlation between gender differences in test score distribution

parameters estimated from our model, and those found in PISA. To further assess the validity

of our theory, we confront it to alternative explanations proposed by the literature in a

common framework using empirical data. The higher male dispersion theory appears to

3



perform strongly to alternative theories proposed by the literature

This paper contributes to the literature on the topic in a number of respects. First,

it establishes the quasi-universal reversal of the gender gap in both the upper and in the

lower tail of educational achievement. Second, it proposes a theory to account or these

reversals, based on a stylized fact that received strong empirical support. Finally, it provides

a comprehensive and common framework to assess competing explanations that have been

proposed by the literature. The paper is organized as follows. Section 2 presents the empirical

facts motivating the paper. It summarizes the existing literature on the larger variance of

males’ test score distribution, and establishes the reversal of the gender gap in both the upper

and lower tail of educational attainment. Section 3 introduces our theoretical framework and

derives its implications for the relationship between the enrollment rate and the gender ratio

among the enrolled. Section 4 describes the data and our maximum-likelihood estimation

strategy. Section 5 presents our main results. Section 6 tests the validity of our theory

against alternative explanations proposed by the literature. Section 7 concludes.

2 Empirical Motivation

2.1 The Larger Dispersion of Males’ Test Score Distribution

An important body of literature shows that males’ test score distribution exhibits a higher

variance than females’ for a wide range of cognitive and non-cognitive assessments. While

this stylized fact was recently out forward in economics, long-standing evidence is available

from psychology. Ellis (1894) is typically referred to as the contribution that sparked the

literature on gender differences in variability. Reviewing data from psychological, medical

and anthropometric studies, he notes than males tend to exhibit more variability in both

physical and psychological traits, including general intelligence. Frasier (1919) is the first

study to compile a large dataset of more than 60,000 observations to provide further support

for Ellis’ original observation. Using grade-level achievement tests for 13 year-olds in the US,

he shows that the coefficient of variation - the ratio of the standard deviation to the mean -

is larger for males, and that the gender difference is statistically significant.

More recently, Feingold (1992) reports the gender variance ratio of the PSAT and SAT of

the College Entrance Examination Board in 1960, 1966, 1974 and 1983. In both mathematics

and verbal tests the male-to-female variance ratio was found to be larger than 1, with little
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variation over successive waves. The results of Feingold (1992) have however been criticized

as that they are drawn from a selected sample of individuals taking SAT, which are not

representative of the entire population.

Hedges and Nowell (1995) address this issue by extending the analysis of Feingold (1992)

to 6 nationally representative surveys conducted in the US between 1960 and 1992. They

compute the male-to-female variance ratio of 43 ability tests extracted from these surveys,

and report that the variance of males is larger in 41 out of the 43 cognitive tests. The estimated

variance ratio ranges from 1.05 to 1.30. Deary et al. (2003) also used population-wide data

on general intelligence of 11 year-olds in Scotland. While they report no significant mean

differences in cognitive test scores between boys and girls, they find that the gender difference

in standard deviations is highly statistically significant. Using a nationally-representative

sample of 320,000 11-year-old pupils in the UK, Strand et al. (2006) also find that the test

score variance for boys is significantly higher than for girls. More recently, Johnson et al.

(2008) also find greater variability among boys using two population-representative sample

11-years-olds in Scotland.

While evidence from the psychological literature is mostly confined to the US, Pekkarinen

and Machin (2008) show that the greater variability in test scores among males is a universal

phenomenon. They use test score data for 15-year-olds from the Program for International

Student Assessment (PISA) conducted in 2003. The PISA study tests mathematical and

reading skills of a representative sample of the population of 15-year-olds in 40 countries. The

authors report that males’ tests score variance is strictly larger than females’ in 38 countries

for mathematics and 39 countries for reading, out of a total of 40 countries. The gender

difference in variance is statistically significant in all but 5 five countries with an average

male-to-female variance ratio of 1.21 for reading and 1.20 for mathematics.

Johnson et al (2009) with a commentary by Craig et al (2009) discuss the possible role

for the X chromosome in explaining the differences between males and females in ability

dispersion. They note that a large number of genes in the X chromosome are related to

general intelligence. This, combined with the fact that females have two X chromosomes

while males have one X chromosome and one Y chromosome seems to play an important

role in producing a higher variability. Since "Y chromosome is very small and carries little

beyond the genetic instructions for maleness", the X chromosome functions mostly alone, as

Johnson et al note. This allows recessive genes to function more often among males than
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among females, which increases the variance of males’ characteristics. They also describe a

mechanism based on evolution theory that could explain why this is the case. The empirical

estimates of the male-female variance ratio in general intelligence they report in their paper

range between 1.06 and 1.19.

2.2 The Gender Gap Reversal in Educational Attainment

Fact 1. The gender gap in participation to tertiary education has reversed from

male majority to female majority

For the US, several papers have reported a convergence, followed by a reversal in the

percentage of women relative to men attending tertiary education over the last decades 2.

While most evidence is confined to the US, we show in Figure 1 that the gender gap reversal

in participation to tertiary education is a quasi-universal phenomenon. To reconstruct the

evolution of participation rates to university by gender and cohort of birth, we used data from

the Barro-Lee (2010) database. It allows to compute the fraction of individuals of a given 5-

year band cohorts that attended university by age 35, for individuals born from 1891 to 1971.

Figure 1 shows that the gender composition of participants to tertiary education education has

already reversed from male majority to female majority in virtually all developed countries.

In addition, it reports that this reversal also occurred in many developing countries.

The timing of the reversal varies across countries. While the fraction of women attending

higher education was already higher than for men in some Eastern European countries in the

early 1970s, the reversal occurred only at the beginning of the 1990s in the UK. It is also

a recent phenomenon in countries like Austria, Japan, and the Netherlands. Following the

reversal, the gender gap in university attendance appear to have increased in the favor of

women in all countries. South Korea, Switzerland and Germany are the only exceptions to

the gender gap reversal among advanced economies. A sharp increase in the female-to-male

ratio among participants to tertiary education is however observed in these countries, and

one may expect the reversal to occur shortly. Strikingly, the reversal already occurred in less

advanced economies such as Saudi Arabia.

Fact 2. The gender gap in secondary school non-completion has reversed from

female majority to male majority
2
See, for example, Goldin et al. (2006), Chiappori et al.(2009) or Becker et al. (2010)
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Figure 1: Female-to-male ratio among participants to tertiary education - by cohort of birth
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In Figure 2 we show that an analogous reversal occurred in the lower tail of educational

achievement. As compulsory education ends at the end of lower secondary school in most

developed countries, one way to identify individuals belonging to the lower end of the educa-

tional achievement distribution is to look at individuals who did not complete upper secondary

education. We combined data from various data sources in order to reconstruct the evolution

of the fraction of secondary school dropouts by gender and birth cohort for the main indus-

trialized countries. We were able to compute upper secondary school dropout rates for birth

cohorts over 90 years, ranging from individuals from in 1891 to individuals born in 1981. The

main source for the data is the Barro-Lee database (2010), which allows to compute secondary

school non-completion rates for 5-year band cohorts from 1891, and separately for males and

females. The cohort analysis reported in Figure 2 reports that the gender composition of

non-completers has reversed from female majority to male majority. As for the upper tail of

educational achievement, it shows the reversal in the gender composition of low educational

achievers is quasi-universal.
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Figure 2: Female-to-male ratio among secondary school non-completers - by cohort of birth
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3 Theoretical Framework

3.1 Optimal Investment in Education

Individuals are assumed to differ in their test-taking ability zj and gender gj , where gj ∈

{m; f}. Test-taking ability zj is continuous and perfectly observed by individuals. It can

be interpreted as a combination of cognitive and non-cognitive skills effecting test scores

and educational outcomes. As Heckman et al. (2012) note, test scores are the observable

product of a complex combination of cognitive and non-cognitive skills, as well as effort.

Understanding the mapping from ability to tests score is a tremendous task beyond the scope

of this paper, and we will therefore refer to the combination of cognitive and non-cognitive

abilities captured by test scores as test-taking ability. For the sake of simplicity, we assume a

single-period model in which individuals perceive the benefits of their investment in education

in the same period as they invest.

Individual j chooses his years of schooling s so that he maximizes his expected discounted

utility U . Building on Becker (1967), we define the utility function of individuals in the

economy as:

U = B(s)− C(s) (1)

where B(s) denotes the benefit function of schooling, with B
�(s) > 0 and B

��(s) < 0. C(s) is

the cost function of schooling and is increasing and convex in s with C
�(s) > 0 and C

��(s) > 0.

The first order conditions for the individual maximization problem can simply be expressed

as:

B
�(s) = C

�(s) (2)

Where B
�(s) is interpreted as the marginal benefit to schooling, and C

�(s) is the marginal

cost of schooling. Following Card (1994), we linearize the model by assuming that B
�(s) and

10



C
�(s) are linear functions of s with B

�(s) having an individual-specific slope:

B
�(s) = zj − k1s (3)

C
�(s) = k2s (4)

where k1 > 0 and k2 > 0. Importantly, both k1 and k2 and are assumed to be the same

for females and males. Intuitively, individuals with higher test-taking ability zj perceive

greater benefits (or equivalently, lower costs) from attending education. In this framework,

the optimal level of schooling s chosen by individual j can be expressed as:

s
∗
j = zj · b (5)

where b ≡ 1
k1+k2

, and can be interpreted as the marginal return to education.

In the simple case in which b is not gender-specific, the optimal value of sj is strictly increasing

in individual test-taking ability zj . In this framework, let Hj denote the indicator variable

taking the value 1 if individual j decides to attend higher education, 0 otherwise. H is defined

as a function of s∗ such that:

H(s∗) =





1 if s∗ ≥ s̄

0 if s∗ < s̄

where s̄ denotes the minimum number of years of education to obtain a university degree.

Therefore,

Hj = 1 if zj >
s̄

b
≡ z̄ (6)

One may argue that individuals enroll in education on the basis of not only individual

test-taking ability zj , but also a set of individual circumstances, such as parental income or

personal network3.

3
See Hoxby (2012) for recent evidence in the US
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Figure 3: The positive relationship between test score z and university enrollment H - em-
pirical support
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3.2 Aggregate Level and Time Dynamics

We now assume that the economy is populated by successive cohorts t, with t ∈ {1, 2, .., T}.

Each cohort comprises a continuum of agents that differ in their level of test-taking ability z

and their gender g. Each cohort is assumed to be split equally by gender and the distribution

of z. We denote fz(z) the probability density function of test-taking ability z.

All individuals belonging to the same cohort t are exposed to the same value of the

exogenous parameter bt ≡ 1
k1,t+k2,t

, regardless of their talent or gender. In this context, the

enrollment rate in higher education at time t for each gender can be expressed as:

Et = 1− Fz(
s̄

bt
)

or, equivalently

Et = Gz(
s̄

bt
) = Gz(z̄t) (7)

where Gz(z̄t) denotes the complementary cumulative distribution function (CCDF or tail

distribution) of test-taking ability z, defined as:
� +∞
z̄ fz(z) dz.

bt is however allowed to vary across cohorts and those variations are interpreted as changes

in the net returns to education, exogenous to the model. Therefore,
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∂Et

∂bt
> 0 (8)

and
∂z̄

∂bt
< 0 (9)

To check whether increased enrollment at university over time was accompanied by a

decrease in z̄, we computed the average IQ score of individuals attending university in the

US over the period 1975-2010, using data form the General Social Survey (GSS)4. Each

wave surveys a random sample of 1,000 to 5,000 individuals. From 1974 onwards, the GSS

includes a simplified IQ test consisting of 10 questions assessing the cognitive skills of the

respondents. A measure of educational attainment (in years) is also reported, and we consider

individuals with more than 12 years of education as having attended tertiary education. Figure

4 depicts the evolution of the average IQ of university students relative to the all population in

number of standard deviations, from 1974 to 2010. It shows a clear downward trend. In 1974

the average IQ of students attending tertiary education was 0.60 standard deviation higher

than the average IQ of the all population, but this relative difference decreased progressively

until 2005 to reach approximately 0.30. The fact greater access to tertiary education was

accompanied by a decrease in the average ability of the enrolled is consistent with less and

less able individuals enrolling into education as enrollment expands. This corresponds to a

decrease in z̄ over time z in our framework.

In this framework, an increase in the net benefits of education bt translates mechanically

into higher enrollment rates at university Et, and individuals with lower test-taking ability z

attending university education. bt can be thought as including monetary benefits of education

as well as non-monetary benefits such as life expectancy, the propensity to marry and stay

married, or household production.

There exists a important body of literature showing that returns to education, and in par-

ticular returns to university education, have increased over the last decades. First, monetary

returns to tertiary education – the college wage premium – have been shown to increase sharply

over the period 1970–2010. Goldin and Katz (2009) or Acemoglu and Autor (2011) among

others provide consistent evidence showing a sharp increase of the college wage premium in
4
Although the lower bound of talent for university attendance can hardly be observed in the data, we can

observe the average level of pre-university skills of students attending university, which mechanically decreases

with z̄
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Figure 4: The negative relationship between total enrollment rate in tertiary education and
the average ability of the enrolled - empirical evidence
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Notes. Darks dots represents our estimates. Light dots represent confidence intervals at the 5%-level.

the US since the beginning of the 1970s5. Card and Lemieux (?) also report an important

increase in the wage premium of university graduates relative to high school graduates in

the UK and Canada over the same period. Acemoglu (2000) and Goldin and Katz (2009)

invoke skill-biased technological change as the main driving force behind the increase in the

university wage premium, through an increased demand for skilled workers. Goldin and Katz

(2009) report a strong positive relationship between the utilization of more capital-intensive

technologies and the demand for university-educated workers. Acemoglu (2000) argues the

the extent of skill-biased technological was such that it allowed to absorb an increasing sup-
5
The college wage premium is defined as the wage of college-educated workers relative to the wage of

high-school educated workers.
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ply of university-educated workers, without a decrease in the college wage premium over the

past decades. Acemoglu (1998) further argues that the increase in the supply of university-

educated workers may itself have induced further skilled-biased technological change, and

therefore further increased the college wage premium in the long-run although it reduced it

in the short-run.
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3.3 The Relationship between Total Enrollment Rate and Female-to-Male

Ratio

Building on the evidence about gender differences in test score variability, we allow fz(z) to

differ between genders. We denote fzm(z) and fzf (z) the probability density functions of test-

taking ability for males and females respectively, with V ar[zm] > V ar[zf ]. In words, males

and females in a given cohort are assumed to draw their test-taking ability from two different

distributions6. Each cohort is assumed to be split equally between males and females, and

the distribution of test-taking ability for each gender g ∈ {m, f} is assumed to be invariant

over time:

fzg ,t(z) = fzg(z) (10)

Panel A of Figure 5 illustrates the two test-taking ability distributions, when σ
2
m>σ

2
f and

µ
2
m<µ

2
f . It also depicts the two Complementary Cumulative Distribution Functions (CCDFs)

of zm and zf , denoted Gzm(z̄) and Gzf (z̄), respectively and defined as:

Gz(z̄) =

� +∞

z̄
fz(z) dz

In the illustration, test-taking ability z is assumed to be normally distributed in the population

for both genders, with zm ∼ N(µm, σ
2
m) and zf ∼ N(µf , σ

2
f ). By combining the two CCDFs

Gzm(z̄) and Gzf (z̄), it is possible to compute the total enrollment rate in tertiary education

in the economy as:

E(z̄) ≡
Gzf (z̄) +Gzm(z̄)

2
(11)

which is represented by the thin dotted line in panel B of Figure 5, and obtained by

averaging the two complementary cumulative distributions, assuming that males and females

are equally split in the population. In this framework, the female-to-male ratio among the

enrolled, denoted R(z̄), can be expressed as:

R(z̄) ≡
Gzf (z̄)

Gzm(z̄)
(12)

From Panel B of Figure 5, we can derive the relationship between total enrollment rate and
6
We assume the the distribution function types to be the same, allowing the parameters to vary. For all

empirical applications, we also assume normality of the two distributions.
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the female-to-male ratio among the enrolled. Figure 6 illustrates the expected relationship

between the total enrollment rate and the female-to-male ratio among the enrolled, when

σ
2
m>σ

2
f , as depicted in Panel A and B of Figure 5.

Figure 5: Distribution functions of test scores by gender when σ
2
m > σ

2
f - illustration

x1

PANEL A
fm(z)
ff(z)

PANEL B

talent, z
Gm(z)
Gf(z)

=1

Gm(z)
Gf(z)
(Gm(z) +Gf(z))/2

Notes. Panel A shows the probability distribution functions of test-taking ability z among males (full line)

and females (dashed line), when test-taking ability z is normally distributed with σm>σf and µf>µm. Panel

B shows the complementary cumulative distributions, resulting from the integration from +∞ to z of fzf (z)
and fzm(z).

R(z̄) and E(z̄) are both functions of the lower bound of test-taking ability for enrolling z̄,

which varies with the exogenous parameter b. Under the assumption that V ar[zm] > V ar[zf ],

it can be shown analytically that the relationship between R(z̄) and E(z̄) has 3 notable prop-

erties:

Proposition 1 The female-to-male ratio R(z̄) tends to zero when the total enrollment

rate E(z̄) tends to zero.
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Figure 6: Expected relationship between enrollment rate in tertiary education and female-to-
male ratio among the enrolled – illustration
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Proposition 2 The female-to-male ratio R(z̄) tends to one when the total enrollment rate

E(z̄) tends to one.

Proposition 3 There exists a value of E(z̄) ∈ [0, 1[ such that R(z̄) = 1. This value is

unique and always exists.

Proof. See the Appendix.

Importantly, the assumption V ar[zm] > V ar[zf ] is necessary and sufficient for proposition

(1) to (3) to hold, without any restriction required on µf and µm. In addition, the normal-

ity assumption on fzf (z) and fzm(z) is not necessary for Proposition 1 to 3 to be true. As

shown in the Appendix, Proposition 1 to 3 also hold when z assumed to follow alternative

two-parameter probability distribution functions the are commonly used in the literature.

Our theory therefore appears to be quite robust as the only necessary and sufficient condition

on the distribution of z to generate the reversal is the larger dispersion of males’ test-taking

ability distribution V ar[zm] > V ar[zf ].

An analogous reasoning can be applied to extract the relationship between secondary

school non-completion rates and gender ratio among non-completers. The only difference is

18



that we work with the cumulative distribution functions (CDF) instead of the complementary

cumulative distribution functions (CCDF) since we are now dealing with the lower tail of the

probability density functions. In our setting, the secondary school non-completion rate for

each gender in a given cohort t is simply:

Nt = Fz(
s̄

bt
) = Fz(zt)

where

Fz(z) =

� z

−∞
fz(z) dz

and z denotes the lower bound of test-taking ability such that individuals complete secondary

school. The total non-completion rate for both genders in a given cohort is:

N(z) ≡
Fzf (z) + Fzm(z)

2
(13)

Figure 7: Expected relationship between non-completion rate in secondary education and
female-to-male ratio among non-completers – illustration
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Note. The parameters are the same as in Figure 6.
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4 Empirical Estimation

4.1 Data

Our data on enrollment rates and gender ratios is from two sources. Data on tertiary educa-

tion enrollment is from the UNESCO database, which records information on enrollment rates

by gender for about 200 countries over the period 1970–2010. it was compiled for national

censuses. The available measure for tertiary enrollment rates is the Gross Enrollment Ratio

(ger), defined as the total number of students registered in tertiary education regardless of

their age, expressed as a percentage of total mid-year population in the 5 year age group

after the official secondary school leaving age (typically between 18 and 23). Formally, it is

expressed as: gert =
Et

P t · 100 where E
t is the total number of individuals enrolled in tertiary

education at time t. It includes all students officially enrolled in ISCED 5 and 6 levels of

tertiary education7. P
t is the number of individuals belonging to the five-year age group

following on the secondary school leaving age in year t. gert is therefore not bounded to be

lower than 100%. It is therefore a noisy measure of its theoretical counterpart in our model

xt ≡ Ci(z̄t) ≡
Gzf (z̄t)+Gzm (z̄t)

2 , which is the fraction of individuals belonging to a synthetic

age-cohort enrolling into tertiary education. We are, fortunately, mostly interested in the

comparative evolution of this enrollment rate between genders, rather than in its absolute

value. In addition, it is, to the best of our knowledge, the only enrollment measure available

by gender on a yearly basis for a period of 40 years, in a large sample of countries

Our data for upper-secondary school non-completion rates is from the Barro-Lee educa-

tional attainment dataset 2010. It allows to compute upper-secondary school completion rates

disaggregated by gender for 146 countries. The dataset was constructed from census/survey

data as compiled by UNESCO and Eurostat. Contrary to publicly available UNESCO data

which measures the stock of individuals attending education in a given year, the Barro-Lee

dataset allows to compute educational attainment by cohort of birth. It is therefore a more

accurate measure of its theoretical counterpart N(z) ≡
Fzf (z)+Fzm (z)

2 , which is the fraction

of individuals belonging to a synthetic age-cohort enrolling into tertiary education. This

flow measure of human capital, is more sensitive to cohort-by-cohort changes in educational
7
ISCED 5 refers to the first stage of tertiary education, and includes both practically-

oriented/occupationally specific programs and theory-based programs, respectively referred as 5B and 5A

in the International classification of the United Nations. ISCED 6 refers to the second stage of tertiary

education leading to the award of an advanced research degree
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choices. The Barro-Lee dataset allows us to observe secondary school non-completion rates

by gender for 5-year band birth cohorts born from 1891–1895 to 1981–19858. In total, we can

compute the total secondary school non-completion rate and the female-to-male ratio among

non-completers fo sixteen 5-year-band cohorts born from 1891 to 1985 in 146 countries. One

drawback of the Barro-Lee dataset is that the measurement of educational attainment varies

for some countries 9. This is however not a major concern in our context, as we are mostly

interested in variations of the enrollment rate by gender within countries, rather than across

countries.

4.2 Maximum Likelihood Estimation

Our dataset allows to observe the following 2× T matrix for each country i in our sample:





xi1 yi1

xi2 yi2

... ...

xiT yiT





where xit denotes the total enrollment rate in country i and year t, and yit denotes

the female-to-male ratio among the enrolled of country i in year t. In the context of our

model, the total enrollment rate xit is defined as xit = Ei(z̄it) ≡
Gzf (z̄it)+Gzm (z̄it)

2 , where

x = E(.) : z̄ → [0, 1], given the two underlying distributions Gzf and Gzm . Contrary to z̄it,

xit is observed in the data. Assuming normality, the two distributions are fully characterized

by the two-parameter vectors (µm, σ2
m) and (µf , σ2

f ), respectively.

Without loss of generality, the parameters of our model can be reduced to two, by nor-

malizing one of the two probability density functions. We choose to standardize the female

probability density function such that ff (z̄it) ∼ N(0, 1) and denote (µi, σ2
i ) the first two mo-

ments of the males’ test taking ability distribution relative to females in country i. Formally,

µi =
µi,m − µi,f

µi,f
= µi,m (14)

8
The aggregate Barro-Lee database is constructed from nationally-representative surveys in which the exact

year of birth of the respondent is typically not available for anonymity reasons. Instead, a five-year window

of the individual’s age is usually given.
9
For more details about the construction of the Barro-Lee dataset, see Barro and Lee (2010)
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σi =
σi,m

σi,f
= σi,m (15)

In this setting, our model of investment in human capital predicts a unique value ŷit of

yit, conditional on the triplet {xit, µi, σi}. Given the 2× T matrix, it is possible to estimate

the vector of parameters {µi;σi} for country i by maximum-likelihood estimation, such that

the distance between the actual data points and the ones predicted by our model is minimized.

Let z̄it denote the test-taking ability cutoff in year t in country i ∈ {1, 2, ..., n} above

which individuals attend tertiary education. Test-taking ability for males and females are

random variables denoted zm and zf respectively, and assumed to be normally distributed.

Their mean and standard deviation are allowed to differ across countries. We are interested

in estimating the following model:

yit =
Gzf (z̄it)

Gzm(z̄it, µit, σit)
· exp(�it), (16)

where exp(�it) ∼ lnN(µ�, σ
2
� ) Taking the logs of equation (13) yields:

log yit = logGzf (z̄it)− logGzm(z̄it, µit, σit) + �it, (17)

where �i ∼ N(0, σ2
� ).

In addition, the analytical expressions for Gzf (z̄it) and Gzm(z̄it, µit, σit) are given by:

Gzf (z̄it) =

� ∞

z̄it

1√
2π

e
z2

2 dz =
1

2

�
1− erf

�
z̄it√
2

��
(18)

Gzm(z̄it) =

� ∞

z̄it

1�
2πσ2

m

e

(z−µm)2

2σ2
m dz =

1

2

�
1− erf

�
z̄it − µm√

2σ2
m

��
(19)

where erf(·) denotes the Gauss error function, expressed as erf(z) = 2√
π

� z
0 e

−t2
dt.

The explanatory variable x in the model is however not the test-taking ability variable, but

the average of the two CCDFs:

xit = Eit(z̄it) ≡
Gzf (z̄it) +Gzm(z̄it)

2
=

1

4

�
2− erf

�
z̄it√
2

�
− erf

�
z̄it − µm�

2σ2
m

��
(20)

We are interested in the inverse of this function. For practical purposes, we calculate nu-
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merically the inverse value z̄it = E
−1
it (xit, µit, σit). The likelihood function can be expressed

as:

L(θi|yit) = logGzm(E
−1
i (xit))− logGzm(E

−1
i (xit)) + �it, (21)

where θi = {µi, σi}. Since the error term is normal, the model can be fitted by finding

numerically the values that minimize the sum of squared errors of the likelihood function.

Thus, the model is a non-linear mapping from xi to yi, whose form is defined by the parameters

of the male distribution, when the female distribution in normalized to a standard normal

distribution.

The maximum-likelihood estimator of θi = {µi, σi, αi} can be expressed as:

L({θi|z}) =
1

(2πσ2
� )

n
2
· exp

�
− 1

2σ2
�
·

n�

i=1

�
log yit − logGzf (E

−1
i (xit)) + logGzm(E

−1
i (xit))

�2
�

(22)

To obtain the values of θi = {µi, σi} that maximize this likelihood, we take the Least-Squares

fit given by:

ˆθMLE = min
θi∈Θ

n�

i=1

�
log yit − logGzf (E

−1
i (xit|θi)|θi) + logGzf (E

−1
i (xit|θi)|θi)

�2 (23)

5 Results

5.1 Model Fit

Figure 8 depicts the estimated relationship between the total enrollment rate in tertiary

education x and the female-to-male ratio y when {µi;σi} are estimated from the 2×T matrix,

as described in the previous section. As shown in the figure, our model generates an accurate

fit for the relationship between x and y observed in each individual country. Figure 9 shows

our model fit for the relationship between the secondary school non-completion rate, and the

gender ratio among non-completers. As depicted in the figure, our model also generates a

very satisfactory fit for the gender ratio in the lower tail of educational distribution. Contrary

to the data on tertiary enrollment, the secondary school non-completion rate ranges from

virtually 100% of non-completion for cohorts born at the end of the 19th century until less

than 10% nowadays in some countries. It therefore allows to reconstruct almost the entire

path of the gender ration among non-completers as a function of non-completion rates. It

shows a non-linear relationship between the non-completion rate and the gender ration among
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non-completers. At low-levels of secondary school non-completion, the female-to-male ratio

among non-completers gradualy increases with the non-completion rate before reaching a

point at which the female to male ratio among non-completers is larger than 1. However,

once the non-completion rate has reached a certain threshold, the female-to-male to male

ratio starts decreasing before converging back to 1 for a non-completion rate of 100%. To the

best of our knowledge, our theory is the first contribution to account for this very particular

non-linear pattern in the relation between the secondary school non-completion rate and the

gender ratio among non-completers.
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Figure 8: Model Fit - Gender Ratio in Participation to Tertiary Education
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Notes. The x-axis measures the total gross enrollment ratio in tertiary education for country i. The y-

axis measures the females-to-males ratio in tertiary education for country i. Each dot corresponds to a yearly

observation of {xi; yi} for country i from the UNESCO Institute of Statistics. The full line depicts the estimated

relationship between y and x from our model when {µi;σi} are estimated by maximum likelihood to minimize

the error sum of squares.
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relationship between y and x from our model when {µi;σi} are estimated by maximum likelihood to minimize

the error sum of squares.
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Figure 9: Model Fit - Gender ratio among Secondary School Non-Completers
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Notes. The x-axis measures the rate of secondary school non-completion for country i. The y-axis measures the

females-to-males ratio among secondary school non-completers for country i. Each dot corresponds to a yearly

observation of {xi; yi} for country i from Barro-Lee (2010). The full line depicts the estimated relationship

between y and x from our model when {µi;σi} are estimated by maximum likelihood to minimize the error sum

of squares.
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Notes. The x-axis measures the total gross enrollment ratio in tertiary education for country i. The y-

axis measures the females-to-males ratio in tertiary education for country i. Each dot corresponds to a yearly

observation of {xi; yi} for country i from the UNESCO Institute of Statistics. The full line depicts the estimated

relationship between y and x from our model when {µi;σi} are estimated by maximum likelihood to minimize

the error sum of squares. Column (1) depicts our result using Estimator 1, column (2) shows our result using

Estimator 2, as described in the previous section.
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Figure 10: Model Fit - Secondary School Non-Completers (France)
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5.2 Matching our Estimates with PISA Distributions

Our model is: log yt = logR(E−1(xt, µ, σ), µ, σ) + �t. Given our estimates for µ and σ, the

model predicts the gender ratio ŷ among the enrolled, for a given value of the enrollment rate

x. To assess its validity, we simulate the model with {µ̂i σ̂i} obtained from our fit with the

UNESCO enrollment data, and a fixed value of of x. We then repeat the same procedure by

inputing {µ̂i σ̂i} extracted from PISA test score distributions, and the same fixed value of of

x. We obtain two vectors of yi’s and measure to which extend they correlate for countries

that both available in the UNESCO and PISA datasets. In total, 40 countries are common
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Figure 11: Model Fit - Secondary School Non-Completers (Spain)
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to both sources. The motivation behind this test is to check whether our model can capture

underlying differences in gender distributions on a national level that show in PISA exams at

15 and our model fit at around 18.

PISA assessments provide a suitable benchmark for underlying test-taking ability distri-

butions by gender. First, the PISA sample was designed to be representative of the entire

population of 15 year olds in a given country, since it surveys individuals in schools before

the end of compulsory education. Second, it has been designed to be comparable across coun-

tries. Finally, it contains information on the gender of each individual, therefore allowing to

construct estimates of ability test score distribution by gender in each country.

Table 1 shows the correlation between the ŷi’s simulated from the two sets of {µ̂i, σ̂i}

obtained from our model fit, and the PISA distributions. We use the PISA dataset from year

2000 to get as close to the median year of the UNESCO data to minimize any attenuation

bias that might emerge if there is a systematic shift in the relative distributions of females

and males. We report correlations for 3 different values of x, x = 0.20, x = 0.50 and x = 0.70.

Another source of measurement error is the fact that we are comparing 15-year-olds to 18-

year-olds. Any country-specific change in the relative distributions during that age gap will

induce measurement errors. Correlations between our predictions and PISA estimates are

large, and do not vary much depending on the value of x we consider. The correlation of the

gender ratio in a given quantile is approximately 0.4 with PISA reading ability, and significant

at the 5% level. The magnitude of the correlation is slightly lower with PISA mathematics

ability but remain larger than 0.3, and statistically significant at the 10% level.

The fact that our model estimates does not perfectly correlates with gender differences

found in PISA can be explained by several sources of measurement errors. One important

source of measurement error is that we are comparing 18-year-olds with 15-year-olds. PISA

assessment at indeed taken at age 15, while we estimate our model for individuals who are

enrolled in tertiary education, and are therefore 18 and older. Therefore, any country-specific

change in the relative distributions during that age gap will induce measurement errors.

In this respect, Lynn and Kanazawa (2011) report evidence suggesting that male cognitive

abilities mature later than females in the UK, especially after age 16. As cognitive abilities

are certainly captured by test scores, this would imply that gender differences in mean test

score are not the same at age 15 as they are age 18 leading to discrepancies between our model

estimates and PISA estimates.
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Second, our estimates use the gross enrollment ratio as a proxy for theoretical counterpart

in our model. As we already emphasized, the gross enrollment rate is an imperfect proxy,

which is also likely to generate measurement error in our estimates.

Third, test scores are an imperfect measure of its test-taking ability, its theoretical coun-

terpart, that is unobservable by the econometrician. As emphasized by Heckman et al. (2012),

measured test scores are the observable outcome of a complex combination of cognitive and

non-cognitve abilities, as well as unobservable effort. Understanding the mapping from test-

taking ability to test score is a challenging task that is beyond the scope of this paper. The

role played by effort in test score production is likely to introduce noise in measured ability,

especially if effort is correlated with gender.

Finally, as emphasized in Hoxby (2012), test-taking ability is certainly not the only relevant

variable for enrollment in education decisions. Variables such as parental envrionements or

networks are also likely to play a role. As a result, observable educational enrollment variables

are likely to capture these additional factors, thereby generating measurement in our estimates

for country specific-gender differences in ability distributions.

Table 1: Correlations between Predicted Gender Ratio by Quantile from our Estimates and
PISA Estimates

Predicted Gender Ratio - Model Fit

2nd decile 5th decile 7th decile
Predicted Gender Ratio - PISA Math 0.332* 0.335* 0.317*

(0.059) (0.057) (0.072)
Predicted Gender Ratio - PISA Reading 0.488*** 0.429** 0.362**

(0.004) (0.013) (0.039)
Notes. ***: significant at the 1% level, **: significant at the 5% level, *: significant at the 10% level. Sample size is 33 countries.

p-values are reported into parenthesis.

6 Test Against Alternative Hypothesis

In previous sections, we have shown that our theory is consistent with empirical data. The

second step is to show that alternative explanations proposed by the literature are inconsistent

with some patterns of the data that our theory can explain. Previous theories have been

focusing on explaining the gender gap reversal in participation to tertiary education in the

US context. To the best of our knowledge, two main hypotheses have been formulated. First,

as argued in Chiappori et al. (?), changes in social norms combined with higher returns to
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education for females can produce a reversal from male majority to female among university

students. Second, a relative increase in females’ mean test-taking ability over time can also

generate a reversal in the college gender gap, as suggested by Cho (?).

In this section, we propose several tests to assess the validity of these two alternative

theories against empirical data. We first formulate them in the framework we developed in

the previous chapters, and then assess their implications against our alternative theory. All

three hypotheses can be stated within the framework we have established in the previous

chapters:

Hypothesis 1, Higher male dispersion hypothesis: The function Gz(·) is gender-specific,

but static over time, i.e. the higher dispersion in male test-taking ability explains the college

gender gap reversal. The lower bound of test-taking ability z̄ for attending university is the

same for both genders.

Hypothesis 2, Change in social norms hypothesis: The lower bound of test-taking ability to

enroll into tertiary education differs between men and women, i.e. there exist gender-specific

z̄f and z̄m for females and males respectively while the test-taking ability distribution Gz(·) is

common to both genders. In the past, z̄f > z̄m before progressively converging and surpassing

zm over time

Hypothesis 3, increase in females’ mean performance hypothesis: The female mean test-

taking ability has increased and progressively surpassed the male men over time The variance

of the ability distribution and the ability threshold for enrollment z̄ are identical for both

genders.

These three hypotheses could be combined into joint hypotheses. We analyze them sepa-

rately to retain maximum simplicity and assess their respective explanatory powers.

6.1 The Change in Social Norms Hypothesis (Hypothesis 2)

In our framework, the enrollment rate at university for each gender is:

E = 1− Fz(
s̄

b
) = Gz(

s̄

b
) = Gz(z̄) (24)

We can formulate the change in social norms hypothesis in our framework by allowing b to

differ and change over time across genders, with Gz(.) being identical for males and females.

In this setting, it is possible to generate the gender gap dynamics observed in the data if

bf < bm originally, before gradually converging and surpassing bm over time. Optimal levels
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of investment in schooling are expressed separately for males and females as:

s
∗
i =





zi · bm if male

zi · bf if female

And the enrollment rate in higher education for each gender is:

E =





Gz(

s̄
bm

) = Gz(z̄m) for males

Gz(
s̄
bf
) = Gz(z̄f ) for females

where Gz(.) is identical for males and females.

In this context, bf > bm in most recent years is a necessary condition for the gender

gap reversal in participation to education. In other words, the net benefits to education for

females have to be higher than for males at the margin. Empirical evidence on larger returns

to education for females is ambiguous, however. An important component of the monetary

returns to tertiary education is what is typically referred as the college wage premium, which

is the wage difference between individuals that attended tertiary education and those who

did not. Chiappori at al. (2009) Card and DiNardo (2002), or Charles and Luoh (2003) ind

a higher college wage premium for women, but their estimations are restricted to the US. In

addition, the methodology behind the findings of these studies has been strongly challenged

by Hubbart (2011). In particular, the gender difference in the college premium vanished once

a bias associated with income topcoding in the dataset used by US studies is corrected for.

Cho (2007) further points out that trends in the college premium has been very similar for

men and women over the last decades, making it an unlikely explanation for the college gender

gap reversal. Even if the college wage premium is higher for females, Becker et al. (2011)

argue that most non-monetary benefits to higher education are still lower for women in most

dimensions. In the absence of bf>bm in recent years, the change in social norms hypothesis

alone is unable to account for the reversal of the gender ratio among the enrolled

Let us now fit and assess Hypothesis 2, by allowing bf and bm to take different values.

Hypothesis 2 is very flexible for fitting the data. Since the relative changes of z̄f and z̄m have

not been constrained, we can calculate the values algebraically. The calculated values are

depicted in Figure 12. The algebra is straightforward. For each time period, there is a system

of two equations:

yt =
Gz(z̄f,t)

Gz(z̄m,t)
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and

xt =
Gz(z̄f,t) +Gz(z̄m,t)

2
,

where xt and yt are known. By replacing we get:

yt =
Gz(z̄f,t)

2xt −Gz(z̄f,t)

We can easily solve numerically for the unknown and unique values of z̄f,t and z̄m,t. To

extrapolate outside the actual data range, we assume that z̄m and z̄f continue to change at

the average estimated pace of change between the years 1946 and 2009. The estimated values

of z̄f,t and z̄m,t and their change over time is depicted in Figure 12.

Figure 12: The change in social norms hypothesis fitted, with projections.
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calculated years before and after the data range used.

6.1.1 Hypothesis 2 Versus Hypothesis 1: Test 1

Hypothesis 2 appears to do an excellent job at explaining the reversal, as it allows for an exact

fit. However, it can be shown that Hypothesis 1 and Hypothesis 2 have opposite implications

regarding the relationship between the total enrollment rate defined as:

C(z̄f , z̄m) =
Gzf (z̄f ) +Gzm(z̄m)

2
(25)
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and

E[zf |zf > z̄f ]− E[zm|zm > z̄m], (26)

which is the difference between the mean test-taking ability of females and males enrolled in

tertiary education. This comes from the fact that Hypothesis 1 claims that zf and zm have

different distributions and z̄f = z̄m, and vice versa for Hypothesis 2.

The change in social norms hypothesis (Hypothesis 2) implies that the average test-taking

ability is initially higher for enrolled females than for enrolled males, and progressively con-

verges towards it before taking lower values. On the other hand, Hypothesis 1 implies that

the females’ average gets higher relative to males as the the fraction of population taking the

test increases. When the test takers are a representative sample of the whole population, the

observed mean difference becomes an estimate of the mean difference of the whole population.

To test these two opposite predictions against the data, we analyze data on both the average

performance in cognitive test by gender, and the proportion of a given cohort taking the test.

Our data is from several sources. SAT mean test scores by gender are from the College

Board which provides average mean scores for mathematics and reading by gender from 1970

to 2010, as well as the total number of females and males taking the test in a given cohort. We

complemented this data with 4 US longitudinal surveys: The National Longitudinal Study of

the high school class of 1972 (NLS72), High School and Beyond 1980 (HS&B), the National

Educational Study of 1988 (NELS 88) and the Educational Longitudinal Study of 2002 (ELS

2002). From these data sets, we obtain the average test score of college students by gender

over time, and can follow with total enrollment rate through these 4 data points. Finally, we

also use test score data from PISA for both mathematics and reading, which are taken by a

representative sample of the entire population of 15-year-olds in a given country.

As depicted in Figure 13, while Hypothesis 1 generates an increase in the average level of

test-taking ability of females attending university relative to males over time, the change in

social norms hypothesis implies an evolution of the opposite sign, until the sample restriction

reaches a proportion of around 0.6 to 0.8 of the cohort taking the test.

Figure 13 shows that Hypothesis 1 performs well at predicting the relationship between

the average gender in cognitive scores and the fraction of the population taking the test,

implied by z̄. It provides a good fit for both the shape of the relationship observed in the

data, and the sign of the gender gap in average cognitive tests. The data shows that males do

better relative to females in a restricted sample selected from the top of the distribution, than
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in the entire population. In PISA, which is a sample of the entire population of 15-year-olds,

females obtain higher average test scores relative to males in reading. On the other hand,

males perform on average better in the same discipline with the SAT test.

The higher male variability hypothesis (Hypothesis 1), although not a perfect fit, provides

a simple explanation for the main facets of this puzzle, relying on the fact that test-takers are

drawn from different ranges of the ability distribution in these tests. This matters for the ob-

served average performance by gender, given different underlying distributions of test-taking

ability by gender assumed in our model. On the other hand, the alternative hypothesis of

change in social norms (Hypothesis 2) neither predicts the sign of the gender gap for the whole

range, nor the sign of the relationship between the gender gap in average test performance

and the proportion of population taking the test.

6.1.2 Hypothesis 2 Versus Hypothesis 1: Test 2

Another way to assess the higher male dispersion hypothesis against the change in social

norms hypothesis is to look at the evolution over time of the relationship between test score

and enrollment in tertiary education by gender. Hypothesis 1 assumes that test-taking ability

is the only relevant choice variable for choosing to attend university. This implies that the

empirical relationship between z and H should be identical for both genders, in every given

cohort. In particular, there should not be any gender-specific change in the relationship

over time between the test taking ability z and tertiary enrollment H. On the other hand,

hypothesis 2 implies that females used to enroll less than males at university conditional on

test scores (bf<bm), while they now have a higher propensity to enroll for a given test-taking

ability, since bf>bm.

To assess these competing hypotheses, we use data from two longitudinal surveys con-

ducted in the US in 1980 and 2002. The first of these surveys is the High School and Beyond

1980, which follows a cohort of 10th graders in 1980 until university studies. The second of

these surveys is the US Educational Longitudinal Study 2002, which also follows 10th graders

in 2002 until university studies. Both datasets survey a representative sample of the same age

group in the US population, and provide test score information in 10th grade on a compara-

ble scale. In addition, they both allow us to know whether individuals attended university
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Figure 13: Fit for the empirical relationship between enrollment rate and gender gap in mean
test score of the enrolled: Our model Vs the social norm hypothesis
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Notes. The x-axis represents the proportion of the cohort taking a given cognitive test. The y-axis represents

the female-to-male difference in means of the given cognitive test, expressed in standard deviations units.

The thick line depicts the expected relationship between the gender difference in average cognitive score of

university students as a function of total enrollment, as predicted by from model. The dashed lines represent

the evolution of the same variable predicted by the discrimination hypothesis, when males and females cognitive

score distributions are assumed to be the same, but women are initially facing a higher z̄ relative to males

that progressively converges to the males’ level when university enrollment increases. The crosses and triangle

dots represent the actual value of the gender difference in SAT test scores for the entire population of SAT

test-takers, as a function of the fraction of SAT test-takers in the population. The squared-dots represent

similar values computed from US post-secondary longitudinal surveys, for college students only.
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Figure 14: The Relationship between test-taking ability z and tertiary enrollement H by
Gender: 1980 Vs 2002
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Source. High School and Beyond survey of 1980 (HS&B) and Educational Longitudinal Study (ELS) of 2002

education, and to match this information with individual test scores in 10th grade. Using

these two surveys, we constructed the empirical relationship between the test-taking ability

z measured by test scores at age 15, and the propensity to enroll at university H at two

different points in time: 1980 and 2002. We believe that the 22 years’ time is sufficient to

detect asymmetric changes by gender in the relationship between z and H, especially in a

period during which enrollment at university increased dramatically in the US. The results of

the analysis are depicted in Figure 14.

Figure 14 shows two main patterns. First, females have a higher propensity to enroll in

tertiary education, conditional on test scores. Second, and more importantly in our context,

this was already the case in 1980. In other words, we do not observe any change in the

propensity of females to enroll at university conditional on test scores relative to males, which

goes against the change in social norms hypothesis.

We further investigate changes in the relationship between z and H quantitatively, using

regression analysis. The results are presented in Table 2 and Table 3. As shown in Table 2,

rmales enroll significantly less at university than females, conditional on test scores, in both

1980 and 2002. IThe point estimate of this negative effect of the male dummuy is very stable

between 1980 and 2002: -0.083 in 1980, against -0.078 in 2002. There is therefore no evidence

for women being penalized in university enrollment given their test scores in earlier decades,

as the change in social norm hypothesis would suggest. In addition, the effect of gender on
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university enrollment conditional on scores is fairly stable over time, which goes against the

predictions of Hypothesis 2.

Table 3 brings further insights by running separate regressions by gender in 1980 and 2002.

The intercept for both males and females increased sharply from 1980 to 2002, reflecting the

fact that both genders have a higher propensity to enroll at university in 2002 than in 1980,

conditional on their test scores. Therefore, although the propensity to enroll at university

increased sharply over the period, there does not seem to be any asymmetrical change in

the relationship between test scores and university enrollment: both genders enroll more at

university conditional on their test scores, and males enroll less at university than females

given their test score both in 1980 and 2002. Interestingly, the association between university

enrollment and test scores have decreased for both genders over the period. This may reflect

the multiplication of US postgraduate institutions in recent years implementing less strict

criteria of admissions. Again, this evolution appears to be quite symmetric between genders:

the association decreased from 0.25 to 0.19 for males, and from 0.21 to 0.16 for females. The

interaction changes from positive and significant to negative and insignificant, but has only a

distributional effect within boys, since the mean is very close to zero.

Table 2: The Relationship between test-taking ability z and enrollement H: 1980 Vs 2029 -
graphical evidence

Dep. variable: Propensity to Enroll at University

1980 2002

Male -0.086*** -0.083*** -0.076*** -0.078***

(0.01) (0.008) (0.007) (0.04)

Composite Test Score 0.22*** 0.21*** 0.17*** 0.18***

(0.007) (0.008) (0.004) (0.006)

Interaction 0.027** -0.036

(0.01) (0.028)

Intercept

R-squared 0.142 0.151

N. observations 11,641 11,641 13,240 13,240

Notes. ***: significant at the 1% level, **: significant

at the 5% level, *: significant at the 10% level. Stan-

dards errors are bootstrapped.
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Table 3: The Relationship between test-taking ability z and enrollment H in 1980 and 2009
- Separate Regressions by Gender

Dep. Variable: Propensity to Enroll at University

1980 2002

Males Females Males Females

Composite Test Score 0.25*** 0.21*** 0.19*** 0.16***

(0.007) (0.007) (0.005) (0.005)

Intercept 0.21*** 0.43*** 0.64*** 0.91***

(0.018) (0.018) (0.018) (0.019)

R-squared 0.163 0.120 0.146 0.145

N. observations 5,554 6,087 6,305 6,878

Notes. ***: significant at the 1% level, **: significant at the 5% level, *:

significant at the 10% level. Standards errors are bootstrapped.

6.2 Increase in Females’ Mean Performance (Hypothesis 3)

The higher male dispersion hypothesis (Hypothesis 1) relies on the assumption that test score

distributions for males and females are fixed over time, and in particular that the gender

difference in mean test score µf - µm is time-invariant. We now assess the possibility that

the average performance of girls relative to boys increased over time, which can also lead

to the observed gender gap reversal in participation to education. In our framework, this

corresponds to a shift of fzf to the left relative to fzm , leading to an increase in Ef relative

to Em, without any change in z̄. This possibility has been investigated by Cho (2007) and

Fortin (2011) for the US. Fortin (2011) finds no relative increase in girls’ self-reported grades

over the period 1970–2010. Using data from the Monitoring the Future study, she reports an

increase in high school grades for both boys and girls with parallel trends over the period,

with girls already outperforming boys in the early 1970s. Cho (2007), on the other hand, finds

that women’s performance in high school, measured by test scores, increased more rapidly

than for men over the last three decades.

An important caveat of the analysis in our context is that it uses a sample of high school

seniors, which are beyond the compulsory age of high school attendance. Early high-school

dropouts are therefore excluded from the sample, which may generate biases in the estimated

gender differences in mean test scores for the entire population, and its change over time. This

phenomenon is referred as attrition bias or sample restriction in the literature, and has strong

implications in our context where the variance of test-taking ability distributions differs across

genders. Using data from the 1970 British Cohort Study, Deary et al. (2007) have shown that
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observed differences in mean IQ scores can be partly created by the combination of sample

restriction, and a larger variance of cognitive abilities for males. In the presence of sample

restriction, the mean of the truncated distribution of student test scores is a function of the

first two moments of the underlying distribution, and of the ability threshold for truncation. In

the presence of a higher variance of test-taking ability for men in the entire population, sample

restriction will therefore generate changes in the observed mean performance between genders

over time, even if the mean of the underlying population distribution remained unchanged.

[FIGURE?]

His analysis therefore uses a selected sample of the population, and selection into high

school attendance is likely to have changed over-time. In particular, enrollment in high school

expanded over the period, and the simple comparison of males and females average test scores

in high school includes therefore the confounding effect of changes in the sample of high school

students. This is particularly the case if, as we argue, ability distributions differ by gender,

and less and less talented individuals enroll into high school as the enrollment rate increases.

To evaluate whether the mean performance of the female population increased over time

relative to boys, one should use a representative sample of the entire country population

of a given age group. This can be achieved by using school test scores taken at an age

at which schooling is still compulsory. In this respect, the Project for International Student

Assessment (PISA) surveys a representative sample of the 15-year-old population in more than

40 countries. In addition, test results have been designed to be comparable over time. The

drawback of this data, however, is that it is only available from 2000 onwards, and therefore

allows tracking relative changes in mean performance between genders over the period 2000-

2010. Figure 15 depicts the evolution of girls’ mean average performance relative to boys in

reading and mathematics over the period 2000-2010 for around 40 countries included in PISA.

They show that while female relative average performance in reading seem to have increased

over the period 2000-2009, females appear to do worse in mathematics relative to males in

2009 compared to 2000. Therefore, international evidence is mostly inconclusive regarding

the increase of female mean performance.

Given the short time-span of the PISA study, we complement our analysis by looking at

the evolution of the performance of secondary school students by gender in the US [school

still compulsory at that age?), over the period 1980–2002 (Check 2009?). To this purpose,

we use two nationally representative longitudinal surveys of secondary school students in the
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Figure 15: Average PISA performance of males relatives to females in math and reading:
2000-2009
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US conducted in 1980 and 2002. These surveys both contain information on test scores in

mathematics and reading when individuals were in 10th grade. The results are depicted in

Table 4. The table shows that the average test score of female 10th graders has increased

relative to boys in the US, between 1980 and 2002. In mathematics, girls’ disadvantage

decreased from -0.121 to -0.107, whereas the girls advantage in reading score increased from

0.057 standard deviations from 0.148 standard deviation. Although these figures seem to

suggest that girls’ average performance in high school increased relative to boys over the

period, they should be interpreted with care. First of all, there is the usual sample restriction

issue since 10th graders in the US are already beyond the end of compulsory schooling.

Therefore, if high school dropout rates differ between boys and girls and have changed between

1980 and 2002, which is likely, changes in average performance of 10th graders will give a

biased estimate of the entire population. Second, one should keep in mind that such evidence

is restricted to the US. Data constraints do not allow to repeat a similar exercise for other

countries over the same period.

7 Conclusion

Building on a simple framework of optimal investment in human capital, our model is able

to reconcile three internationally robust facts: the greater dispersion of males test score
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Table 4: Gender difference in mean test score at 15 in the US: 1980 Vs 2002

1980 2002

Female Male F-M Diff. Female Male F-M Diff.

Mean Mean in S.d. Mean Mean in S.d.

Mathematics Score 49.41 50.62 -0.121*** 49.49 50.56 -0.107***

Reading Score 50.29 49.72 0.057*** 50.77 49.29 0.148***

Composite Score 49.52 50.50 -0.097*** 50.13 49.94 0.019

Notes. ***: significant at the 1% level, **: significant at the 5% level, *: significant at

the 10% level. Standards errors are bootstrapped.

Sources. High School and Beyond 1980 and US Educational Longitudinal Study 2002.

distribution relative to females’, the gap reversal form male majority to female majority

in tertiary education attendance, and the reversal from female majority to male majority in

secondary school non-completion. In addition to building the model framework, we contribute

in this paper by showing that the second fact applies to a wider range of countries than shown

previously. We are also the first to observe the third fact. Given data limitations and the

inherent difficulty in measuring test-taking ability, our model provides a very satisfactory

fit for the empirical relationship between total enrollment rate in tertiary education and the

female-to male ratio. It is also the first theory to account for the reversal of the gender gap

in secondary school non-completion rates. It turns out to be able to explain some patterns of

the data that previous theories are inconsistent with. Also, the proposed model framework

allows us to conveniently test different hypotheses put forth in the literature.

Beyond the particular question addressed in this paper, our findings suggest that gender

differences in ability distribution might be relevant to account for other gender-related styl-

ized facts in labour economics. Further research using this empirical fact to analyze other

aspects of the gender gap in economic outcomes would therefore be of particular interest.

Importantly, the larger variability of men’s ability distribution observed empirically remains

mostly unexplained, and stands as another promising area for future research, beyond the

field of Economics.
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9 Appendix

9.1 Proof of Proposition 1 to 3

Let fzf (z) and fzm(z) denote the probability distribution functions of talent z for females

and males, respectively. We assume for the sake of the argument that:

zf ∼ N(µf , σ
2
f )

and

zm ∼ N(µm, σ
2
m).

Building on empirical evidence on gender differences in test score distributions, we assume

σ
2
m > σ

2
f .

Proof of Proposition 1. The females-to-males ratio R(z̄) tends to zero when the total

enrollment rate C(z̄) tends to zero.

First, it is immediate to see that limz̄→∞C(z̄) =
Gzf (z̄)+Gzm (z̄)

2 = 0+0
2 = 0. where Gz(z̄)

denotes the complementary cumulative distribution function (or tail distribution function) of

talent z, defined as
� +∞
z̄ fz(z) dz.

Let us now study limz̄→∞R(z̄). Using the analytical expression of the probability distri-

bution function of the normal distribution, the ratio R(z̄) can be expressed as:

R(z̄) =

�∞
z̄

1�
2πσ2

f

e

(z̄−µf )2

2σ2
f dz

�∞
z̄

1√
2πσ2

m

e

(z̄−µm)2

2σ2
m dz

Taking the integral, one can express the ratio as:

R(z̄) =

1
2

�
1− erf

�
z̄−µf√
2σ2

f

��

1
2

�
1− erf

�
z̄−µm√
2σ2

m

�� ,

where erf(·) denotes the Gauss error function, expressed as erf(z) = 2√
π

� z
0 e

−t2
dt.
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Using the analytical expression of R(z̄), we get:

lim
z̄→∞

1
2

�
1− erf

�
z̄−µf√
2σ2

f

��

1
2

�
1− erf

�
z̄−µm√
2σ2

m

�� = lim
z→∞

1− (erf [z̄])

1− (erf [z̄])
=

1− 1

1− 1
=

0

0
,

where the second to last step follows from the fact that limz̄→∞ erf(z̄) = 1.

Thus, we need to use the l’Hôpital rule. We take the derivative for the denominator and

the numerator to get the following expression:

lim
z̄→∞

σm

σf
exp

�
(z̄ − µm)2

σ2
m

−
(z̄ − µf )2

σ
2
f

�
= lim

z̄→∞

σm

σf
exp

�
(z̄ − µm)2σ2

f

σ2
mσ

2
f

−
(z̄ − µf )2σ2

m

σ
2
fσ

2
m

�
=

= lim
z̄→∞

σm

σf
exp

�
z̄
2
σ
2
f − 2z̄µmσ

2
f + µ

2
mσ

2
f − z̄

2
σ
2
m + 2z̄µfσ

2
m − µ

2
fσ

2
m

σ2
mσ

2
f

�
=

= lim
z̄→∞

σm

σf
exp

�
z̄

σ2
mσ

2
f

�
z̄{σ2

f − σ
2
m} − 2µmσ

2
f + 2µfσ

2
m +

µ
2
mσ

2
f

z̄
−

µ
2
fσ

2
m

z̄

��
=

= 0,

since by assumption σ
2
m > σ

2
f , and both are positive by definition.

Proof of Proposition 2. The females-to-males ratio R(z̄) tends to one when the total

enrollment rate C(z̄) tends to one.

First, it is immediate to see that limz̄→infty C(z̄)
Gzf (z̄)+Gzm (z̄)

2 = 1+1
2 = 1.

Let us now study the behavior of R(z) when z tends to −∞.

lim
z̄→−∞

1
2

�
1− erf

�
z̄−µf√
2σ2

f

��

1
2

�
1− erf

�
z̄−µm√
2σ2

m

�� = lim
z̄→−∞

1− (erf [z̄])

1− (erf [z̄])
=

1 + 1

1 + 1
= 1.
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where we use the fact that limz̄→−∞ erf(z̄) = −1.

Proof of Proposition 3. There exists a value of C(z̄) such that R(z̄) = 1. This value is

unique and always exists.

Let us show now that given our distributional assumptions, there exists a value of z

denoted z
∗, such that the numerator and denominator are of equal value, thus the ratio is

one. Again, we invoke the ratio

R(z̄) =

1
2

�
1− erf

�
z̄−µf√
2σ2

f

��

1
2

�
1− erf

�
z̄−µm√
2σ2

m

�� .

Since we know that the error function is monotonously increasing on the whole domain,

R(z̄) = 1 when

z̄−µf√
2σ2

f

z̄−µm√
2σ2

m

= 1 ⇔
z̄ − µf

σ
2
f

=
z̄ − µm

σ2
m

⇔ z̄ =
µmσf − µfσm

σf − σm
.

This equation has a unique solution given our assumption σm > σf . In the particular case

where µf = µm = µ, the equation can be rewritten as

z̄ =
µ(σf − σm)

σf − σm
= µ

In the simple case in which the means are equal R(z̄) = 1 when z̄ = µ(z̄).

Since the support of C(z̄) is the whole real line, there always exists a value of z̄ denoted

barz
∗ such that

z̄
∗ =

µmσf − µfσm

σf − σm
.

In addition, z̄∗ is unique given the vector of exogenous parameters {µf , µm, σf , σm}.
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