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1 Introduction

With more than 215 million international migrants worldwide (World Bank,
2010) the costs and benefits of migration are a highly relevant policy question.
In the past, research has addressed these question mainly from a destination
country perspective. Recent research has given more attention to the effects of
international migration on the sending country, especially in the context of mi-
gration from poor to rich countries. Of particular interest has been the question
whether international migration can improve the welfare of the migrant’s house-
hold and family members who stay behind in the sending country. Research has
focused on investigating the effects of emigration on educational attainment
of children, children’s health, labor supply of spouses, and household poverty,
among others.1

This paper focuses on the effects of migration on the educational attainment
of children who stay behind. The direction of the effects is a priori unclear.
While migrant-sending households benefit from remittance inflows, the absence
of the migrant may have negative effects as well: the migrant is not earning lo-
cal income and does not contribute to household production. In particular the
migrant is absent as a caregiver for the children in the household and children
may be required to undertake house-, farm-, or market-work. Furthermore,
children from migrant families may be more likely to migrate in the future,
which changes their incentives to invest in human capital.2 The direction of the
overall effects is therefore mainly an empirical question. Existing studies come
to different conclusions about the direction of the effects of migration on edu-
cational attainment of children who stay behind. For example, Cox-Edwards
and Ureta (2003); Yang (2008); Alcaraz, Chiquiar, and Salcedo (2012) find pos-
itive effects of living in a migrant household, while Lahaie, Hayes, Piper, and
Heymann (2009); Giannelli and Mangiavacchi (2010); McKenzie and Rapoport
(2011) find negative effects. One reason for the heterogeneous findings might
be that these studies investigate different settings (e.g. different source and
destination countries, different types of migration, short- vs. long-run effects).
Another reason might be differences in the methodological approach and unre-
solved endogeneity problems.

1Antman (2013) provides a comprehensive overview of the literature on the effects of mi-
gration on the remaining household members.

2McKenzie and Rapoport (2011) show that the incentives to invest in education increase
for children in migrant households if the returns to education in the potential destination
country are higher than in the source country. The opposite is true if the returns to education
are relatively lower in the potential destination country .
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Research in this field is primarily based on data from source-country house-
hold surveys. The treatment living in a migrant household is usually defined as
having at least one household member who has emigrated. The main identifica-
tion problem that this literature has tried to tackle is the non-random selection
of households into migration. However, recent research has pointed to other
possible sources of endogeneity (Gibson, McKenzie, and Stillman, 2010, 2011a).
Most importantly, among households involved in migration, some send a subset
of members with the rest staying behind while other households migrate as a
whole, i.e. some households migrate with their children, while other households
leave the children behind. As the second decision is most likely also influenced
by factors that are related to educational attainment, this second form of se-
lection also leads to biased estimates of the effects of migration. Even worse,
if all household members migrate, the household will usually not be included
in cross-sectional survey data at all, as no household member is left to respond
to the survey. This problem has been acknowledged for estimating the overall
number of emigrants based on source-country survey data (including population
censuses) (e.g. Ibarraran and Lubotsky, 2007). In the existing literature on the
effects of migration on remaining household members, this form of endogeneity
has largely been ignored. One of the reasons might be that the problem that
arises for identification of causal effects is not obvious at first sight. A common
argument is that if the interest is in the effects on remaining household mem-
bers, the households that leave no members behind are not of interest anyway.
Without further assumptions this argument is misguided, as we will explain in
Section 2.

This paper contributes to the literature in two ways. The first contribution is
methodological. We clearly structure the identification problem in the presence
of these two forms of endogeneity by using the notation of principal stratification
to model the behavior of the household members. We show the assumptions
implicitly made about the selection process if the second form of endogeneity
is ignored and discuss the consequences of a violation of these assumptions.
We then derive nonparametric bounds for the effects of adult migration on
children who stay behind under a transparent set of behavioral assumptions.
The second contribution is substantive. We revisit the effect of migration on the
educational attainment of children left behind in Mexico. We take into account
that the observational data misses all-move households and derive bounds under
different sets of assumptions. For the main scenario, we find a negative effect
of adult migration on school attendance of boys that ranges between 26 and 14
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percentage points. The direction of the effects for girls is ambiguous. However,
sensitivity analysis point to the fact that the bounds are sensitive with respect
to the share of households that migrate as a whole.

This paper connects to the econometric and statistical literature on par-
tial identification in the presence of sample selection that goes back to Manski
(1989, 1994). In particular it builds on the relatively recent approach of prin-
cipal stratification that was introduced by Frangakis and Rubin (2002) to deal
with post-treatment complications such as sample selection. Several recent pa-
pers have used principal stratification to derive bounds on the effects of policy
interventions in the presence of post-treatment complications (see for example
Zhang and Rubin, 2003; Mattei and Mealli, 2007; Zhang, Rubin, and Mealli,
2008; Huber and Mellace, 2013). Using principal stratification has the advan-
tage that it allows us to characterize the potential – not the observed – behavior
of household members. This allows us to be very transparent about the assump-
tions needed for the identification of causal effects and thus helps to reveal often
hidden but crucial and sometimes not innocuous assumptions.

The remainder of the paper is structured as follows. Section 2 discusses
the double-selection problem. Section 3 introduces an econometric framework
to structure the identification problem, first under the assumption of randomly
assigned adult migration (Section 3.2). In a second step, we extend this frame-
work to an instrumental variable setting and derive bounds under two different
sets of assumptions (Section 3.3). Section 4 illustrates the approach for the
effects of adult migration on school attendance of children in Mexico. Section 5
concludes.

2 The effect of migration on children left behind

and the double-selection problem

The effect of parental migration on the educational attainment of children has
been investigated by various studies. Usually researchers investigate the case
when one parent (or another adult member of the household) migrates and the
child remains in the source location. Equation (1) displays a stylized version of
a linear model as common in this literature. Yij denotes an outcome of child i in
household j. hmigj is a binary indicator whether the household has at least one
adult member abroad (for simplicity of the argument, assume that households
have only one adult individual). uij is an error term.
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Yij = �
0

+ �
1

hmigj + uij (1)

The selection problem addressed in most cases is the non-random selection of
households into migration. Households who send a migrant may for example be
wealthier and therefore find it easier to finance the cost of migration. Members
of these households may also differ in terms of education, demographic charac-
teristics or preferences from members of non-migrant households. Many of the
factors that drive the migration decision may also influence the decision to invest
in the human capital of the child, leading to an endogeneity problem. Thus, the
main concern is that the error term is correlated with the variable of interest
(E[hmigjuij ] 6= 0). Various strategies have been implemented to address this
endogeneity, such as selection on observables (e.g. Kuhn, Everett, and Silvey,
2011), instrumental variables (e.g. Hanson and Woodruff, 2003; McKenzie and
Hildebrandt, 2005; McKenzie and Rapoport, 2011), or fixed-effects approaches
(e.g. Antman (2012) uses family fixed-effects). For an overview of the various
approaches used in the literature see Antman (2013).

A second form of selection arises as in some households, which decide to
engage in migration, not only one individual migrates but several or even all
household members migrate (see Gibson, McKenzie, and Stillman, 2010, 2011a,
for a related discussion). Also the children might be among the migrants. This
gives rise to two problems. First, we usually do not observe the outcomes for the
children who migrate. The children who stay behind and for whom we observe
the outcome are a selected group. This complication becomes even worse by the
way the data are normally collected. Household surveys in emigration countries
usually ask the respondent whether one or several household members are cur-
rently abroad. Households that answer with yes to this question are referred to
as migrant households (treated). Households that answer with no are referred to
as non-migrant (control) households. However, if the whole household migrates,
no individual is left to answer the survey and these households are therefore not
included in cross-sectional datasets. We can therefore only estimate Equation
(2), where sj is a binary selection indicator which is one if the household is ob-
served and zero if the household is not observed, i.e. if all household members
migrated.

sjYij = �
0

sj + �
1

sjhmigj + sjuij (2)

Instead of assuming that hmigj is uncorrelated with the error, this model
requires that (E[hmigjsjuij ] = 0). In other words, hmigj needs to be uncor-
related with the error in the sample of households which do not migrate as
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a whole and are therefore observed. However, this assumption is not enough.
We furthermore require E[sjuij ] = 0. Assume for the moment that the migra-
tion status of the adult household member is randomly assigned and therefore
hmigj is uncorrelated with uij and that the true effect of hmigj on Yij is zero.
After households learn about their assigned hmigj , they decide whether the
children should migrate (sj = 0) or stay (sj = 1). It is reasonable to assume
that migration of the adult increases the likelihood of migration of the children.
If migration is costly, then only those households that can afford migration of
the children will migrate with them. Those households that are observed are
therefore on average poorer than those households that are not observed any
more. At the same time, household wealth has a positive influence on educa-
tional attainment of the children (Leibowitz, 1974; Blau, 1999; Case, Lubotsky,
and Paxson, 2002; Currie, 2009; Almond and Currie, 2011) and is thus in the
error term uij . In the observed sample, hmigj is therefore negatively correlated
with uij and a researcher who estimates Equation (2) would wrongly conclude
the migration has a negative effect.

This particular form of invisible sample selection is usually ignored in ex-
isting studies that investigate the effects of migration on remaining household
members. However, it is acknowledged by papers that estimate overall migrant
numbers (Ibarraran and Lubotsky, 2007) or migrant selectivity (McKenzie and
Rapoport, 2007). In panel data, when entire households migrate between two
waves of data collection, the existence of the household is at least documented in
the earlier wave. However, it may not always be possible to distinguish between
migration and other forms of attrition.

Sample selection is only one problem that arises if children could potentially
also be among the migrants. Assume that we could observe child outcomes,
even if all household members migrate, e.g. by collecting data from peers in
other households. In this case we could obtain unbiased estimates from Equa-
tion 1. Now we could estimate the overall effect of adult migration. This overall
effect also includes the possibility that the child is among the migrants. How-
ever, migrating as a family from one country to another is obviously a different
treatment as migration of an adult when the children stay behind. If interest is
in the effect of adult migration on children staying behind, collecting data on
all-move households does not solve the problem.

Recently, the use of (quasi-) experiments for future research on migration has
been strongly encouraged (McKenzie and Yang, 2010; McKenzie, 2012). How-
ever, as randomization usually only addresses the first source of endogeneity
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(which households engage in migration), the second form (who and how many
members migrate) is a problem in experimental settings as well. The solution of
the few papers that use visa lotteries to account for the first form of endogeneity
and explicitly address the second form of endogeneity has been to define a dif-
ferent parameter of interest and to estimate the effect only for those household
(members) that can be identified as never migrants based on observable charac-
teristics. Gibson, McKenzie, and Stillman (2010, 2011a) use the visa rules that
dictate which household members are allowed to migrate with the principal mi-
grant. In their setting of migration from Tonga and Samoa to New Zealand all
eligible individuals comply with the visa and join the principal migrant in case
she migrates. It is thus possible to restrict the sample in the control and the
treatment group to household members, who are not eligible to join the principal
migrant and are therefore always observed. This subgroup consists primarily of
siblings, nephews, nieces and parents of the migrant – individuals who are not
in the migrant’s nuclear family. The fact that in this setting all migrants take
their children with them makes it impossible to identify the effect of parental
migration on children’s outcome, which is one of the most important parameters
for policy makers. In a similar setting, Mergo (2011) drops all households from
the control group, where the household head filed the visa application and thus
it seems possible that all household members would have joined the household
head in case she would have won in the visa lottery.

In studies based on observational panel-data, several papers recognize the
second form of endogeneity and provide some discussion on how severe the
problem could be but do not explicitly address it (Yang, 2008; Antman, 2011).

3 Econometric framework

3.1 Setup and parameter of interest

Following the treatment evaluation literature, we use a potential outcome frame-
work initially developed by Rubin (1974). The idea of this approach is to com-
pare the outcome of interest in two hypothetical states of the world: one in which
a unit receives the treatment and one in which the same unit does not. In the
setting under investigation we might ask, whether a particular child would at-
tend school if it lives in a migrant household and whether the same child would
attend school if it does not live in a migrant household. The obvious problem
is that only one of these two situations can be observed in the real world. Sup-
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pose that households consist of two individuals (I
1

, I
2

). With reference to the
empirical application, we will refer to these individuals as adult (I

1

) and child
(I

2

). While this might seem to be a strong simplification, it does not limit the
applicability of this framework to only this type of households. We will discuss
the consequences of this simplification when introducing behavioral assumptions
and in the empirical example.

Mj = mj✏{0, 1} denotes the migration status of individual j. I
1

is the
principal migrant who makes the first migration decision and chooses either to
stay (M

1

= 0) or migrate (M
1

= 1). We will first discuss the general selection
problem under the simplifying assumption of randomly assigned M

1

. This as-
sumption will be relaxed in a second step. I

2

chooses either to stay (M
2

= 0)

or migrate (M
2

= 1) depending on the choice of I
1

. It is important to note that
this need not necessarily be a sequential decision process. The decision regard-
ing the migration of the child could also be made by the adult simultaneously
with her own decision to migrate. The resulting sample selection problem is
identical. The central problem is that the migration of the child depends on the
migration of the adult but not vice versa.

If migration of an adult household member is considered the treatment of
interest, then the migration of children may be considered a post-treatment
complication. The econometric literature usually refers to this type of compli-
cation as endogenous sample-selection (Gronau, 1974; Heckman, 1974): those
for whom the outcome (stayers) is observed are endogenously selected and the
treatment influences the selection.

We observe the outcome Y at some point in time after M
1

and M
2

have
realized. In the empirical application Y is school attendance of the child. We
define a set of potential outcomes for Y and M

2

. Y depends on the migration
state of the adult and the child and therefore is a function of M

1

and M
2

. Y

depends on M
1

as migration of an adult household member is likely to affect
the educational attainment of the child. Furthermore, Y depends on M

2

as
migration of the child itself also influences educational attainment. Y (m

1

,m
2

)

denotes the potential values of the outcome. Y (0, 0) is the outcome of the child
in case no member of the household migrates; Y (1, 0) is the outcome in case
the adult migrates and the child stays behind; Y (0, 1) is the outcome in case
the adult stays and the child migrates; and Y (1, 1) is the outcome if the adult
migrates and takes the child with her. Similarly, M

2

(m
1

) denote the potential
migration state of I

2

as a function of migration of I
1

. M
2

(0) is the migration
state of the child if the adult stays and M

2

(1) is the migration state of the child
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if the adult migrates.
We assume to have a random sample of n households from the population

in the source country, which was drawn after the households were treated, i.e.
households engaged in migration. The sample, and also the population, at this
point in time do not include any households with M

1

= 1 and M
2

= 1. Although
the sample is representative for the population at that given point in time,
the population we observe is different from the population before households
engaged in migration and this change in the composition of the population is a
function of migration.

We rule out interaction effects between units of different households, an
assumption which is commonly referred to as Stable Unit Treatment Value As-
sumption (SUTVA) (Rubin, 1980). In most applications SUTVA implies that
the potential outcomes of a unit are independent of treatment status of any
other units. In the application in this paper, it implies that potential outcomes
of a child are not affected by the treatment of units in other households. In
other words, school attendance does not depend on the migration state of other
households but it depends on the migration state of other household members.

In this setting we can distinguish between several different effects. The dif-
ference Y (1, 0)�Y (0, 0) is the effect of adult migration if the child stays, i.e. the
partial effect of M

1

on Y for M
2

being zero. Researches might also be interested
in Y (1, 1)� Y (0, 0), the effect if the child migrates with the adult, compared to
a situation in which no household member migrates (e. g. Stillman, Gibson,
and Mckenzie, 2012) or in Y (1, 1) � Y (1, 0), which is the effect of migration of
the whole household compared to a situation in which the child remains behind
while the adult migrates (e. g. Gibson, McKenzie, and Stillman, 2011b). We
will focus on Y (1, 0)� Y (0, 0) as this effect has received most attention in the
literature. If we do not assume that the effects of migration are homogenous
for all individuals (treatment effect homogeneity), we furthermore need to de-
fine the population for which we want to identify the effect. We will focus on
children who would always stay behind even if the adult migrates (i.e. children
for whom M

2

(0) = M
2

(1) = 0). This is a latent group and therefore whether
a particular individual belongs to this group is not observable as only either
M

2

(0) or M
2

(1) can be observed but not both. We focus on this group as it is
the only group for which the outcome is observed under both migration states
of the adult. Furthermore, in countries with predominantly labor migration,
where only a small fraction of households migrates with the children, it is also
quantitatively the most important group. The average partial effect of M

1

for
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children who would never migrate is defined as

✓ ⌘ E [(Y (1, 0)� Y (0, 0)) |M2(0) = 0,M2(1) = 0] . (3)

3.2 Identification with randomly assigned adult migration
status

In order to focus on the identification problem induced by the migration of I
2

, we
will assume random assignment of the migration status of I

1

. In a second step,
we will relax the assumption of random assignment of M

1

. From the random
assignment of M

1

it follows that all potential outcomes are independent of M
1

(Assumption 1). However, the actual outcomes are not independent of M
1

. If
M

1

affects the migration status of the child and the outcome variable, then the
observed outcomes differ for households with M

1

= 0 and M
1

= 1.

Assumption 1. Randomly assigned migration status of I
1

{Y (m1,m2),M2(m1)} ? M1 for all m1,m2✏{0, 1}

Stratification on potential migration behavior

Consider now the potential migration behavior of I
2

. Based on the joint value of
the potential migration behavior (M

2

(0),M
2

(1)), children can be stratified into
four latent groups (Table 1). Following Frangakis and Rubin (2002) we refer
to these groups as Principal Strata. Principal strata are sub-populations of
units (in our case households) that share the same potential values of intermedi-
ate variables under different treatment states. We can distinguish four different
possible combinations of potential migration behavior of I

2

(Table 1). Note that
this four types correspond to the classification in the Local Average Treatment
Effects (LATE) framework (Imbens and Angrist, 1994; Angrist, Imbens, and
Rubin, 1996). In the LATE framework the types describe the potential behav-
ior of units with respect to an instrumental variable. In our setting the types
describe the potential migration behavior of the children with respect to the
migration status of the adult. With reference to the LATE framework we refer
to the types (G) as always migrants, compliers, defiers, and never migrants.
Children characterized as always migrants would migrate, irrespective of the
migration status of the adult. Compliers would migrate if the adult migrates,
but would stay if the adult stays. Defiers would migrate if the adult stays and
would stay if the adult migrates. Never migrants would always stay. These four

10



principal strata are hypothetically possible combinations of the potential values
of M

2

. In reality not all strata must necessarily exist.

Type I2 M2(1) M2(0) Description

A (lways migrant) 1 1 I2 would always migrate, irrespective of M1

C (omplier) 1 0 I2 would migrate if I1 migrates but not otherwise
D (efier) 0 1 I2 would migrate if I1 stays but not otherwise
N (ever migrant) 0 0 I2 would never migrate, irrespective of M1

Table 1: Principal strata with randomly assigned migration status of I
1

The idea of principal stratification is to compare units within common princi-
pal strata. As treatment assignment does not affect membership to a particular
principal stratum, the estimated effects are causal effects (Frangakis and Rubin,
2002). A principal stratum carries only the information whether a child would
migrate or stay depending whether the adult migrates or stays, irrespective of
the actual migration status of the adult. Conditional on the principal strata, po-
tential outcomes Y (m

1

,m
2

) are independent of the treatment M
1

. Conditioning
on principal strata would be equivalent to conditioning on the characteristics
reflected in the post-treatment variable. This implication is substantially differ-
ent from the notion that potential outcomes are independent of treatment M

1

given the observed migration status of I
2

. The identification problems become
more obvious from Table 2, which shows the correspondence between observed
groups and latent strata. The observed group O(0, 0) with M

1

= 0 and M
2

= 0

is composed of compliers and never migrants (Column (1)). Only for these two
principal strata is it possible to observe this combination of M

1

and M
2

. Similar
for the other observed groups: the observed group O(0, 1) is composed of al-
ways migrants and defiers, the observed group O(1, 0) is composed of defiers and
never migrants, and the observed group O(1, 1) is composed of always migrants
and compliers.

A researcher ignoring the second selection problem might estimate the differ-
ence E [Y |M

1

= 1,M
2

= 0]�E [Y |M
1

= 0,M
2

= 0]. However, this would mean
comparing strata D and N under treatment with strata C and N under con-
trol. This difference does not reflect a causal effect as individuals/households
with different characteristics are compared. The assumption one would have to
make in order to give this difference a causal interpretation is that the potential
outcomes under control are equal for compliers and never migrants and that
they are equal under treatment for defiers and never migrants, which is a very
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Observed subgroups O(m1,m2) Outcome Y Latent strata

(1) (2)

O(0, 0) = {M1 = 0,M2 = 0} observed C, N C, N
O(0, 1) = {M1 = 0,M2 = 1} A, D -
O(1, 0) = {M1 = 1,M2 = 0} observed D, N N
O(1, 1) = {M1 = 1,M2 = 1} A, C C

Note: Column (1) shows all latent strata. Column (2)

shows the remaining strata after Assumption 2 has been

imposed.

Table 2: Correspondence between observed groups and latent strata

strong assumption.
As explained above, a principal effect within a stratum is a well-defined

causal effect. One can therefore estimate the effects within each stratum and
then aggregate to obtain the effect for the population of interest. For policy
makers in the source country, the children who stay behind are of particular
interest. If interest is in Y (1, 0) � Y (0, 0), the only stratum for which both
potential outcomes can be observed are never migrants.3 The average partial
effect for never migrants is defined as

✓N ⌘ E [(Y (1, 0)� Y (0, 0)) |G = N ] (4)

Note that this is identical to the effect defined in Equation 3. Subsequently we
will focus on the identification of this effect. To complete the notation let ⇡A

denote the share of always migrants, ⇡C the share of compliers, ⇡D the share of
defiers, and ⇡N the share of never migrants.

Bounds on the treatment effect

Additional behavioral and distributional assumptions can be used to derive
bounds for the effect of interest. One relatively weak behavioral assumption
in the setting, where I

2

is a child, is that I
2

would not migrate alone. If the
household would have more than one adult, then this assumption means that:
the child would not migrate if not at least one adult migrates. This assumption
rules out the existence of always migrants and defiers, as children in these two
strata would migrate if the adult would not migrate.

3Note that never migrants are not equal to the group with M2 = 0. This observed group
also includes compliers.
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Assumption 2. I2 only migrates if I1 migrates

M2(0) = 0

Column (2) in Table 2 shows the correspondence between observed groups and
latent strata under Assumption 2. This assumption has empirically testable im-
plications. As Assumption 2 rules out defiers and always migrants we should
not observe any households with the combination M

1

= 0 and M
2

= 1, mean-
ing any household where all adult members stay and only a child migrates.4

Given Assumption 2, group O(1, 0) corresponds directly to the stratum of never
migrants under treatment. Therefore the outcome under treatment for never
migrants is directly identified

E [Y (1, 0)|G = N ] = E [Y |M1 = 1,M2 = 0] . (5)

Group O(0, 0) is a mixture of compliers and never migrants. The observed
outcome is therefore a mixture of the potential outcomes of these two strata
under control

E [Y |M1 = 0,M2 = 0] = E [Y (0, 0)|G = C]⇡C + E [Y (0, 0)|G = N ]⇡N . (6)

This expression can be transformed to obtain the potential outcome of never
migrants under control

E (Y (0, 0)|G = N) =
E [Y |M1 = 0,M2 = 0]� E [Y (0, 0)|G = C]⇡C

⇡N
. (7)

The share of compliers and never migrants could be directly obtained from
⇡C = P (M

2

= 1|M
1

= 1) and ⇡N = P (M
2

= 0|M
1

= 1) if at least the exis-
tence of households where all individuals migrated is known. This might be the
case in a panel dataset where households dissolve between two waves but the
information about their migration is available from other sources. Information
about the existence of these households is usually not available in cross-sectional
datasets. In this case strata proportions have to be estimated by using other

4Note that for the bounds derived below also a weaker monotonicity assumption that rules
out defiers would be sufficient. We still use Assumption 2 as it is necessary for identification
in the setting where migration of the adult is not random. Furthermore it is not rejected by
our data.
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data sources or have to be based on assumptions. In the empirical application
we obtain the number of all-move households from comparing migrant numbers
from the source country population census with the migrant numbers from the
destination country census. We calculate the ratio of the number of children
not included in the data relative to the observed number of children in mi-
grant households (�). Based on this information we can calculate the strata
proportions ⇡N =

1/1+� and ⇡C = 1� ⇡N .
Following Zhang and Rubin (2003); Lee (2009) we can derive sharp5 bounds

for E [Y (0, 0)|G = N ] and ✓N . The idea behind these bounds is simple. We
know that the observed group of households where neither the adult nor the
child migrated (O(0, 0)) consists of the two latent groups of never migrants
and compliers with proportions ⇡N and ⇡C . The two extreme scenarios we can
imagine are that a) the outcome of the worst complier is better than the outcome
of the best never migrant. In this case we can remove the upper ⇡C quantiles
from the distribution of Y in the cell O(0, 0) and estimate the average outcome
for the remaining individuals, which gives us the lowest possible outcome for
never migrants under control. The opposite scenario b) would be that the
outcome of the best complier is worse than the outcome of the worst never
migrant. Removing the lower ⇡C quantiles from the distribution and estimating
the mean gives us the upper bound for the outcome of never migrants under
control. Let q(a) be the a-quantile of the distribution of Y |M

1

= 0,M
2

= 0.
E [Y (0, 0)|G = C] can be bounded from above by the mean of Y in the upper
1�⇡C quantiles of the distribution in the cell O(0, 0) and from below by the mean
in the lower ⇡C quantiles.6 To directly obtain bounds for E [Y (0, 0)|G = N ] we
take take the mean in the lower 1�⇡C quantiles for the lower bound and in the
upper ⇡C quantiles for the upper bound (see Appendix B for the calculations).

The lower and upper bounds for E [Y (0, 0)|G = N ] are
5Bounds are sharp if they are the tightest bounds one could obtain given the available data

and assumptions made.
6Note that if Y is discrete, the occurrence of mass points with equal outcome values cause

the quantile function to be not unique. For this reason we replace the non-unique quantile
function with a modified version as suggested in Kitagawa (2009) and Huber and Mellace
(2013). Intuitively, we use a rank function instead of a quantile function to break ties. We
sort the data in the observed cell M1 = 0,M2 = 0 on the outcome. For the lower bound
we then estimate the mean in the subsample of the first ⇡C ⇤ N00 observations, where N00

denotes the number of observations with M1 = 0,M2 = 0. For the upper bound we estimate
the mean in the subsample of the last ⇡C ⇤N00 observations.
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EL
N [Y (0, 0)|G = N ] = E [Y |M1 = 0,M2 = 0, Y < q(1� ⇡C)]

EU
N [Y (0, 0)|G = N ] = E [Y |M1 = 0,M2 = 0, Y > q(⇡C)]

and for the corresponding causal effects

✓UN = E [Y |M1 = 1,M2 = 0]� EL
N [Y (0, 0)|G = N ]

✓LN = E [Y |M1 = 1,M2 = 0]� EU
N [Y (0, 0)|G = N ]

3.3 Identification with non-random adult migration

In practice many empirical studies use an instrument for the migration decision
of the principal migrant (see for example Hanson and Woodruff, 2003; McKen-
zie and Hildebrandt, 2005; Yang, 2008; Amuedo-Dorantes, Georges, and Pozo,
2010; McKenzie and Rapoport, 2011; Antman, 2011). We therefore drop the
assumption of random assignment of M

1

and assume that a binary instrument
Z = z✏{0, 1} exists, which is randomly assigned and affects the migration deci-
sion of the adult. M

1

(z) denotes the potential migration of I
1

as a function of
the value of the instrument Z. Let us for the moment also write the potential
values of migration of the child M

2

(m
1

, z) and the outcome Y (m
1

,m
2

, z) as
a function of Z. In the presence of the second selection problem, we have to
modify the classical IV assumptions (Imbens and Angrist, 1994; Angrist, Im-
bens, and Rubin, 1996). Specifically we make the following assumptions. We
assume that the instrument is randomly assigned and therefore independent of
all potential outcomes (Assumption 3).

Assumption 3. Randomly assigned instrument

{Y (m
1

,m
2

, z),M
2

(m
1

, z),M
1

(z)} ? Z for all z,m
1

,m
2

✏{0, 1}

Assumption 4 states that the effect of Z on the potential outcomes Y must
be via an effect of Z on M

1

and M
2

(the effect of Z on M
2

is indirect via M
1

).
In other words, the instrument may affect the educational outcomes of the chil-
dren only through its effect on the migration status of the household members.
Assumption 5 states that the effect of the instrument on the potential migration
status of I

2

must be via an effect of Z on M
1

. In other words, the decision of
the household whether only the adult migrates or the whole household migrates,
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does not depend on the value of the instrument. In a later step we will derive
alternative bounds for the case that this assumption is violated by replacing
Assumption 5 with an additional monotonicity assumption. Assumptions 5 and
4 allow us to use the previous notation of potential outcomes and write the po-
tential variables M

2

(m
1

) and Y (m
1

,m
2

) as a function of the migration status
only.

Assumption 4. Exclusion restriction of Z with respect to Y

Y (m
1

,m
2

, z) = Y (m
1

,m
2

, z0) = Y (m
1

,m
2

) for all m
1

,m
2

, z✏{0, 1}

Assumption 5. Exclusion restriction of Z with respect to M
2

M
2

(m
1

, z) = M
2

(m
1

, z0) = M
2

(m
1

) for all m
1

,m
2

, z✏{0, 1}

Assumption 6 states that the instrument has a non-zero average effect on
the migration of I

1

. For the moment we do not assume anything about the
direction of the effect.

Assumption 6. Non-zero average effect of Z on M
1

E [M1(1)�M1(0)] 6= 0

A valid instrument needs to satisfy Assumptions 3, 4, 5, and 6 simultaneously
(Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). An important
difference with respect to the exclusion restriction is, that we require Z to be a
valid instrument for Y and M

2

. In this sense our setting is very similar to Chen
and Flores (2012). However, there are two differences to their setting. First,
in our setting M

2

is both an indicator whether the individual is observed and
a treatment in itself. In Chen and Flores (2012) the outcome is not a function
of the selection indicator. Second, in our setting the probability to observe a
household decreases with adult migration as this increases the probability that
the whole household migrates. In the setting under study in Chen and Flores
(2012) the probability to observe the outcome increases for treated individuals.

We now distinguish principal strata with respect to the instrument. We
can differentiate the types of adults with respect to the instrument as always
migrants (A), compliers (C), defiers (D), and never migrants (N). An adult who
is an always migrant would migrate irrespective of the value of the instrument;
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a complier would migrate if the instrument takes on the value of one but not if
it takes on the value of zero; a defier would migrate if the instrument is zero but
not if the instrument is one; and a never migrant would not migrate irrespective
of the value of the instrument. We can also distinguish these four types of
children. Note that we define the types of the children also with respect to the
instrument, even though we assume that the effect works only indirectly via
M

1

. Combining the four strata of adults with the four strata of children gives
in total 4 ⇥ 4 = 16 principal strata (Table 4 in Appendix A). We refer to the
strata (household types) using a two letter system, the first letter refers to the
type of I

1

, the second to the type of I
2

. E.g., CN refers to a household where
the adult would migrate if Z = 1 and would not migrate if Z = 0 and the child
would never migrate.

Assumption 5 rules out the existence of strata AC,AD,NC,ND. In these
strata the instrument has a direct effect on M

2

, as I
1

does not react to the
instrument in these strata. Furthermore, we continue to assume that the child
would only migrate if the adult migrates (Assumption 2). This assumption
rules out the existence of the strata CA,CD,DA,DC,NA,NC,ND.7 Again,
this has the empirically testable assumption that no households with M

1

= 0

and M
2

= 1 should be observed. Additionally, we assume a monotone effect
of the instrument on migration of I

1

, which is a standard assumption in the
instrumental variables literature (Imbens and Angrist, 1994; Angrist, Imbens,
and Rubin, 1996). This assumption states that every adult is at least as likely
to migrate if Z = 1 as she would be if Z = 0.

Assumption 7. Individual-level monotonicity of M1 in Z

Mi1(0)  Mi1(1)

Assumption 7 rules out defiers among adults and therefore eliminates strata
DA,DC,DD,DN . Assumptions 2 and 7 together rule out the existence of
11 of the 16 principal strata (Last column, Table 4 in Appendix A). Table 5
in Appendix A shows the correspondence between observed groups and latent
strata. Column (1) presents the corresponding strata without Assumptions 5,
2 and 7, Column (2) the remaining strata if these assumptions are imposed.

The outcome Y is observed under treatment and control only for stratum
CN . In this stratum, M

1

is induced to change from 0 to 1 by the instrument
and M

2

is always zero. The causal effect for this stratum is therefore the local
7The existence of some strata is ruled out by more than one assumption.

17



average treatment effect (LATE) for children who are never migrants. In what
follows we will concentrate on the identification of this effect under the proposed
set of assumptions.

✓N ⌘ E [(Yi (1, 0)� Yi (0, 0)) |G = CN ] (8)

Bounds on the treatment effect

Identification of the strata proportions is necessary in order to bound the treat-
ment effect. If all-move households are not observed in the data, the identifi-
cation of strata proportion requires again external information about the ratio
of the number of children not observed to the observed number of children
in migrant households (�) (see Section 4.3 for an explanation how we calcu-
late � using information from other data sources). Strata proportions cannot
just be estimated as conditional probabilities but need to be adjusted due to
the fact that not the entire sample is observed. For example, while ⇡AN is
P (M

1

= 1,M
2

= 0|Z = 0) if the entire sample is observed, ⇡AN would be over-
estimated if we ignore the fact that we do not observe households with M

1

=

1,M
2

= 1, Z = 0. For this reason we calculate adjustment factors based on �.
The adjustment factor in the sub-sample with Z = 0 is �

0

= N
0

/(N
0

+N
010

⇤�)
and in the sub-sample with Z = 1 it is �

1

= N
1

/(N
1

+ N
110

⇤ �). Nz denotes
the number of observations with Z = z, Nz10 the number of observations with
Z = z,M

1

= 0,M
2

= 0. The terms (N
0

+N
010

⇤ �) and (N
1

+N
110

⇤ �) corre-
spond to the numbers of households in the subsamples with Z = 0 and Z = 1,
that we would observe if all-move households were also observable. Given this
information, strata proportions are identified as

⇡AN = P (M
1

= 1,M
2

= 0|Z = 0) ⇤ �
0

⇡CN = P (M
1

= 1,M
2

= 0|Z = 1) ⇤ �
1

� ⇡AN

⇡NN = P (M
1

= 0,M
2

= 0|Z = 1) ⇤ �
1

⇡CC = ⇡CN ⇤ (�)

⇡AA = ⇡AN ⇤ (�)

To simplify notation, we denote Y
zm1m2 ⌘ E [Y |Z = z,M

1

= m
1

,M
2

= m
2

]

for the observed outcomes. We denote ↵CN ⌘ ⇡CN/ (⇡CN + ⇡NN + ⇡CC) and

18



↵CC ⌘ ⇡CC/ (⇡CN + ⇡NN + ⇡CC) for the conditional probabilities in the ob-
served group O(0, 0, 0).

The potential outcome of CN under treatment, Y (1, 0)|G = CN , is observed
as part of the mixture distribution in the observed group O(1, 1, 0).

Y
110

=
E [Y (1, 0)|G = CN ]⇡CN + E [Y (1, 0)|G = AN ]⇡AN

⇡CN + ⇡AN
. (9)

which can be reformulated to

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� E [Y (1, 0)|G = AN ]⇡AN

⇡CN
. (10)

Under treatment stratum AN corresponds directly to the observed group
O(0, 1, 0) and the outcome under treatment for this stratum is identified as

E [Y (1, 0)|G = AN ] = Y
010

. (11)

Using Equations 10 and 11, the expected outcome under treatment for stra-
tum CN is point identified as

E [Y (1, 0)|G = CN ] =
Y

110
(⇡CN + ⇡AN )� Y

010
⇡AN

⇡CN
. (12)

The approach to derive bounds for the potential outcome of CN under con-
trol stems from Chen and Flores (2012). They derive bounds for a situation
where the potential outcome of interest is part of a mixture of three strata and
the expected outcome of one stratum is point identified. In our setting, the
observed outcome for the group O(0, 0, 0) is a mixture of the outcomes of strata
CN , NN , and CC and the outcome of stratum NN is point identified (see
below).

We introduce additional notation to describe the bounds. Let y000a be the
a-th quantile of Y in the observed group {Z = 0,M

1

= 0,M
2

= 0}, and let the
mean outcome in this cell for those outcomes between the a0-th and a-th quan-
tiles of Y be

Y (y000a0  Y  y000a ) ⌘ E
⇥
Y |Z = 0,M

1

= 0,M
2

= 0, y000a0  Y  y000a

⇤
(13)

The idea behind these bounds is to find the lowest and highest possible values
for E [Y (0, 0)|G = CN ] subject to the constraint Y

100

= E [Y (0, 0)|G = NN ].
In the unconstrained case, the upper and lower bound for E [Y (0, 0)|G = CN ]

can be derived in a similar way as in the scenario with randomly assigned
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Figure 1: Unconstrained lower bound for E [Y (0, 0)|G = CN ]

M
1

. We can bound E [Y (0, 0)|G = CN ] from below by the expected value of
Y for the ↵CN fraction of smallest values of Y in the group O(0, 0, 0). Now
we check whether this unconstrained solution can satisfy the constraint that
Y

100

= E [Y (0, 0)|G = NN ]. Under the assumptions that the smallest val-
ues in group O(0, 0, 0) are only from CN observations, the lower bound for
E [Y (0, 0)|G = NN ] is given by Y (y000↵CN

 Y  y000
1�↵CC

), the mean estimated
in the central area in Figure 1. In case this estimated lower bound is lower than
Y

100, the unconstrained solution is identical to the solution of the constrained
problem.

If the constraint is not satisfied, the lower bound can be derived from the
mixture distribution of CN and NN in the lower 1 � ↵CC quantiles of the
distribution of Y in the cell {Z = 0,M

1

= 0,M
2

= 0} (Chen and Flores, 2012).

EL
CN [Y (0, 0)|G = CN ] =

8

<

:

Y (Y  y000
↵CN

), if Y (y000
↵CN

 Y  y000
1�↵CC

)  Y
100

Y (Y  y000
1�↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN
, otherwise

(14)
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EU
CN [Y (0, 0)|G = CN ] =

8

<

:

Y (Y � y000
1�↵CN

), if Y (y000
↵CC

 Y  y000
1�↵CN

) � Y
100

Y (Y � y000
↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN
, otherwise

(15)

Bounds for the causal effect ✓CN can be constructed by combining the point
identified potential outcomes under treatment with the bounds for the potential
outcomes of stratum CN under control.

✓UCN = E [Y (1, 0)|G = CN ]� EL
CN [Y (0, 0)|G = CN ] (16)

✓LCN = E [Y (1, 0)|G = CN ]� EU
CN [Y (0, 0)|G = CN ] (17)

Alternative bounds without exclusion restriction of Z on M
2

Assumption 5 may be controversial in some settings. For example, if the pro-
posed instrument shifts the cost of migration, one could imagine that this does
not only influence the migration decision of the adult but of all household mem-
bers. In this case the exclusion restriction would be violated. As stated above,
Assumption 5 rules out the existence of strata AC,AD,NC,ND and thus al-
lows identification of the bounds as described above. However, Assumption 2
rules out the existence of strata NC and ND as well. By imposing monotonicity
of M

2

in Z we can also rule out the existence of stratum AD. Assumption 8
states that the probability to migrate for children must be strictly higher if the
instrument is one compared to the situation where the instrument is zero, which
is most likely the case if the instrument reduces the cost of migration.

Assumption 8. Individual-level monotonicity of M2 in Z

Mi2(0)  Mi2(1)

The difference to the situation before is that we cannot rule out the exis-
tence of stratum AC. Identification of the bounds for E [Y (0, 0)|G = CN ] is
unaffected by this change, except that identification of the strata proportion re-
quires additional assumptions. In the scenario where the migration of the child
was independent of the instrument, it was enough to calculate the ratio of the
number of not observed children to the observed number of children in migrant
households using other data sources. We continue to use the overall ratio �.
However, we need to make two additional assumptions.
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Assumption 9. � independent of household type

⇡CN ⇤ � = ⇡CC and ⇡AN ⇤ � = ⇡AC + ⇡AA

Assumption 10. The shares of compliers and always migrants among children are

equal in households where the adult is an always migrant

⇡AC = ⇡AA

Assumption 9 states that � is equal for households where the adult is a
complier and households where the adult is an always migrant. We make this
assumption in the absence of reliable data on potential differences in � for
different types of households. Note that this assumption implies a trade-off.
If all all-move households were households where the adult is a complier, then
⇡CC would be large and thus the bounds on E [Y (0, 0)|G = CN ] would be large
but we could still point identify E [Y (1, 0)|G = CN ]. On the contrary, if all all-
move households were households where the adult is an always-migrant, then
we could point identify E [Y (0, 0)|G = CN ] but we would get larger bounds on
E [Y (1, 0)|G = CN ].

We also assume that the share of compliers among children is identical to
the share of always migrants among households where the adult is an always
migrant (Assumption 10). The case that would lead to the widest bounds on
E [Y (1, 0)|G = CN ] would be to assume that ⇡AA = 0 and therefore ⇡AN ⇤ � =

⇡AC . However, as long as ⇡AC is small compared to ⇡AN , the bounds will only
slightly increase compared to the ones under Assumption 5. The formulas for
the strata proportions using Assumptions 9 and 10 are given in Appendix B.

Under Assumptions 8, 9, and 10 it is no longer possible to point-identify
E [Y (1, 0)|G = AN ] and in further consequence E [Y (1, 0)|G = CN ]. However,
it is possible to derive sharp bounds on E [Y (1, 0)|G = CN ].8 Y (1, 0)|G = AN

is observed in the groups O(0, 1, 0) and O(1, 1, 0). Within each of these cells we
can bound E [Y (1, 0)|G = AN ] from below by the expected value of Y in the
↵z10
AN fraction of smallest values of Y for z = 0, 1.9 The sharp lower bound for

E [Y (1, 0)|G = AN ] is the maximum of the two. For the upper bound we take
the ↵z10

AN fractions of largest values of Y in the two cells and then the minimum
of the two. We then use an adjusted version of Equation 12. Instead of using

8See (Huber and Mellace, 2013) for the proof of sharpness of these bounds.
9↵010

AN ⌘ ⇡AN/ (⇡AN + ⇡AC) denotes the share of AN households in the observed group
O(0, 1, 0) and ↵110

AN ⌘ ⇡AN/ (⇡AN + ⇡CN ) in the observed group O(1, 1, 0).
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the point identified expected outcome for stratum CN under treatment, we use
the upper and lower bounds for this quantity (Equations 18 and 19).

EL
CN [Y (1, 0)|G = CN ] = Y

110 ⇤ ⇡AN + ⇡CN

⇡CN
(18)

� min
n

Y (Y � y010
1�↵010

AN
), Y (Y � y110

1�↵110
AN

)
o

⇤ ⇡AN

⇡CN

EU
CN [Y (1, 0)|G = CN ] = Y

110 ⇤ ⇡AN + ⇡CN

⇡CN
(19)

� max
n

Y (Y  y010
↵010
AN

), Y (Y  y110
↵110
AN

)
o

⇤ ⇡AN

⇡CN

Bounds for the causal effect ✓CN can be constructed by combining the bounds
for the potential outcomes of stratum CN under control with the bounds for
potential outcomes of CN under treatment.

✓UCN = EU
CN [Y (1, 0)|G = CN ]� EL

CN [Y (0, 0)|G = CN ] (20)

✓LCN = EL
CN [Y (1, 0)|G = CN ]� EU

CN [Y (0, 0)|G = CN ] (21)

3.4 Estimation and inference

All bounds in the setting with imperfect compliance include at least one mini-
mum or maximum operator.10 These operators create several problems for esti-
mation and inference. Hirano and Porter (2012) show that for non-differentiable
parameters, such as min and max operators, no asymptotically unbiased estima-
tors exist. Therefore, estimators for bounds that use the min and max functions
can be severely biased in finite samples and confidence intervals can neither be
estimated using standard asymptotics nor bootstrap methods. Chernozhukov,
Lee, and Rosen (2012) derive a method to obtain conservative half-median un-
biased estimates and confidence intervals for the bounds. The main idea of
their approach is to apply the min (max) function not directly on the bounding
function but on a precision corrected version of it. Precision is adjusted by
adding to each estimated bounding function its pointwise standard error times

10Equations 18 and 19 are written in terms of min and max oper-
ators. But also equations 14 and 15 involve these operators. For
example, equation 14 can be rewritten as EL

CN [Y (0, 0)|G = CN ] =

max
n

Y (Y  y000↵CN
), Y (Y  y0001�↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN

o

.
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an appropriate critical value. Estimates with higher standard errors therefore
require larger adjustments. The estimated bounds are rather conservative. The
half-median-unbiased estimator of the upper bound exceeds the true value of the
upper bound with the probability of at least 0.5 asymptotically. The estimator
of the lower bound falls below the true bound with probability 0.5. A detailed
description of the implementation of the procedure based on Huber and Mellace
(2013); Chen and Flores (2012) is provided in Appendix B.

4 Empirical example: Migration and educational

attainment in Mexico

Mexico has been the most studied source country in migration research. In
the empirical application we follow McKenzie and Rapoport (2011) (henceforth
MR) and estimate the effect of migration on school attendance in Mexico. MR
use historical migration rates as an instrument for current migration to identify
the effects for four distinct groups: boys and girls in the age groups of 12 to 15
and 16 to 18 years. They find that migration of an adult household member
reduces school attendance rates of 12 to 15 year old boys by 16 percentage points
and by 9 percentage boys for girls, the latter effect is however not significantly
different form zero. MR also estimate the impact on years of education attained
and for children aged 16 to 18 years. In the current paper we will only focus
on the effect of migration on school attendance and only on the sample of
children aged 12 to 15 years. Restricting the analysis in this way has two
advantages for the proposed research. First, children in this age group are
unlikely to migrate without their parents, which is required by Assumption
2. This assumption does not hold for 16 to 18 year old adolescents. Second,
compared to years of education, school attendance is the more natural outcome
for children and adolescents who have not yet completed their education. Using
years of education gives rise to additional problems due to censoring.

4.1 Data

This paper uses the same Mexican dataset as MR. The 1997 Encuesta Nacional
de la Dinàmica Demográfica (ENADID) is a nationally representative survey
with a total sample of 73,412 households. This corresponds to roughly 2,300
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households in each of the 32 states.11 In order to allow for comparability of the
results with MR, we restrict the sample in a similar way to households in mu-
nicipalities outside of cities with more than 50,000 inhabitants. The estimation
sample consists of 15,665 children aged 12 to 15 years in 11,160 households. We
follow MR and define a child as living in a migrant household if the household
has a member aged 19 and over who has ever been to the U.S. to work or who
has moved to the U.S. in the last 5 years for any other reason. It should be
noted that this is not the optimal migrant definition to illustrate the effect of
endogeneity due to migrants sample selection as it also includes return migrants.
However, to maximize comparability of the results with previous research, we
follow the definition of MR.12 MR argue that also prior migration episodes of
adult household members influence the educational attainment of the children.
If the instrument also affects these prior migration episodes, then defining the
treatment in a way that households with former migration episodes are consid-
ered as untreated would lead to a violation of the exclusion restriction. The
instrument would have an effect on the outcome that is not via the defined
treatment.

The outcome of interest is school attendance. Even as school attendance
in Mexico is compulsory up to the age of 16 years13, attendance rates at the
time of the survey were significantly below 100 percent. Attendance rates in the
estimation sample are 74% for boys and 66% for girls. The overall attendance
rate drops from 87% at age 12 to 49% at age 15. Table 6 shows that boys in
migrant households have lower attendance rates (71%) than boys in non-migrant
households (75%). There is hardly any difference for girls. This is especially
remarkable as mothers in migrants households have on average about 0.3 years
more schooling than mothers in non-migrant households. It is important to note
that these statistics are only based on children who stay in Mexico. We do not
know the characteristics of the households that migrated as a whole.

In the sample we have no children who are categorized as current migrants.
This is strong evidence in support of Assumption 2, that children would not
migrate alone. 14

11Mexico has 31 states and one federal district. For simplicity we will only refer to these
entities as states.

12For a discussion on the advantages and disadvantages of this migrant definition, please
refer to MR.

13http://www.sep.gob.mx/en/sep_en/Basic_Education_a
14There are 14 children who report prior migration episodes. Out of these 14 children, six

come from non-migrant households. However, the questionnaire includes several questions on
migration and the answers for these observations are not consistent. This indicates that data
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4.2 Historical migration networks to instrument for selec-
tion of households into migration

To overcome the problem of self-selection into migration, a number of recent
studies (e.g. McKenzie and Hildebrandt, 2005; McKenzie and Rapoport, 2011)
have used historical state-level migration rates as an instrument for current mi-
gration levels. The argument for this instrument is that existing networks lower
the migration cost for subsequent migrants and therefore trigger additional mi-
gration. The exclusion restriction is that these historical migration rates do not
affect education outcomes today except through current migration of household
members. A detailed discussion of this instrument and the exclusion restriction
with respect to educational attainment can be found in MR. However, the two
versions of the bounds in this paper require additional assumptions about the
instrument. Assumption 5 states that the instrument must not influence the
migration decision of the child directly. This seems to be a reasonable assump-
tion if the migration network primarily helps the adult migrant to find a job
in the destination country. However, if the network provides other help to the
migrant as well (e.g. find housing, organize childcare,...) then the instrument
might also directly influence the probability that the household migrates with
the child. As an alternative, we derive bounds under Assumption 8 instead of
Assumption 5. Assumption 8 allows for a direct effect of the instrument on the
migration probability of the child but the effect is required to be monotone. If
networks indeed lower the cost of migration in general, then assuming that the
instrument can have a positive but no negative effect on the migration proba-
bility of the child seems to be plausible. However, using this weaker assumption
comes at the cost of wider bounds.

As MR we use state-level migration rates to the US from 1924 taken from
Woodruff and Zenteno (2007). We recode this continuous measure into a binary
one, by defining states as low-migration states (Z = 0) if the migration rate was
below the state-level median (3.78%) and as high-migration states (Z = 1) if
migration rate was above (see Frölich 2007 for details on this transformation).
We do this to allow stratification on instrument assignment, which would not
be possible with a continuous instrument. Figure 3 in Appendix A shows the
relation between historical migration rates and the probability of a child to live
in a migrant household. One can clearly see a sharp increase in the probability
around the median of state-level migration rates, making this cut-off a reason-

problems are the reason for this finding.
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able one, as it maximizes the share of compliers among adults. In this setting
compliers are those individuals, who would migrate only if they live in a high-
migration state. Unlike MR we abstain from including additional covariates in
our estimation to ensure instrument validity. Covariates would further compli-
cate the analysis. The main problem is that we do not observe the distribution
of covariates for those households, which migrated as a whole. Furthermore, two
stage least squares point estimates with a binary instrument without covariates
differ only slightly from those using covariates and are similar to the results in
MR.15

4.3 All-move households in Mexico

While the ENADID dataset provides rich information on individual migration
histories, it misses information on households which migrate as a whole. If no
household member is left to answer the survey questions, not even the existence
of the household is recorded. In order to get an understanding of how widespread
the phenomenon of all-move households is in Mexico, we build on previous
work that used data from the origin and the destination country of migrants.
Ibarraran and Lubotsky (2007) estimate the size of the Mexican immigrant
population in the United States a) based on the 2000 Mexican Census and
b) based on the 2000 U.S. Census. As the Mexican Census is conducted as
a household survey, it is very likely to miss migrants who migrated with their
whole household. The estimate of the size of the Mexican born population living
in the U.S. based on the Mexican Census is 1,221,59816, while the estimate
based on the U.S. Census is 2,205,356. Thus the total migrant population in
the Mexican Census is only 55.4% the size of the population in the U.S. Census.
This rate is by far lower for female migrants (33.6%) than for male migrants
(69.9%).

The authors argue that this difference is primarily due to married couples
who have migrated as a whole household and are therefore most likely not
counted in the Mexican Census. Once married couples with both spouses present
in the U.S. are removed from the U.S. Census estimates, the remaining migrant

15For the model with controls we use the following state level control variables: the number
of schools per 1,000 inhabitants in 1930, the literacy rate in 1960, and male and female atten-
dance rates in 1930. These are not exactly the same controls as in MR, as those controls could
unfortunately not be reconstructed. Including these covariates changes the point estimate in
a two stage least squares estimation for boys from -19.5 percentage points to -14.7 percentage
points and for girls from 8.2 to 7.4 percentage points.

16This number excludes migrants who have returned to Mexico.
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number is 1,492,111 and thus by far closer to the number from the Mexican
Census. In a similar analysis, McKenzie and Rapoport (2007) use the U.S.
Census 5% public use sample to analyze the marital status of recent Mexican
immigrants. They find that 14.4% of male and 48% of female recent Mexican
migrants are married with their spouse present in the U.S. and also conclude
that these individuals are likely not covered in Mexico-based surveys.

The discrepancies between the numbers from the Mexican and the U.S. Cen-
sus are even larger for children. In the age group 0-13 years, the number of mi-
grants in the Mexican Census in only about 10% of the number of migrants in
the U.S. Census. In the age group 12 to 15 years the ratio is about 50%. Over-
all the U.S. Census counts 82,240 Mexican born children in this age group.17

Again, the reason is most likely that children migrate with their whole family
and are therefore not counted in the Mexican Census any more.

The ratio of the total number of migrants and the number of migrants net of
married couples with both spouses present in the U.S. may be seen as a rough
estimate for the share of migrants missed due to all-move households. This ratio
of 1.46 suggests that for every two migrants counted in a Mexican household
survey, one additional migrant is missed. However, the relevant number for
assessing the potential bias from sample-selection due to all-move households is
the ratio of the number of children missed due to migration of whole households
to the number of observed children in migrant households. To calculate this
number we use information from two sources. First, we use the ENADID to
calculate the total number of children in migrant households in Mexico. Using
the definition of a migrant household as described above and the expansion
factors provided with the data, we calculate the total number of children aged
12 to 15 years who live in a migrant household to be 1,516,924. Second, from
the year 2000 U.S. census we know the number of Mexican born children in this
age group to be 82,240. From these two numbers we can approximate � to be
0.054. Of course this is only a very crude calculation. This ratio appears to be
rather low but this is due to the fact that we use a rather broad definition of
a migrant household and thus have a large denominator. We therefore test the
sensitivity of the results to different ratios ranging from 0 to 0.5. For the main
analysis we will use a ratio of � = 0.054.

17Thanks to Darren Lubotsky for providing this estimate.
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4.4 Results

We bound the effect of living in a migrant household on school attendance
for children aged 12 to 15 years in Mexico. To be more precise, the effect of
interest is for the group of children who would never migrate but who live in
a household where adult migration is induced by the availability of historic
migration networks. Using a parametric framework, MR found a significant
negative effect for boys (-16 percentage points) and an insignificant effect for
girls (-9 percentage points). However, MR did not address the sample selection
due to all-move households. To get a comparison to these previous results,
we ignore the sample selection and estimate the effects using a simple Wald
estimator without covariates. The results are similar to the findings of MR.
The estimated effect for boys is -19.5 and significant, the effect for girls is 8.1
and not significantly different from zero (Table 3).18

Next, we assess the sensitivity of these results to the sample selection in-
duced by the migration of whole households. The first rows of Table 3 present
the estimated strata proportions. The proportion of stratum CN for boys is
0.260 (s.e. 0.045), the proportion of stratum CC is 0.014 (s.e. 0.002). The
biggest stratum with a proportion of 0.596 (s.e. 0.037) is stratum NN . Strata
proportions are very similar for girls. The next three rows display the point
identified expected outcomes for stratum NN under control and for strata AN

and CN under treatment. The expected school attendance rate under treat-
ment for stratum CN is 63.3% for boys and 60% for girls. School attendance is
slightly higher for boys than for girls in all strata. The lower and upper bounds
for school attendance rates for stratum CN under control are 87.1 and 100%.
For girls they are substantially lower with 55.4% and 69.7% respectively.

The lower and upper bounds on the average effect for the CN stratum for
boys are -26.3 and -14.4 percentage points. For girls the respective numbers are
0.2 and 14.5. However, the confidence intervals are rather wide for both groups.
For boys the 95% confidence intervals includes zero by a small margin.

While it appears that the effect of living in a migrant household for boys is
negative even if the sample selection is taken into account, the opposite is true
for girls. The estimated bounds suggest that the effect might even be positive.
This result is in line with the arguments and empirical findings of a series of
recent papers. Antman (2012) suggests that paternal migration is associated

18While the estimates for boys with and without covariates are very similar to the results
of MR, there is a bigger discrepancy in the estimates for girls. Not reported estimates using
the continuous instrument are much closer to the result of MR.
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with a shift in decision making power towards the mother and that mothers
choose to spend more on the education of girls. Antman (2011) finds that in
the short run boys have to respond to paternal absence with an increase in work
and a decrease in study hours. Both channels may contribute to the fact that
boys experience a negative effect on school attendance by migration of adult
household members and no or even a positive effect exists for girls.

Boys Girls

⇡AN 0.123 (0.028) 0.121 (0.027)
⇡AA 0.007 (0.002) 0.007 (0.001)
⇡CN 0.260 (0.045) 0.250 (0.042)
⇡CC 0.014 (0.002) 0.013 (0.002)
⇡NN 0.596 (0.037) 0.609 (0.034)

E [Y (0, 0)|G = NN ] 0.727*** (0.022) 0.699*** (0.024)
E [Y (1, 0)|G = AN ] 0.678*** (0.020) 0.637*** (0.024)
E [Y (1, 0)|G = CN ] 0.633*** (0.037) 0.600*** (0.041)

Y (y000↵CN
 Y  y000

1�↵CC
) 1.000*** (0.016) 0.904*** (0.055)

Y (y000↵CC
 Y  y000

1�↵CN
) 0.670*** (0.026) 0.516*** (0.039)

Bounds on E [Y (0, 0)|G = CN ] [0.871 1.000] [0.554 0.697]

Wald estimate -0.195** (0.084) 0.081 (0.118)

Bounds on ✓CN [-0.263 -0.144] [0.002 0.145]
CLR 95% confidence interval (-0.418 0.003) (-0.210 0.358)

Observations 7,993 7,663

Note: Results based on the assumption that the ratio of the number of children not included
in the sample due to migration of the whole household to the number of children observed in
migrant households is 0.054. Clustered standard errors in parenthesis from 1999 bootstrap
replications. Numbers in parentheses in the bottom row are 95% confidence intervals
calculated by the procedure suggested by Chernozhukov, Lee, and Rosen (2012), while
numbers in square brackets are identified sets determined by the half-median unbiased
estimators. * denotes that estimate is statistically different from zero at the 10%, ** at 5%,
and *** at 1% significance level.

Table 3: Table of results

The results for the bounds with monotonicity assumption A8 instead of
exclusion restriction A5 can be found in Table 7 in Appendix A. The bounds
on the effect for the CN stratum for boys are -28.6 and -12.6 percentage points
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and therefore only slightly wider than before. The corresponding bounds for
girls are -3.2 and 16.7. The small difference in the widths of the bounds comes
from the fact that E [Y (1, 0)|G = CN ] is not point identified but also bounded.

4.5 Sensitivity with respect to �

The ratio of the number of children not included due to migration of the whole
household to the number of children observed in migrant households is a crucial
parameter for the analysis. For the main results presented above we calculated
this parameter to be 0.054. However, as there is substantial uncertainty involved
how close this number is to the true value, we test the behavior of the bounds
for different ratios. We repeat the analysis for � between 0 (there are no children
in all-move households) and 0.5 (for every two children observed in a migrant
household we miss one child in an all-move household).
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Figure 2: Sensitivity of bounds for different ratios unobserved to observed chil-
dren in migrant households

Figure 2 displays the resulting bounds on the effects for boys and girls. What
becomes apparent is that the width of the bounds does not increase constantly
over the range of the observed ratios. For boys the lower bound decreases steeply
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up to a ratio of about 0.22 and decreases only slightly thereafter. Up to a ratio
of 0.22 the estimate for the upper bound on E [Y (0, 0)|G = CN ] stems from the
constrained solution. Once ⇡CN is sufficiently small so that the constraint is
not binding any more, the estimate stems from the unconstrained solution. The
slight decrease after this threshold results from the steady decline in ⇡CN and
the fact that the expected value is computed in an ever decreasing fraction of
the largest values of the outcome Y . For girls we only observe the constrained
solution over the whole range of ratios. The kink in the upper bound for boys
at a ratio of 0.4 stems from the precision adjustment.

One insight from Figure 2 is that the ratio of � is not the only determinant
of the behavior of the bounds. For example, at a ratio of 0.3 the width of
the bounds is 0.29 for boys and 0.39 for girls, which is due to the different
distributions of the outcome variable.

Overall, this sensitivity check points to the importance of the double selection
problem. Zero is included in the confidence intervals for boys and girls already
for rather small levels of �. For boys the bounds do not include a zero effect up
to a � of 0.5. For girls the bounds contain a zero effect already for � = 0.055.
Ignoring the problem could therefore lead to false conclusions, even if the share
of all-move households is small.

Figure 4 in the appendix compares the bounds under the different sets of
assumptions for different values of �. Overall the behavior of the different
bounds is rather similar.

5 Conclusion

This paper examines the identification of the causal effects of migration on the
remaining household members in the presence of double-selection. The first
selection problem that complicates the empirical analysis is the non-random
selection of households into migration. The second selection problem arises
from the decision of households of whether to send only one or a subset of
individuals or to migrate as a whole. Households that migrate as a whole are
usually not included in cross-sectional household survey data at all. The second
form of selection has largely been ignored in the previous literature, as it is not
apparent immediately.

We use principal stratification to model the migration decision of the house-
hold members and to structure the identification problem if both selection is-
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sues are present. This allows us to derive bounds on the effect of migration on
school attendance of children left behind under a transparent set of assump-
tions. Based on Mexican ENADID data we show that the effect of migration of
an adult household member on the school attendance of boys is likely to be neg-
ative, even if we take the second form of selection into account. The direction
of the effect is ambiguous for girls. However, sensitivity analysis with respect
to the share of all-move households indicate that the results are sensible to the
second selection problem. Ignoring it can lead to false conclusions even if the
share of all-move households is small.

More general, this paper uses a novel approach to identify the effects of mi-
gration on remaining household members. While the current paper primarily
focuses on the selection problem induced by all-move households, using partial
identification could be a reasonable way to go in a research field that has strug-
gled to come up with credible empirical strategies to point identify the effects
of interest.
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Boys Girls

Migrant household (0/1) 0.24 0.24

M1 = 1 M1 = 0 M1 = 1 M1 = 0

School attendance (0/1) 0.71 0.75 0.66 0.67
Age 13.44 13.43 13.51 13.45
Years of schooling of mother 3.97 3.64 3.93 3.68
State migration rate in 1924 0.10 0.04 0.09 0.04
Binary instrument (0/1) 0.72 0.36 0.71 0.36

Observations 1,954 6,039 1,810 5,853

Table 6: Descriptive statistics for non-migrant children

Boys Girls

⇡AN 0.120 (0.028) 0.118 (0.027)
⇡AC 0.003 (0.001) 0.003 (0.001)
⇡AA 0.003 (0.001) 0.003 (0.001)
⇡CN 0.263 (0.044) 0.253 (0.042)
⇡CC 0.014 (0.002) 0.014 (0.002)
⇡NN 0.596 (0.037) 0.609 (0.034)

Bounds on ✓CN [-0.286 -0.126] [-0.032 0.167]
CLR 95% confidence interval (-0.435 0.016) (-0.232 0.370)

Observations 7,993 7,663

Note: Results based on the assumption that the ratio of the number of children not included
in the sample due to migration of the whole household to the number of children observed in
migrant households is 0.054 and ⇡AA = ⇡AC . Clustered standard errors in parenthesis from
1999 bootstrap replications. Numbers in parentheses in the bottom rows are 95% confidence
intervals calculated by the procedure suggested by Chernozhukov, Lee, and Rosen (2012),
while numbers in square brackets are identified sets determined by the half-median unbiased
estimators. * denotes that estimate is statistically different from zero at the 10%, ** at 5%,
and *** at 1% significance level.

Table 7: Table of results without exclusion restriction
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Figure 3: Cut-off for binary instrument
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Figure 4: Comparison of bounds derived under different sets of assumptions
over different ratios of unobserved to observed children in migrant households

42



B Technical Appendix

B.1 Bounds on E [Y (0, 0)|G = N ] with randomly assigned
M1

Group O(0, 0) is a mixture of compliers and never migrants. The observed
outcome is therefore a mixture of the potential outcomes of these two strata
under control

E [Y |M1 = 0,M2 = 0] = E [Y (0, 0)|G = C]⇡C + E [Y (0, 0)|G = N ]⇡N

This expression can be transformed to obtain the potential outcome of never
migrants under control

E (Y (0, 0)|G = N) =
E [Y |M1 = 0,M2 = 0]� E [Y (0, 0)|G = C]⇡C

⇡N

The upper bound for E [Y (0, 0)|G = C] can be obtained from taking the
upper ⇡C quantiles in the observed group O(0, 0):

EU
N [Y (0, 0)|G = C] = E [Y |M

1

= 0,M
2

= 0, Y > q(1� ⇡C)]

The respective lower bound can be obatined from taking the lower ⇡C quan-
tiles. Thus the lower and upper bound for E (Y (0, 0)|G = N) can be rewritten
as:

EL
N [Y (0, 0)|G = N ] =

E [Y |M1 = 0,M2 = 0]
⇡N

� E [Y |M1 = 0,M2 = 0, Y > q(1� ⇡C)]⇡C

⇡N

= E [Y |M1 = 0,M2 = 0, Y < q(1� ⇡C)]

EU
N [Y (0, 0)|G = N ] =

E [Y |M1 = 0,M2 = 0]
⇡N

� E [Y |M1 = 0,M2 = 0, Y  q(⇡C)]⇡C

⇡N

= E [Y |M1 = 0,M2 = 0, Y > q(⇡C)]

The simplifications presented in these two equations make use from the fact
that subtracting the weighted average of Y in the upper (lower) ⇡C quantiles is
equivalent of taking the average in the lower (upper) 1� ⇡C quantiles.
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B.2 Strata proportions without exclusion restriction of Z
on M2

We continue to assume an overall ratio � of observed children in migrant house-
hold to children not observed due to migration of the whole household. Fur-
thermore we assume that this ratio is equal for ⇡CN ⇤ � = ⇡CC and ⇡AN ⇤ � =

⇡AC + ⇡AA. In the absence of any reliable information on this strata propor-
tions we assume ⇡AC = ⇡AA. Again the other strata proportions cannot just be
estimated as conditional probabilities but need to be adjusted due to the fact
that not the entire sample is observed. The adjustment factor in the sub-sample
with Z = 0 is �

0

= N
0

/ (N
0

+N
010

⇤ (�/ (2 + �))) and in the sub-sample with
Z = 1 it is �

1

= N
1

/(N
1

+ N
110

⇤ �). Nz denotes the number of observations
with Z = z, Nz10 the number of observations with Z = z,M

1

= 0,M
2

= 0.
Given this information, the strata proportions are identified as

⇡AN = P (M
1

= 1,M
2

= 0|Z = 0) ⇤ �
0

⇤ 2/(2+�)

⇡CN = P (M
1

= 1,M
2

= 0|Z = 1) ⇤ �
1

� ⇡AN

⇡NN = P (M
1

= 0,M
2

= 0|Z = 1) ⇤ �
1

⇡CC = ⇡CN ⇤ �

⇡AC = ⇡AA = ⇡AN ⇤ (�/2)

B.3 Inference based on Chernozhukov, Lee, and Rosen
(2009)

We will explain the estimation procedure for EL
CN [Y (0, 0)|G = CN ]. Recall that

the lower bound of the expected value of stratum CN under control is given by
�

L
= maxv2V={0,1}[�

L
(v)], with �

L
(0) = Y (Y  y000↵CN

) and �

L
(1) = Y (Y 

y000
1�↵CC

) ⇤ ⇡NN+⇡CN
⇡CN

� Y
100 ⇤ ⇡NN

⇡CN
. Let �L

= [�

L
(0)�

L
(1)]

0 be the vector
containing the two bounding functions. We subsequently discuss the estimation
of the lower bound along with its confidence region (the proceeding for the upper
bound is analogous). We use the procedure of Chernozhukov, Lee, and Rosen
(2012) to obtain a half-median-unbiased estimator of maxv2V

⇥
�

L
(v)

⇤
. This

appendix is based on similar descriptions of this method in Chen and Flores
(2012); Huber and Mellace (2013). The main idea is that instead of taking
the maximum of the estimated ˆ

�

L
(v) directly, one uses the following precision

adjusted version, denoted by ˜

�

L
(p), which consists of the initial estimate plus

44



s(v), a measure of the precision of ˆ

�

L
(v), times an appropriate critical value

k(p):
˜

�

L
(p) = max

⇡01,i

[

ˆ

�

L
(v) + k(p) · s(v)].

As outlined below, k(p) is a function of the sample size and the estimated
variance-covariance matrix of

p
n( ˆ�L � �L

), denoted by ˆ

⌦. For p =

1

2

, the
estimator ˜

�

L
(p) is half-median-unbiased, which implies that the estimate of the

upper bound exceeds its true value with probability at least one half asymptot-
ically.

The following algorithm briefly sketches the estimation of �L along with its
upper confidence band based on the precision adjustment.

1. Estimate the vector ˆ�UB
01

by its sample analog. Estimate its variance-
covariance matrix ˆ

⌦ by bootstrapping B times.19

2. Denoting by ĝ(v)> the v-th row of ˆ

⌦

1
2 , estimate ŝ(v) = kĝ(v)kp

n
, where k·k

is the Euclidean norm.

3. Simulate R20 draws, H
1

, . . . , HR from a N(0, I
2

), where 0 and I
2

are the
null vector and the identity matrix of dimension 2, respectively.

4. Let H⇤
r (v) = ĝ(v)>Zr/ kĝ(v)k for r = 1, . . . , R.

5. Let ˜k(c) be the c-th quantile of maxv2V H⇤
r (v), r = 1, . . . , R, where c =

1� 0.1
log(n) .

6. Compute the set estimator ˆV = {v 2 V :

ˆ

�

UB
01

(v0)  maxv02V {[ ˆ�L
(v0) +

˜k(c) · ŝ(v0)] + 2 · ˜k(c) · ŝ(v0)}}.

7. Estimate the critical value ˆk(p) by the p-th quantile of maxv2ˆV H⇤
r (v), r =

1, . . . , R.

8. For half-median-unbiasedness, set p =

1

2

and compute ˜

�

L
(

1

2

) = maxv2V [ ˆ�
L
(v)+

ˆk( 1
2

) · ŝ(v)].

9. To obtain the upper confidence band, estimate the half-median-unbiased
lower bound ˜

�

U
(p).

10. Let � = max(0, ˜�U
(

1

2

) � ˜

�

L
(

1

2

)), ⇢ = max(

˜

�

L
(

3

4

) � ˜

�

L
(

1

4

), ˜�U
(

3

4

) �
˜

�

U
(

1

4

)) and ⌧ = (⇢ · log(n))�1. Compute â = 1� �(⌧ · �) · ↵, where ↵ is
the chosen confidence level.

19In the empirical part we use 1’999 bootstrap replications.
20We set R=1’000’000.
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11. The lower confidence band for the estimate of �L is obtained by ˜

�

L
(â).
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