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Abstract

Workers contribute to team production through their own productivity and through their

effect on the productivity of other team members. We develop and estimate a model where

workers are heterogeneous both in their own productivity and in their ability to facilitate the

productivity of others. We use data from professional basketball to measure the importance

of peers in productivity because we have clear measures of output and members of a worker’s

group change on a regular basis. Our empirical results highlight that productivity spillovers play

an important role in team production and accounting for them leads to changes in the overall

assessment of a worker’s contribution. We also use the parameters from our model to show that

the match between workers and teams is important and quantify the gains to specific trades of

workers to alternative teams. Finally, we find that worker compensation is largely determined by

own productivity with little weight given to the productivity spillovers a worker creates, despite

their importance to team production. The use of our empirical model in other settings could to

lead to improved matching between workers and teams within a firm and compensation that is

more in-line with the overall contribution that workers make to team production.

∗We thank seminar participants at Iowa State for helpful comments.
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1 Introduction

The classic economic model predicts that workers will be paid the value of their marginal product of

labor. Estimating this marginal product may be complicated by team environments in which workers

contribute to team production directly but also indirectly through their effect on the productivity

of other team members. If firms are able to identify workers who boost peer productivity, they can

leverage complementarities in team production through team and task assignments. Workers who

bring out the best in others will likely be assigned to tasks essential for firm production.

Mas and Moretti (2009) provides an excellent example of spillovers in team production by looking

at the placement of cashiers in a supermarket. Placing the most productive cashiers in full view of

the other cashiers resulted in the other cashiers working faster. However, Mas and Moretti provide

one of the few examples where actual productivity is observed and the economist has not intervened

in the system.1 Exceptions include Hamilton, Nickerson, and Owan (2003), who examine worker

interactions in the garment industry, and a set of papers analyzing productivity in the academy,

Azoulay, Zivin, and Wang (2010) and Waldinger (2010, 2012).

The assumption made in this literature–as well as the abundant literature on peer effects in

education–is that the individuals who are most productive themselves are also the ones who will

make others most productive. However, this assumption is a restriction that may be violated in many

contexts. For example, within the academy there are professors who choose to focus exclusively on

their own research, providing little in terms of public goods. There are other professors who are

particularly adept at helping their colleagues in their research and may do so even at the expense

of their own research. Similarly, a brilliant but introverted student may not be as helpful to the

learning of the other students as the perhaps not-so-brilliant student who asks good questions in

class.

Two papers using sports data highlight the heterogeneity in how spillovers may operate. Gould

and Winter (2009) use data on baseball players to analyze how batter performance is related to the

performance of other batters on the team. This paper fits perfectly with the idea that the most

productive players have the largest positive peer effects: batting in front of a high-performing player

results in receiving better pitches because the pitcher will not want to risk a walk prior to facing

the high-performing player. Guryan, Kroft, and Notowidigdo (2009) examine how the productivity

of one’s golf partners affects own performance, finding no significant effects from being paired with

1Field experiments have also been used to examine peer effects in the workplace. See the series of papers by

Bandiera, Baranakay, and Rasul (2005, 2009, 2010, and 2013) as well as Falk and Ichino (2006).
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better golfers. But this may be a case where allowing individuals to be multidimensional in their

abilities is important. Certain players may be very productive but are surly or disobey common golf

etiquette, both of which may serve to distract their partners.

In this paper, we develop and estimate a model of team production where individuals are hetero-

geneous in their own productivity as well as in their ability to help others be productive. We focus

on an industry, professional basketball, where the ability to help others is clearly an important part

of team production. Sports data provide an excellent opportunity to study team production because

the members of a team can be clearly identified and there are frequent changes in the players that

compose a particular team.

We use possession-level data from games played in the National Basketball Association (NBA).

We demonstrate that productivity spillovers play an incredibly important role in team production.

In fact, we find that a standard deviation increase in the spillover effect of one player has nearly

the same impact on team success as a standard deviation increase in the direct productivity of

that player. Estimates of the model also allow us to form player rankings based on the overall

contribution to team production. We compare these rankings to estimates of team production when

spillovers are ignored. Players who are generally perceived by the public as selfish see their rankings

fall once we account for productivity spillovers.

We also use our model to highlight how the value of a particular player can vary depending on the

composition of his teammates. Most firms have various teams within their organization and have the

ability to reassign workers across teams. Since individual productivity and productivity spillovers

play a complementary role, the overall contribution of a player will depend on the composition of the

other players already on the team.2 We find that the assignment that produces the greatest increase

in team productivity is often an assignment that does not maximize the direct productivity of the

player. This suggests a tension that firms need to balance between team and player productivity,

especially in firms where individual productivity has a large effect on compensation.

Given the large role spillovers play in team production in this industry, we would expect signifi-

cant returns in the labor market to the ability to help others. This is not the case. Returns to own

productivity are substantially higher than returns to the ability to help others, well beyond their

differences in their contribution to team production. Part of the reason for this is the difficulty in

measuring the ability to help others. As in the academy, direct productivity is easily observed in

ways that facilitating the productivity of others is not. To the extent that own productivity and

2Similarly, Ichniowki, Shaw, and Prennushi (1997) find that the returns to innovative work practices (e.g. teams,

incentive pay, etc.) are complementary in the steel finishing industry.
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facilitating the productivity of others is endogenous, the lack of returns to the latter may result in

inefficient effort allocations among workers.

2 Data

To estimate a model of player performance, we use publicly available NBA play-by-play data covering

all games during the 2006-2009 regular seasons gathered from espn.com. The raw play-by-play data

provides a detailed account of all the decisive actions in a game, such as shots, turnovers, fouls,

rebounds, and substitutions. Plays are team specific, meaning that there is a separate log for the

home team and the away team. Associated with each play are the player(s) involved, the time

the play occurred, and the current score of the game. While our model of player productivity

is estimated using only the play-by-play data, we augment it with additional biographical and

statistical information about each player gathered from various websites which we discuss later in

this section. As described in the data appendix, a number of steps are taken to clean the data.

These include establishing which players are on the court, acquiring the outcomes of possessions,

and matching the names of the players to data on their observed characteristics such as position

and experience.

Table 1 describes our estimation sample in further detail. We use data from 905,378 possessions

and 656 unique players active in the NBA from 2006-2009. On average, each player is part of 13,801

possessions, split evenly between offense and defense. The average number of possessions for each

player-team-season combination is 4,507. The corresponding 25th and 75th percentile values are

1,130 and 7,470. The final four rows of Table 1 describe the typical outcomes for a possession.

Slightly more than 50% of the time the offensive team scores, and conditional on scoring the offense

scores on average 2.1 points.

To supplement the play-by-play data, we merge in biographical and statistical information about

each player. Our primary source for this information is basketball-reference.com. The website

contains basic player information such as date of birth, height, position, and college attended and

a full set of statistics for each season the player is active. We also gathered information on salaries

and contract years from prosportstransactions.com and storytellerscontracts.com. We also obtained

additional measures of player performance from basketballvalue.com and 82games.com.
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3 Model and Estimation

In this section we present a model of team production, discuss identification, and describe our

estimation strategy. The innovation of the model is that the ability of an individual to influence

the productivity of others is not directly tied to own productivity. We tailor the model to the

NBA context, though it would be simple to expand the framework to other types of production.3

The number of parameters to be estimated is quite large and would be computationally prohibitive

using straight maximum likelihood. Consequently, we take an iterative approach as in Arcidiacono,

Foster, Goodpaster, and Kinsler (2012).4

3.1 Model setup

Our unit of analysis is an offensive possession during an NBA game. There are five offensive and

five defensive players on the court during every possession. For a given possession n, denote the

set of players on the court as Pn where Pn includes the offensive players on the court On and the

defensive players on the court Dn. For notational ease we abstract from the fact that possessions

are typically observed within games, which themselves are observed within seasons. Additionally we

abstract from the concept of team, even though the potential sets of offensive and defensive players

will be determined by team rosters. A possession can end in one of six ways, no score or one of the

five offensive players in On scoring at least one point. We assume that each player i on the court is

fully characterized by three parameters: (i) their ability to score, oi, (ii) their ability to help others

score, si, and (iii) their ability to stop others from scoring di.

Assume for the moment that there is no heterogeneity in defensive skills. The likelihood that

offensive player i scores to conclude a possession will depend on i’s own ability to score and his

ability to help others score as well as the similar skills of his teammates on the court. Denote

yin = 1 if the individual scores and yin = 0 otherwise. We assume that the probability that player

3For example, in Mas and Moretti (2009) checkout cashiers are assumed to influence other cashiers through their

own productivity. However, it would be straightforward to allow for completely separate effects.
4See Burke and Sass (2013) for an application of this method in education and Cornelissen, Dustmann, and

Schonberg (2013) for an application in the labor market.
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i scores at least one point during possession n is given by5

Pr(yin = 1|Pn) =
exp

(
oi(1−

∑
k∈On,k 6=i sk)

)
1 +

∑
i∈On

exp
(
oi(1−

∑
k∈On,k 6=i sk)

) . (1)

The probability that player i scores to end possession n is increasing in oi, the offensive intercept of

player i. An increase in the offensive spillover of player k 6= i will have an ambiguous effect on the

probability that player i scores since an increase in sk also benefits the other offensive players in On.

The probability that possession n ends with no points scored is simply 1−
∑

i∈On
Pr(yin = 1|Pn).

The above model is inadequate since defenders will vary in ability. Thus, the probability that

one of the players in On scores will depend on the composition of the players in Dn. To account

for defense, we alter the above framework such that the probability that player i scores at least one

point during possession n is given by

Pr(yin = 1|Pn) =
exp

(
oi(1−

∑
k∈On,k 6=i sk)

)
exp

(∑
j∈Dn

dj

)
+
∑

i∈On
exp

(
oi(1−

∑
k∈On,k 6=i sk)

) (2)

The difference between Equation (1) and Equation (2) is that the index associated with no points

being scored now varies with the abilities of the defenders in Dn. The joint defensive prowess of the

players in Dn is a linear function of the defensive intercepts of each player j.

Possessions that yield positive points do not necessarily contribute equally to team success since

there are a range of plausible point outcomes. To determine the expected number of points per

possession for each player we scale the probability of scoring positive points by the expected number

of points conditional on scoring for each player,

E[Pointsin|Pn] = E[Pointsi|yi = 1]× Pr(yin = 1|Pn). (3)

The above formulation assumes that the number of points a player scores conditional on scoring is

unrelated to the identities of the other players on the court. Thus, estimates of E[Pointsi|yi = 1]

can be obtained separately from the estimation of the other parameters.

3.2 Normalizations and identification

The offensive intercept parameters can be readily identified if data for many possessions is available.

However, to identify the offensive spillovers it is necessary to observe player i in multiple groups.

5Separate identification of own productivity from spillover productivity is not reliant on the logit production

function. We choose this specification since possession outcomes are binary in nature. In fact, a linear model would

be significantly easier to estimate.
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Put differently, the spillover parameters can only be separately identified if we observe player i

with different sets of teammates across possessions. If not we could simply redefine oi such that

o∗i = oi(1 +
∑

k∈On,k 6=i sk) for all i and estimate the o∗i ’s. Without switching there is no way to

separate the offensive intercepts from the offensive spillovers.

Even when the set of teammates in On varies across possessions, it is still necessary to make a

normalization on the spillover parameters. For any set of oi and si, it is always possible to redefine

the parameters such that the predicted probabilities are identical. For example, define

o∗i = oi(1 + s) (4)

where s is the mean spillover calculated using i’s spillover and the spillover of all the players i is

ever grouped with. Additionally, define

s∗i =
σo
σo∗

(si − s) (5)

where σo is the standard deviation of the original offensive intercepts for i and all the players i is

ever grouped with. σ∗o is defined similarly, except over the redefined offensive intercepts. It can be

shown that the predicted probability that i scores, is identical across {o, s} and {o∗, s∗}. A natural

normalization is simply to constrain s = 0.

Adding defensive heterogeneity to the scoring probabilities does not alter the identification ar-

gument regarding the offensive parameters. Note that it is not possible to identify the baseline

defensive productivities unless player i is observed on defense with different sets of teammates.

This is because defensive outcomes are essentially group outcomes. Thus, switching teammates is

critical for identifying the defensive intercepts. Note that the mean defensive intercepts must also

be normalized since the mean is not separately identified from the scale of the baseline offensive

parameters.

3.3 Iterative algorithm

There are three parameters to be estimated for each player we observe in the data. As previously

discussed it is not possible to estimate the offensive spillovers without an additional restriction. If

all the players in the sample are connected, in other words, every player can be linked to every

other player through teammates, then it would only be necessary to restrict the overall mean of the

offensive spillovers to zero. In our data, all the players are in fact connected, since players switch

teams both within and across seasons. However, jointly estimating all of the player parameters by

maximum likelihood imposing this one restriction is not computationally feasible.
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As a result, we pursue an estimation strategy that treats each team-season as independent

entities. Players that switch teams within a season are treated as completely unrelated. For each

team-season, we normalize the possession-weighted spillover to zero. Once we have estimated all the

player parameters imposing these restrictions, we adjust team and player spillovers to be consistent

with observed changes in the same player’s performance across different teams and seasons. This

approach has two advantages. First, it facilitates estimation since we can iteratively estimate the

offensive intercepts, offensive spillovers, and defensive intercepts team by team. Second, it allows

player productivity to vary across seasons as a result of random factors such as health and luck.

Once we have defined players as any unique combination of player-season-team, we estimate the

offensive and defensive parameters using an iterative estimation approach. The method has three

broad steps that correspond to estimating the offensive intercepts, defensive intercepts, and the

offensive spillovers. The following steps outline the estimation procedure more precisely, where now

players i’s parameters are indexed by team-season pairs (t).

• Step 0: Make an initial guess of the parameters, denoted by {o0
it, s

0
it, d

0
it}.

• Step 1: Estimate by maximum likelihood o1
it conditional on {s0

it, d
0
it}.

• Step 2: Estimate by maximum likelihood d1
it conditional on {o1

it, s
0
it}.

• Step 3: Estimate by maximum likelihood s1
it conditional on {o1

it, d
1
it}.

Estimation proceeds by iterating on Steps 1-3 until convergence where the qth iteration estimates

are characterized as {oqit, s
q
it, d

q
it}. Note that within Steps 1-3 estimation proceeds separately for

each team-season, implying that each maximization step is searching over only approximately 15

parameters–one for each player who played on a particular team in a particular season. Our ap-

proach relies on the fact that there are no across team interactions to be concerned about when the

remaining parameters are taken as fixed–when estimating the offensive parameters for one team, all

the defensive parameters of the players associated with the other teams are taken as given. Note

that this approach would not possible if the parameters for a particular player were constrained to

be the same across seasons or across teams within a season.

3.4 Linking across years

Once the above process converges, we are left with a set of parameters describing player performance

for each team-season. However, the offensive intercept and spillover parameters cannot be readily
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compared across teams or seasons since the average spillover is assumed to be zero for each team-

season. To relax this restriction, we utilize player movement across teams both within and across

seasons to adjust the mean spillovers for each team-season. This in turn allows us to adjust both the

offensive spillover and offensive intercept for each player, while holding fixed any lineup’s predicted

probability of scoring.

The key assumption underlying this procedure is that all changes in player performance over

time operate through the players themselves: there are no team or coaching effects. For example,

teammates can all have above-average spillover seasons at the same time, but these positive devi-

ations are the result of players naturally having good years in ways that are not attributed to the

team or the coach.

The procedure to relax the team-season spillover normalizations effectively removes team-season

effects by iterating on the following three steps:

1. Regress ŝit on player fixed effects and team-season fixed effects (δt), weighting each observation

by the observed number of possessions. We continue to normalize one team-season effect to

zero. The estimated team-season effects are interpreted as the true average spillover for each

team.6

2. Create adjusted offensive intercepts: ô∗it = ôit
1−4∗δt

3. Create adjusted offensive spillovers: ŝ∗it =
(
σ̂t
σ̂∗
t

)
ŝit − δt

The adjustments in Steps 2 and 3 keep the predicted probability of scoring for any lineup the same

across the {o, s} and {o∗, s∗} parameters. The adjusted parameters simply shift the mean spillover

on a particular team to be broadly consistent with how those same players perform on other teams

in other years. Iterations continue until the regression of ŝ∗it on player fixed effects and team-season

fixed effects yields team-season effects that are all zero.7

4 Results

The estimation procedure yields three parameters for each player-season-team combination. If these

parameters are capturing something permanent about player skill, they should be rather stable

over time and across teams. To investigate this, we estimate separate fixed effects regressions for

6It is possible to control for experience or age when estimating this regression. Our results do not change if we

allow for these additional explanatory variables.
7Only a few iterations are required in practice.
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each of our skill measures. The outcome variables are the player-season-team estimates and the

only explanatory variables are player fixed effects. Each player-season-team skill observation is

weighted by the number of observed possessions. With these simple regressions we are able to

explain approximately 83%, 50%, and 57% of the variation in the offensive intercept, offensive

spillover, and defensive parameters across seasons and teams. Thus, it does appear that we are

capturing something intrinsic about each player.

For evaluating players and teams, however, the parameter estimates themselves are not terribly

informative. In the next few sections we demonstrate how the various player skills contribute to

team performance, how to rank players using our estimates, and finally whether players and teams

make decisions that are consistent with the results of our model.

4.1 Importance of the three factors

As noted above, the scale of the offensive intercept, offensive slope, and defensive intercept are not

meaningful on their own. To illustrate how important each of these components are for team success,

we perform the following exercise using player skill estimates from the 2009-2010 season. We first

identify the four most utilized players on each team in 2009-2010 based on total possessions. We

then ask how each team of four players would perform when various types of players are added. Our

measure of team performance is the predicted per possession point differential against an average

team.8

The results of this exercise are illustrated in Table 2. The first row of results shows the dis-

tribution of predicted point differentials when an average player is added to each team’s top four

utilized players. Across 30 teams, the average differential is slightly above zero, with a standard

deviation equal to 0.087. Using this as a baseline we then explore how each team’s per possession

point differentials change when players with particular skills are added. We consider six different

player types, altering the offensive intercept, offensive slope, and defensive intercept by one standard

deviation in either direction from the average.9

8The five offensive intercepts for the average team are chosen to match the average intercepts across teams by

player offensive rank. For example, the offensive intercept for the most productive scorer on the average team is the

mean across all 30 teams of the best scorer’s offensive intercept. Each player on the average team is assigned the

overall average spillover and defensive parameter since these enter the production function linearly.
9For this exercise, we define a one-standard deviation change in skill using the distribution of skills generated when

we combine player estimates across seasons through the fixed effects estimation discussed at the beginning of Section

4. The standard deviation of player skills using the raw player-team-season estimates is larger, likely a reflection of

measurement error in the underlying estimates. Note that the standard deviation of player skills does not change
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We find that all three factors are important for team performance. Adding a one standard

deviation better offensive intercept, offensive spillover, or defensive intercept player improves a

team’s per possession point differential by 0.032, 0.024, and 0.035 points respectively. Compared to

the baseline standard deviation of point differentials of 0.087, these numbers indicate that adding a

one standard deviation more skilled player increases a teams per possession point differential by 28%

to 40% of a standard deviation. The largest change in team performance stems from the addition of

a better defensive player. Adding a higher offensive intercept player also benefits the team, but the

positive effect will be muted since adding a good scorer necessarily decreases the opportunities that

the other players on the team have to score. In other words, there is a substitutability in production

on offense that does not exist on defense.

The results in Table 2 also document the variability across teams in the effect different types of

offensive players have on team performance.10 Because of the complementarities in the probability

of scoring, the benefit of adding a particular type of player will vary by team. For example, a high

offensive intercept player may be valued more by teams that have fewer high spillover players since a

productive scorer doesn’t rely as much on his teammates to score. In contrast, a team with a number

of productive scorers may prefer to bring in a high spillover teammate to enhance the productive

skills already present.

4.2 Position comparisons

High intercept, spillover, or defensive players are often associated with particular positions on a

standard NBA team.11 For example, point guards are generally viewed as facilitators, while centers

are expected to protect the basket on defense. Table 3 shows how the various skills break down by

position. For each position, we show the average skill measure for each of our estimated parameters

and a measure of a player’s overall effectiveness (a combination of our three measures which we

discuss further in the next section). For comparison purposes we also include two common measures

appreciably if we use only three seasons to run the player fixed effects regressions, suggesting that we have successfully

eliminated the bulk of the measurement error.
10In contrast to the offensive skills, there is little variability across teams in point differential changes associated

with adding a one standard deviation better (or worse) defensive player. This is primarily a reflection of the fact that

we assume that there are no complementarities in defensive production.
11The most common lineup in professional basketball contains a point guard, shooting guard, small forward, power

forward, and center. However, teams face no restrictions regarding which positions players are allowed to play at one

time.
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of player effectiveness, player efficiency rating (PER) and adjusted plus minus (APM).12 All measures

are standardized to have a mean of zero and standard deviation equal to one across positions.

The estimates of our model match the basic intuition about the types of skills different position

players bring to a team. Point guards are by far the best spillover players but tend to be below

average scorers and very poor defenders. In contrast, centers are 0.68 standard deviations better than

the average defensive player and the huge defensive benefit of centers provide their most important

contribution from an overall effectiveness standpoint, with centers being 0.33 standard deviations

more effective than the average player. The PER’s ordering of overall effectiveness by position is

similar to our ranking except in the case of point guards which are ranked higher under PER. This

is consistent with the criticism that the PER fails to account for defensive contributions. The APM,

on the other hand, ranks centers quite differently than either PER or our measure. In the next

section we discuss further how to rank players individually.

4.3 Ranking workers overall contribution

The previous sections suggests that attempts to rank players individually in a team sport is mis-

guided since the value of each player necessarily depends on who his teammates are. However,

NBA player rankings are ubiquitous and often fail to account for the team nature of the sport. We

develop a player ranking that directly accounts for the complementarities present in a team setting

by using estimates of each player’s underlying skills from our spillover model. We first describe

how we construct our rankings, and then compare them to other common rankings and rankings we

generate when ignoring spillovers in team production.

There are a number of ways to measure the effectiveness of each player given our estimated

parameters. We construct our preferred measure by first taking each player and pairing him with

12PER is a rating of a player’s per-minute productivity that is generated using a complicated formula based on

box score statistics. The precise formula can be found at http://www.basketball-reference.com/about/per.html.

PER does not consider who each player plays with or against and is viewed largely as a measure of offensive

effectiveness. PER has been criticized as a measure of player effectiveness since it emphasizes shot taking (see

http://wagesofwins.com/2006/11/17/a-comment-on-the-player-efficiency-rating/). APM ratings indicate how many

additional points are contributed to a team’s scoring margin by a given player in comparison to the league-average

player over the span of a typical game. APM is constructed using a fixed-effects regression where the dependent

variable is the per-possession point differential for a given set of players on the court and the explanatory variables are

player fixed effects. Further details are available at http://www.82games.com/barzilai2.htm. The advantage of APM

relative to PER is that it explicitly accounts for who a player plays with and against. However, because the model is

linear, it cannot capture complementarities in production.
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an average team. A player’s measured effectiveness is then the per possession point differential

when this team plays against an average opponent.13 The per possession point differentials are then

standardized so players can be compared in standard deviation units. We create two additional

measures of player effectiveness. The first takes our preferred measure and adjusts for position,

since as Table 3 indicates there are significant differences in player effectiveness by position. Because

teams typically field lineups with one player at each position, players who excel at underperforming

positions will be valued more. Finally, rather than take each player and put him on an average

team, our third measure of player effectiveness replaces each player with an average player and asks

how his team’s performance changes.14 To some extent, this measure accords with how valuable

each player is to their team.

Table 4 lists the top ten players in 2009-2010 according to our three rankings along with the

rankings according to PER and APM.15 Our preferred rankings indicate that Dwight Howard is

the most effective player, over three standard deviations better than the average NBA player. The

primary reason that Dwight Howard is so highly ranked is that he is the top ranked defensive player,

almost a full standard deviation better than the next best defender. The rest of the top ten is full

of names that are familiar to basketball fans, but are not necessarily the brightest stars in the

game. For example, Al Horford and Chris Andersen are highly ranked because they are well above

average both offensively and defensively. Horford is an above average offensive intercept, offensive

spillover, and defensive player. Andersen is actually a below average offensive intercept player, but

his presence on the court generates enough extra opportunities for his teammates that his offensive

spillover measure is two and a half standard deviations above the mean. The rankings based on

APM also pick-up Andersen’s overall effectiveness.

LeBron James is ranked number six according to our preferred method. This “low” ranking is a

13The average teammates a player is assigned and the average opponent are constructed using the average offensive

intercepts across teams by player offensive rank. For example, the offensive intercept for the most productive scorer

on the average team is the mean across all 30 teams of the best scorer’s offensive intercept. Each player on the average

team is assigned the overall average spillover and defensive parameter since these enter the production function linearly.
14For this measure we create rankings only for the top five most utilized players on each team. This allows for a

straightforward determination of who the teammates will be when each player is replaced with an average player.
15We only consider players who accumulated at least 2,000 total possessions for any team in 2009-2010. This

restriction limits the rankings to those players observed often enough to accurately estimate their underlying skills.

337 players, or 67% of active players in 2009-2010, played in 2,000 or more possessions. Each team has approximately

11 players who play more than 2,000 possessions. Among those who played at least 2,000 possession the average

number of possession was 6,436. The mean for those who played fewer than 2000 possessions is 741. Rankings for

2006-2007 through 2008-2009 can be compiled in a similar manner.
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reflection of the fact that in 2009-2010 LeBron is a good, but not great defender, and only an average

spillover player. Based on offensive intercept alone, LeBron would be the highest ranked player,

meaning that when added to an average team LeBron would have the highest scoring probability

relative to adding any other player.16 The PER measure is often criticized for over-valuing shooting

and scoring and not surprisingly James comes out ahead on this measure.

When the rankings are adjusted for position or team there are slight changes. Because centers

are on average the most effective players, Dwight Howard is de-valued when ranked relative to

other centers and drops to the 4th best overall player. Point guards, shooting guards, and small

forwards move up the ranks, with Kevin Durant now identified as the most effective player. The

player rankings changed very little when players are assessed based on how their team would perform

without them. Finally, many of the names on our preferred ranking list appear in the PER and APM

rankings. In fact, the possession weighted correlation between our preferred measure of standardized

point differential and PER is 0.42. The correlation with the APM rankings is significantly higher,

equal to 0.78.17 This is not surprising since our measure is more similar to APM since it measures

a player’s effectiveness controlling for the identity of the other players on the court.

4.4 Ignoring spillovers

In Table 5, we examine how our player rankings change when estimating a model that ignores

spillovers, essentially ruling out any complementarity in offensive production. The first column

shows the top ten players based on point differentials when playing with average teammates against

an average opponent. Many of the names remain the same, such as Dwight Howard and LeBron

James, but there are significant changes. In particular, players that tend to score often and also

play above average defense tend to move up in the rankings. Examples include Tim Duncan, Kobe

Bryant, and Chris Bosh.

The second through fourth columns look more closely at some of the changes in standardized

point differentials across the spillover and no spillover models. The second column lists the changes

for some notable players. For example, Carmelo Anthony, a notoriously difficult player to play

with is 1.31 standard deviations better in the no spillover model than in the spillover model. In

contrast, Steve Nash, a player widely believed to be one of the best offensive facilitators in the NBA

16Note that a ranking based strictly on each player’s offensive intercept would yield a top-five of LeBron James,

Dwyane Wade, Kevin Durant, Kobe Bryant, and Carmelo Anthony. These are five of the most recognizable and

renowned scorers in the NBA.
17Again, only players with more than 2,000 possessions are considered.
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is 1.30 standard deviations better in the spillover model. Columns three and four of Table 5 lists

the ten players who have the largest positive and negative swings in point differentials between the

spillover and no spillover models. The players that tend to improve greatly when complementarities

are modeled are pass-first point guards, such as Jason Williams and Jamaal Tinsley, and players

who tend not to score but generate opportunities for their teammates through offensive rebounds,

screens, and passing, such as Theo Ratliff, Chris Andersen, and Anderson Varejao. The list of the

ten largest negative changes is full of players who are well known to be not only bad passers, but

shoot-first type players, like Chris Kaman and Carmelo Anthony.

By measuring player effectiveness within a team we are better able to identify valuable players

who do not necessarily compile many of the standard statistics NBA players are so often judged by.

In addition, players who tend to diminish the skills of their teammates are de-valued accordingly.

However, team success depends on how players interact on the court. The next section illustrates

two examples of this idea.

4.5 Allocating workers to the optimal team

For the purposes of ranking individual players we considered how each player performs with an

average team. However, when actual player personnel decisions are made, success will hinge on how

the various components of a team work together. We examine one of the most high profile personnel

decisions in the history of the NBA when Lebron James became a free agent in the summer following

the 2009-2010 season. Using our model, we evaluate Lebron’s decision, examining both his own

performance and the likelihood of team success. Table 6 presents the model predictions for the teams

most interested in signing Lebron, Cleveland, Miami, Chicago, and New York. Cleveland provided

the greatest opportunity for individual output, while Miami offered the greatest chance for team

success. LeBron’s predicted per possession probability of scoring declines from 0.187 with Cleveland

to 0.165 with Miami, a drop of 11.8%. Interestingly, Lebron’s scoring average per 36 minutes in his

first year in Miami declined by 8.5% relative to his last three years in Cleveland. However, Lebron

was more than willing to give up his personal statistics for an increased chance at team success. By

joining Miami, Lebron increases his team’s predicted per possession point differential from 0.043 to

0.219. Miami ended up winning two of the next three NBA championships.

In the summer following the 2009-2010 NBA season, another high profile free agent was on the

market, Amar’e Stoudemire. Stoudemire had played for eight consecutive seasons with the Phoenix

Suns and at the time was best described as an offensively skilled center with injury concerns. During
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his tenure in Phoenix, Stoudemire had the benefit of playing with a very high spillover player in

Steve Nash, making it difficult to ascertain how well he might perform on another team. Reportedly,

Phoenix was only willing to give Amar’e a four year contract at an undisclosed salary, while the

New York Knicks were willing to sign Amar’e to a five year contract for 100 million dollars. Amar’e

ultimately signed with New York.

Should New York have been willing to give Amar’e more than Phoenix? Table 7 shows the

predicted performance for both New York and Phoenix with and without Amar’e Stoudemire on

the team. The final column of the table shows the change in each team’s per possession point

differential with Amar’e instead of an average player. Given their projected lineups, Amar’e was

more valuable to the Knicks than to the Suns based on predicted team performance. Thus, our

model is consistent with the Knicks’ decision to offer Amar’e a more lucrative deal. From Amar’e’s

standpoint, the Knicks were also more attractive in terms of individual performance, as his points

per possession is predicted to be 8% higher.18

4.6 Returns to the three factors

The previous section highlights the usefulness of our model for evaluating potential personnel deci-

sions, but teams need to decide not only which players to obtain but also how much to pay them.

Table 3 indicates that the three player skills we have identified, offensive intercept, offensive spillover,

and defensive intercept, are associated with improved team performance. In this section, we examine

whether player compensation correlates with our measures of player skill.

Table 8 lists the results from a series of OLS regressions where the dependent variable is con-

temporaneous log earnings. The skill measures we use as regressors varies across columns, allowing

for us to compare the predictive power of our skill measures and standard player measures. The

unit of observation in these regressions is a player-season-team combination, where we observe each

player for a maximum of four seasons, 2007-2010.19 The first column of results indicate that a one

standard deviation increase in a player’s offensive intercept is associated with a statistically signifi-

cant 37% increase in annual earnings. A one standard deviation increase in the defensive intercept

is associated with a 17% increase in earnings, while there is essentially no monetary gain to being

18In his first year with the Knicks, Amar’e’s scoring average per 36 minutes actually increased by 3%.
19In the NBA, first-round draft choices are assigned salaries according to their draft position. Each contract is for

two years, with a team option for the third and fourth seasons. These structured contracts may weaken the relationship

between skills and earnings, since players are drafted based on potential, not performance. However, we estimated the

earnings regressions using only players who have been in the league for at least four years. The results hardly change.
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a better spillover player. The results are robust to controls for player position and experience.

As a point of comparison, we also estimate earnings regressions that utilize existing player

effectiveness measures. Players with higher PER and APM tend to earn significantly more than other

players. Our skill measures explain more of the variation in log earnings than APM, but slightly less

than PER. The results across regressions suggest that teams tend to compensate players for easily

measured statistics (high R2 for PER), but fail to identify players that add to team performance in

difficult to observe ways (no effect of spillover skill).

One potential reason for the apparent lack of return to the spillover factor is that this parameter

is somewhat noisier than either the offensive or defensive intercept. So rather than estimate a log

earnings regression using a single player-season-team skill measure, we examine how total earnings

over the four seasons in our sample is related to a player’s possession weighted average skill measures.

Table 9 shows the results of these regressions. Similar to the results from Table 9, players with higher

offensive and defensive intercepts are rewarded with higher total earnings, to the tune of 53% and

21% per standard deviation respectively. However, the results now indicate that high spillover

players also earn significantly more than low spillover players. A one-standard deviation increase

in a player’s average offensive spillover parameter is associated with an increase in total earnings of

approximately 12%. Again, the PER measures explains the greatest amount of variation in total

earnings, followed by the three skill factors and APM.

5 Conclusion

Worker skills are multidimensional. One of the skills that may be important to a variety of produc-

tion processes is the ability to bring out the best in others. In this paper, we use data from the NBA

to identify three measures for each player: their ability to score, their ability to defend, and their

ability to help others score. It is this last factor that differentiates our work and also substantially

complicates estimation. Using an iterative approach along the lines of Arcidiacono et al. (2012), we

show that estimating models of this type can be accomplished in a straightforward manner.

We find that all three factors are important components to overall team productivity and prob-

ability of success. Ignoring spillovers has a substantial effect on assessing the overall contribution of

specific players causing previous approaches to underestimate the contribution of “team” players.

We also find that there are complementarities in production between direct forms of productivity

and indirect forms that operate through productivity spillovers. As such, some teams will value

particular players more than others based on the current composition of their team. Players who
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are particularly strong at scoring but are not good facilitators will be more valued by teams that

are composed of players who are not very strong at scoring themselves.

We also find that players are primarily compensated based on their direct contributions to team

production with little weight given to their ability to increase the productivity of their teammates.

This misalignment of incentives might reduce the incentive for players to invest in or engage in

actions that increase their positive effects on the productivity of their teammates, especially in cases

where compensation is based on relative performance. The use of our empirical model in other

settings could to lead to improved matching between workers and and compensation that is more

in-line with the overall contribution that workers make to team production.
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A Data Appendix

There were a number of intermediate steps required to transform the raw play-by-play data that we

gathered from espn.com into our final dataset. The first step was to determine which players were

on the court at each point during the game. Since the play-by-play data does not provide a running

list of who is on the court over the course of the game, we have to infer who is on the court based

on the players we observe in the data.

Teams can freely substitute players at the start of each quarter and none of these substitutions

appear in the data. However, any substitutions that occur during the quarter, we observe both the

players coming in and the players going out. We combine this with information on the names of
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the players that record some action in the data to construct the set of five players on each time for

every play-level observation in the data.

The second step is to transform our play-level data into a single observation for each possession.

An offensive possession begins anytime a team obtains the ball and switches from defense to offense.

Possessions can end in many ways, such as a made basket, a missed shot, a turnover, or the end of a

quarter. For possession that result in positive points, we also capture which player on the offensive

team scores and how many points they scored. For this study, any play by the offensive team that

extends a possession (such as an offensive rebound) does not create new possession but just becomes

the continuation of the possession already going. The one exception is when an offensive rebound

occurs fouling foul shots, since it is very common for substitutions to occur during foul shots.

If in the middle of a possession there is a substitution, the player entering the game is the one

considered on the court for that possession. The one exception is substitutions that occur during

fouls shots in which case the players coming out are considered part of the possession that resulted

in foul and any points scored from the foul shots are credited to that possession.

From the defensive standpoint, the only relevant outcome is whether the offensive teams scores

positive points. Steals, blocks, and defensive rebounds will get reflected in an increased probability

that the offensive team does not score.

At the end of this process we are left with 915,580 unique possessions. We drop about 1% of

these possessions either because we could not identify all of the players on the court or identify the

player who shot the basket. A possession that either has too few players on the court or a player

on the court more than once typically indicates a data entry error in the play-by-play data. Often

this implies that active lineups for other possessions during that quarter are likely to be incorrect.

As a result, any quarter that has a possession either too few or too many players is dropped.

Finally, our empirical strategy requires us to estimate the model separately by season. If during

a season a player never scores nor is ever part of a defensive unit that keeps the other team from

scoring, then that player’s offensive and defensive parameters are not identified. Thus, we identify

who these players are, and then eliminate all possessions during which these players are on the court.

Typically there are about five to ten players per season who fall into this category.
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Table 1: Sample Statistics

Seasons Covered 2006-2007 through 2009-2010

Total Possessions (Involving 5 Offensive and Defensive Players) 915,580

Utilized Possessions 905,378

Fraction of Possessions Discarded 0.01

Unique Players 656

Average Possessions Per Player 13,801

SD Possessions Per Player 12,882

25th Percentile Of Possession Distribution 2,342

75th Percentile Of Possession Distribution 22,609

Average Possessions Per Player-Season 5,081

SD Possessions Per Player-Season 3,557

25th Percentile Of Possession Distribution 1,697

75th Percentile Of Possession Distribution 8,083

Average Possessions Per Player-Season-Team 4,507

SD Possessions Per Player-Season-Team 3,570

25th Percentile Of Possession Distribution 1,130

75th Percentile Of Possession Distribution 7,470

Proportion of Possessions with Positive Points 50.8

Avg. Points Per Possession 1.06

SD Points Per Possession 1.11

Avg. Points Per Possession | Points>0 2.1
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Table 2: Skills and Winning, 2009-2010

Take the 4 most utilized

players on each team and... Point Differential SD Point Differential Minimum Maximum

Add average player 0.0048 0.0873 -0.1536 0.257

∆ Point Differential SD ∆Point Differential Minimum Maximum

Add 1 SD Better Intercept Player 0.0320 0.0026 0.0257 0.0363

Add 1 SD Worse Intercept Player -0.0248 0.0020 -0.0288 -0.0203

Add 1 SD Better Spillover Player 0.0237 0.0017 0.0206 0.0285

Add 1 SD Worse Spillover Player -0.0234 0.0016 -0.0280 -0.0205

Add 1 SD Better Defensive Player 0.0346 0.0004 0.0329 0.0348

Add 1 SD Worse Defensive Player -0.0345 0.0003 -0.0348 -0.0334

Unit of observation is an NBA team in the 2009-2010 season.
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Table 3: Average Skills by Position

Point Shooting Small Power

Guard Guard Forward Foward Center

(All measures standardized at the population level)

Offensive Intercept -0.147 0.081 -0.013 0.069 0.006

Offensive Spillover 0.168 -0.091 -0.012 -0.073 0.012

Defensive Intercept -0.511 -0.305 -0.097 0.315 0.683

Overall Rank -0.298 -0.108 -0.016 0.134 0.327

PER -0.039 -0.112 -0.107 0.065 0.218

APM -0.101 0.039 0.057 0.015 -0.011

Observations 395 410 349 438 417

Unit of observation is a player-season-team combination. Means are constructed

by weighting the total number of possessions for a player-season-team combination.

Across all positions the mean of each measure is zero with a standard deviation of 1.

Note that the number of observations for the APM measure is smaller since players

with few possessions are not assigned a rating.
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Table 6: LeBron James and “The Decision”

Probability LeBron Scores Team per Possession

If LeBron joins . . . Projected Teammates per Possession Points Point Differential

Chicago Boozer, Deng, 0.175 1.204 0.136

Bulls Noah, Rose

Cleveland Williams, Hickson, 0.187 1.142 0.043

Cavaliers Parker, Varejao

Miami Chalmers, Bosh, 0.165 1.244 0.219

Heat Ilgauskas, Wade

New York Chandler, Felton, 0.172 1.155 0.126

Knicks Gallinari, Stoudemire

To generate predicted outcomes for each team we utilize player estimates based on all four years of data.

Table 7: Amar’e Stoudemire’s Free Agency

Amar’e Points Team per Possession ∆ in Team

Lineup Per Possession Points Point Differential Differential w/ Amar’e

If Knicks Amar’e, Chandler, Felton, 0.352 1.088 0.068 0.026

sign Amar’e. . . Gallinari, Jeffries

If Knicks don’t Average Player, Chandler, 1.066 0.042

sign Amar’e. . . Felton, Gallinari, Jeffries

If Suns Amar’e, Nash, Hill, 0.326 1.205 0.102 0.016

sign Amar’e. . . Frye, Richardson

If Suns don’t Average Player, Nash, 1.193 0.086

sign Amar’e. . . Hill, Frye, Richardson

To generate the predicted outcomes for each team we utilize player estimates based on all four years of data.
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Table 8: Skills and Wages, Contemporaneously

Dependent Variable: Log Earnings

Offensive Intercept 0.373* 0.374* 0.343*

(0.023) (0.023) (0.016)

Offensive Slope -0.004 -0.004 -0.031

(0.023) (0.023) (0.016)

Defensive Intercept 0.169* 0.158* 0.078*

(0.022) (0.024) (0.018)

Player Efficiency Rating 0.367*

(0.014)

APM 0.208*

(0.018)

Experience 0.359* 0.354* 0.366*

(0.016) (0.016) (0.019)

Experience2 -0.016* -0.016* -0.018*

(0.001) (0.001) (0.002)

Position Effects N Y Y Y Y

R2 0.178 0.18 0.604 0.611 0.521

N 2009 2009 2009 2009 1539

Unit of observation is a player-season-team combination. Robust standard errors in paren-

theses. * Indicates a coefficient that is statistically significant at a 5% level. Coefficients are

estimated by OLS weighting each observation by the total number of possessions associated

with that player-season-team combination. All skill measures are standardized to have a

mean of zero and a variance of one.
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Table 9: Skills and Wages over Career

Log Total Earnings 2007-2010

Average Offensive Intercept 0.525* 0.522* 0.461*

(0.044) (0.044) (0.028)

Average Offensive Slope 0.120* 0.116* 0.064*

(0.045) (0.044) (0.027)

Average Defensive Intercept 0.213* 0.220* 0.101*

(0.039) (0.048) (0.031)

Average Player Efficiency Rating 0.480*

(0.025)

Average APM 0.291*

(0.028)

Average Experience 0.503* 0.498* 0.500*

(0.027) (0.026) (0.034)

Average Experience2 -0.027* -0.027* -0.028*

(0.002) (0.002) (0.003)

Position Effects N Y Y Y Y

R2 0.248 0.258 0.708 0.734 0.616

N 656 656 656 656 494

Unit of observation is a player. Robust standard errors in parentheses. * Indicates a coefficient

that is statistically significant at a 1% level. Coefficients are estimated by OLS weighting

each observation by the total number of possessions associated with that player over all four

seasons. Average skill measures are also constructed as a possession weighted average of the

player-season-team measures. The average skill measures are then standardized to have a

mean of zero and a variance of one.
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