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Abstract

This paper analyzes the relationship between �rm-level productivity and labor adjustments
with the purpose of understanding the coexistence of a sustainable cross-�rm dispersion in
technological e¢ ciency and substantial idiosyncratic labor �ows. Using a unique Swedish data
set merging information about �rms�inputs, outputs and prices to a linked employer-employee
data set, we analyse how �rms adjust their labor in response to permanent shifts in their
idiosyncratic production functions and demand curves. We show that permanent shocks to
�rm-level demand is the main driving force behind both job and worker reallocation. Fur-
thermore, we show several pieces of evidence suggesting that the adjustment in response to
permanent shocks is a relatively unconstrained process. Notably, most labor adjustment takes
place within a year and �rms adjust through increased separations even when they could have
adjusted through reduced hires. Jointly, these results suggest that the technology dispersion
is maintained in equilibrium because labor �ows are driven by demand di¤erences rather than
di¤erences in technology, whereas labor market rigidities appear to be a less important factor.
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1 Introduction

Recent research has shown that �rms with very di¤erent levels of technological e¢ ciency coexist

simulatneously at the same market. Less is known as to why these di¤erences are sustainable. One

reason may be frictions on the labor adjustment side (see e.g. Mortensen, 2003). Poor-performing

�rms may be prevented from adjusting their labor force due to institutional rigidities and workers

may choose to remain in their jobs because the individual costs of mobility are higher than the

bene�ts. Still, this explanation seems at odds with the enormous magnitudes of idiosyncratic, �rms

speci�c, labor �ows documented by Davis, Haltiwanger, and Schuh (1996)) and followers (see e.g.

Davis, Faberrman and Haltiwanger, 2012 and references therein). These studies uniformly show

that the bulk of �rm-level labor adjustments is truly idiosyncratic: Firms operating in the same

sector and area shrink and grow, side-by-side. It thus seems reasonable to expect that labor should

�ow in the direction of the more e¢ cient �rms. In this paper we derive novel evidence on the

relationships between �rm performance and labor �ows in an attempt to reconcile the survival of

relatively ine¢ cient �rms in a market characterized by immense labor �ows and provide an account

of the extent to which separation rigidities prevent �rms from reducing they labor when needed.

To this end, we measure permanent shifts in �rm-level physical productivity and product demand

(for details, see below) and relate these shifts to idiosyncratic job and worker �ows. The aim is to

present direct evidence on how the magnitudes and signs of permanent changes in determinants of

�rm performance a¤ect �rms�labor adjustments along di¤erent possible adjustment margins. We

do this by combining a unique Swedish data base which links measures of �rm level input, output

and prices to individual worker-�ow data. The data allows us to analyze how these shocks a¤ect

�rms�adjustments of net employment (jobs) through hires and separations. To corroborate the

interpretation of the shocks, and to shed light on the co-movement of di¤erent �rm-level adjustment

margins, we relate the shocks to idiosyncratic output prices and physical output.

There exits a large body of theoretical research (B & B etcetera) on the relationship between

�rm-level revenue productivity (marginal revenue productivity of labor) and labor adjustments.

However, the recent empirical literature, starting with Foster, Haltiwanger, and Syverson (2008),

has drawn the attention to two distinct shocks which may shift revenue productivity despite having

di¤erent structural interpretations and with di¤erent relationships to �rm-level outcomes. In line

with the existing conventions we may de�ne these as technology shocks shifting the �rm-level physical
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production function (i.e. reducing the needs for inputs) and demand shocks shifting the �rm-level

demand curve (i.e. increasing the ability to sell at a given price). Importantly, these shocks are

de�ned according to their e¤ects on �rm-level optimization, not according to their origin. Findings

in this empirical literature include Foster, Haltiwanger, and Syverson (2008) who show that �rm

closures primarily are driven by changes in idiosyncratic demand and only to a lesser extent by

changes in idiosyncratic physical productivity. Similarly, recent evidence by Foster, Haltiwanger,

and Syverson (2012) suggests that the growth of new �rms is due to a shrinking product demand

gap relative to incumbent �rms.1

Since we, in this paper, are interesting in understanding the sustained co-existence of �rms

with di¤erent levels of physical productivity and demand, we want to focus our attention to the

permanent component of these two types of structural shocks (see Guiso, Schivardi, and Pistaferri

(2005) for a similar decomposition in another context).2 Notably, the focus on permanent shocks

also direct our attention to the aspects of the labor adjustment process which is likely to be most

relevant from a policy perspective. Whereas key labor market institutions are explicitly set up to

reduce the labor �ows in the face of temporary shocks, a common fear is that these insitutions

may hamper the necessary strucural process of adjusting labor �ows between �rms with di¤erent

long-run prospects.

Our analysis depart from a model which closely follows the set-up of Foster, Haltiwanger, and

Syverson (2008) and Foster, Haltiwanger, and Syverson (2012). The model presumes monopolistic

competition which allows us to separate between �rm-level technology and demand, and further

assumes that the physical gross Solow residual is independent of all shocks except technology.

Importantly, our application of the model allows other shocks, or changes in factor utilization

or inventories, to a¤ect the physical Solow residual temporarily without a¤ecting the measured

technology shocks. Empirically, we use a strategy similar to ? and de�ate the (nominal) �rm-

level output series with �rm-level price indices. Thus, in a strict sense, we are not measuring

1There is also a small macro-oriented literature which tries to identify the employment responses to technology-

driven changes in �rm-level productivity, see e.g. Carlsson and Smedsaas (2007) and Marchetti and Nucci (2005).

The macro literature also contains a number of related studies, e.g. Galí (1999) and Michelacci and Lopez-Salido

(2007), where the latter distinguish between neutral technology shocks and investment speci�c technology shocks

and derive the consequences for job reallocation.
2The intuition behind our strategy resembles Guiso, Schivardi, and Pistaferri (2005) who extract the permanent

component of �rm-level value added. The key di¤erence, apart from technicalities, is that we �rst separate between

technology shocks and demand shocks.
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physical output units of a homogeneous good, as in Foster, Haltiwanger, and Syverson (2008),

but our empirical strategy handles cross-�rm di¤erences in quality by relying on �rm �xed e¤ects

throughout.

In order to derive empirical measures of permanent idiosyncratic demand and technology shocks,

we make use of an excellent longitudinal Swedish �rm-level data set which includes information

on inputs, outputs and output prices at the �rm level. These data are then further linked to a

longitudinal employer-employee data set which allows us to analyze worker �ows. Using these data,

we impose restrictions implied by the model as long-run restrictions in a structural VAR (SVAR)

setting in the spirit of Franco and Philippon (2007). The system of equations we derive, which

also explicitly allows for a sectoral factor price shock,3 is recursive in a set of long-run restrictions

allowing us to separately identify the structural innovations to technology and product demand

although the system is unconstrained towards all short-run adjustments. In contrast to standard

time-series implementations, including Franco and Philippon (2007), we rely on a large panel-data

set for identi�cation. Using Arellano and Bond (1991) dynamic panel data methods, which are

well suited for our broad cross-sectional panel, we estimate both the parameters of the reduced

form equations and the covariance matrix of the error terms with considerable precision, thus

avoiding standard macro-data concerns regarding the practical implementation of SVARs. The

focus on idiosyncratic shocks also allows us to analyze the direct impact of the shocks in a stable

market environment, e¤ectively abstracting from feedback e¤ects through changes in market wages

or aggregate unemployment. Also, shocks are relative ==> negative technology shocks are not so

strange...

Due to the nature of our data, we are able to analyze many dimensions of �rm responses to

the shocks. In particular we corroborate the interpretation of the processes by showing that prices

and output respond as expected to the identi�ed shocks; �rm-level prices are reduced in response

to �rm-level technology shocks, whereas they remain una¤ected when demand shifts. Similarly, we

�nd that idiosyncratic output increase in response to shocks to both demand and technology.

Our focus lies on how employment, hires and separations of workers respond to permanent

idiosyncratic shocks. We �nd that, despite being crucial for both �rm-level prices and output,

�rm-level technology shocks a very marginal impact on labor inputs. Our analysis instead clearly

points towards product demand as the key driving force behind �rm-level labor adjustments. A one

3The system also allows for mean reverting shocks to truly idiosyncratic factor pricess)
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standard deviation shock to idiosyncratic demand increases employment by six percentage points.

Importantly, the adjustment is both rapid and symmetric across possible adjustment margins.

The bulk of the adjustment takes place within a year. On average, �rms adjust employment almost

as much through changes in the separation rate as through changes in the hiring rate. They also

adjust employment as much in response to negative as positive shocks. Although hires are reduced

in response to negative shocks, the average �rm continues to recruit workers even when hit by

substantial negative shocks. We show that �rms are very far from exploiting the full potential of

downsizing thorugh reduced hirings, suggesting that the cost of inducing separations has a relatively

minor impact on the adjustment behavior when shocks are permanent. In contrast, we show that

�rms adjust very little in response to temporary demand shocks.

Overall, the speed of adjustment, the symmetry between hires and separations as adjustment

margins, and the continued recruitment of workers in the face of negative shocks jointly suggest

that �rms that face permanent idiosyncratic demand shocks do adjust their labor �exibly. We

interpret this as suggesting that labor market rigiditites and adjustment costs which may hamper

adjustments in the face of temporary shocks, are likely to be of a relatively minor importance when

trying to understand the coexistence of �rms with very di¤erent productivities.

The paper is organized as follows: Section (2) outlines our method and discusses the data.

Section (4) reports the results. Finally, section (5) concludes. Throughout, we refer to appendices

for robustness checks and computation details.

2 Model and empirical strategy

2.1 Modelling shocks to production functions and demand curves

The purpose of the paper is to measure how �rms adjust their labor input in response to permanent

idiosyncratic shocks. We are primarily interested in two types of processes which we can think of

as structural shocks in the sense that they involve changes in key elements of the �rms� pro�t

functions: The �rst captures shifts in the �rm-speci�c physical production function; we label these

shifts technology shocks. The second process captures shifts in the �rm-speci�c demand curve

and we label these shifts demand shocks. We refrain from modelling the origin of these shift in

structural �rm-level parameters. This implies, e.g., that we do not separate between shifts in the
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�rm-speci�c demand curves that arise as a response to changes in the preferences of �nal consumers

from shifts in the �rm-speci�c demand curves that occur because of technological advancements

among down-streams �rms, or from shifts in the �rm-speci�c demand curves due to quality changes

that increases product demand for a given price. However, quality di¤erences across �rms will

not a¤ect our analysis since we exclusively focus on permanent changes within �rms across time. 4

The key distinction between technology shocks and demand shocks therefore lies in how the shocks

a¤ect the producing �rm, and not in the origin of the shock. This approach is fully consistent with

the existing (micro) literature, see e.g. Foster, Haltiwanger, and Syverson (2008) or the survey by

Syverson (2011).

To identify �rm-level structural shocks we need to make assumptions about the technology and

the market conditions faced by the �rm. Our set-up follows Foster, Haltiwanger, and Syverson

(2008) and Foster, Haltiwanger, and Syverson (2012) closely by using a �rst order approximation

of both production technologies and product market demand and by modelling the key shocks

as neutral shifters of the production function and the demand curve respectively. Thus, �rms�

production functions are approximated by:

Yjt = AjtN
�
jtK

�
jtM

1����
jt and �; � 2 (0; 1); (1)

where physical gross output Yjt is produced using technology indexed by Ajt and combining labor

input Njt, capital input Kjt and intermediate production factors (including energy) Mjt Impor-

tantly, our data allows us to account for idiosyncratic price di¤erences across �rms, so that our

measures of technology refer to physical TFP (or TFPQ), rather than revenue productivity (or

TFPR) in the terminology of Foster, Haltiwanger, and Syverson (2008). The equation presupposes

a constant returns technology which is our main speci�cation, but we also present robustness exer-

cises where we relax this assumption. Furthermore, �rm-level demand curves are approximated by

constant-elastic functions according to

Yjt =

�
Pjt
Pt

���
Yt
jt and � > 1; (2)

4 It is straightforward to show that if we added a quality shock to the system derived below that drives a wedge

between the measured price, based on unit values, and the quality adjusted price, it would enter the system symmet-

rically to the demand shock 
jt since the demand function, derived from preferences, should be in terms of goods

of constant quality and the quality adjusted relative price. Note, however, that the �rm-level price index we use is

based on unit prices for very detailed product codes (8/9-digit Harmonized system/Combined Nomenclature), which

limits the scope for quality changes to be the key component in our demand shock.
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where Pjt=Pt is the �rm�s relative price and where Yt
jt denotes market demand and 
jt is a

�rm-speci�c demand shifter..

We modelling the time series properties of the shocks, we follow Guiso, Schivardi, and Pistaferri

(2005) and Franco and Philippon (2007) and allow shocks to be permanent. More precisely, we

specify the evolution of the demand and technlogy shifters as in Franco and Philippon (2007):

Ajt = Ajt�1e
�aj+�

a
j (L)�

a
jt ;


jt = 
jt�1e
�!j +�

!
j (L)�

!
jt

where �aj and �
!
j are constant drifts, �

a
j (L) and �

!
j (L) are polynomials in the lag operator,

L. The white-noise idiosyncratic technology and demand shocks are denoted by �ajt and �
!
jt. In a

variation of the model we also explicitly analyze the role of transitory shocks (see section 4.5).

2.2 Implied Restrictions and Empirical model

We use restrictions implied by the stylized model presented above in order to �lter out shocks

that permanently shifts the �rms� production functions and demand curves. Table 1 sums up

the restrictions (see Appendix A for details on derivations). Importantly, we only invoke the

implied restrictions on the long-run behavior of the �rms. The restrictions imply that: (i) Only

the technology shock has a long-run impact on the measured physical total factor productivity (the

Solow residual). As we ony impose this restriction in the long run, using gross output, the shock

will however di¤er from standard measures of Solow residuals. Our measure of technology shocks

is purged of relative changes output prices as well as changes in inventories, factor utilization and

idiosyncratic input prices as long as these are mean reverting. (ii) Both technology and factor-price

shocks, but not the demand shock, will have a long-run impact on wage neutral unit labor costs

(WNULCjt) as de�ned in table 1. (iii) All three shocks have a permanent e¤ect on wage neutral

demand (WNDjt) as de�ned in the �nal row of table 1. The long-run values of these variables

are, under the assumptions of the model, independent of permanent or transitory wage shocks. As

explained below, our empirical strategy also allows for an arbitrary set of alternative transitory

shocks.
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Table 1: The Core Structural VAR Equations
Variables: Measured as:

Solow : Yjt

h
N�
jtK

�
jtM

1����
jt

i�1
= Ajt

WNULC : WjtNjt=Yjt �
�
PNjt

���
= �1�� �A�1jt PFjt ;

WND : Yjt
�
PNjt

���
=  YtP

�
t � (Ajt)

� �
PFjt
���


jt
Note: DEFINE THE XI OF WND HERE, I CANT DO MATH IN NOTE HOWEVER

The left hand side variables can all be constructed from our �rm-level data (see below for details).

These three equations motivate a recursive sequence of long-run restrictions and in order to extract

the shocks of interest from these series, we estimate a structural VAR. Since our interest lies in

how other variables (such as output, prices and employment) respond to the shocks of interest, we

include these other variables as fourth variables in the system. In practice, we rotate across these

variables while keeping the core system of the �rst three equations intact as in ?.5 We allowing the

fourth variable have a long-run e¤ect on itself, but not on the other variables in the core system

which implies that they will soak up all remaining transitory dynamics.

3 Data and Measurement

3.1 Data

Here we brie�y describe the data we use, and how we measure the variables we include in the VAR

and the �nal regressions. For details we refer to Appendix B.

Our �rm-level data set is primarily drawn from the Swedish Industry Statistics Survey (IS).

It contains annual information for the years 1990 � 2002 on inputs and output for all Swedish

manufacturing plants with 10 employees or more. About 72 percent of the plant/year observations

in our sample pertains to plants that are also a �rm and we therefore refer to the plants as �rms.

One of our key assumptions is that only technology a¤ects the Solow residual in the long run.

For this assumption to be valid, sales must be de�ated by a �rm-level de�ator since �rm-speci�c

relative prices are likely to respond to other idiosyncratic shocks. A crucial feature of the data is

5Parts of our analysis relies on extracting the technology and demand shocks from the system. In these exercises

we use output as the fourth variable, but we also present several robustness checks showing that the results are

insensitive to this choice.
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that it includes a �rm-speci�c producer price index constructed by Statistics Sweden. The �rm-

speci�c price index is a chained index with Paasche links that combines plant-speci�c unit price

values.6

To take the model outlined above to the data, we �rst compute a measure of �rm level total

factor productivity growth using

�ajt = �yjt ��zjt; (3)

where �yjt is the growth rate (i.e. the log di¤erence) of real gross output (obtained using the

�rm-speci�c price index), �zjt is a cost share weighted input index de�ned as CK�kjt+CN�njt+

CM�mjt where �kjt is the growth rate of the capital stock (see details in Appendix B), �njt is the

growth rate of labor input (taken from the IS survey) and �mjt is the growth rate of intermediate

materials (including energy). Moreover, CJ is the cost share of factor J in total costs. We measure

the cost-shares as averages by 2-digit industry.

Given data on factor compensation, changes in output and inputs, the resulting residual �ajt

provides a times series of changes in technology for the �rm. Inputs are de�ated using three-digit

sectoral price indices, which imply that our model allow for three-digit sectoral input price shocks.

ITs important to note that although (3) may not provide a good measure of technology due to

varying factor utilization, inventories or truly idiosyncratic factor prices, our VAR �lters out true

technology shocks from (3) as long as technology shocks is the only factor that permanently shifts

Ajt (i.e. as long as variations in factor utilization, inventories and factor prices within three-digit

sectors are mean reverting).

When computing �wnulcjt and �wndjt; we use CN as the estimate of � and thus let it vary by

2-digit industry. In order to compute wage neutral demand (�wndjt), we need an estimate of the

elasticity of substitution, �: This estimate can be obtained from the demand equation (equation 2)

by instrumenting the �rm idiosyncratic price using the Solow residual, as in Foster, Haltiwanger,

and Syverson (2008). As discussed earlier, our measure of the Solow residual should approximate

�rm�s technology relatively well, since we measure true output volumes by using �rm level prices

as de�ators. As such, the Solow residual is expected to a¤ect �rm level output only through �rm

level prices. The results suggest an elasticity of substitution equal to 3:306 (s.e. 0:075),which we
6 In cases where a plant-speci�c unit-value price is missing (e.g., when the �rm introduces a new good), Statistics

Sweden uses a price index for similar goods de�ned at the minimal level of aggregation (starting at 4-digits goods

code level). The disaggregate sectoral producer-price indices are only used when a plausible goods-price index is not

available.
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use when computing �wndjt: This result is well in line with standard calibration exercises (see e.g.

Erceg, Henderson and Levin, 2000) as well as recent Swedish micro-evidence provided by Heyman,

Svaleryd, and Vlachos (2008). In addition, the main results are insensitive to large changes in the

calibrated value, and to the inclusion of sector speci�c values of �.

Since 1996, Statistics Sweden are imputing the allocation of production across di¤erent plants

within multi-plant �rms. To ensure that our results are not driven by this procedure, we also present

a series of robustness checks where we focus on single plants �rms throughout, or use multiplant

�rms before 1996 but only single-plant �rms thereafter.

In the end we construct series for �ajt; �wnulcjt;�wndjt, �yjt for 7; 940 ongoing �rms (ob-

served at least during 5 consecutive years), over the period 1991� 2002. All in all, this amounts to

70; 077 �rm/year observations. The sample covers nearly two thirds of all manufacturing employees.

Further details regarding the data are given in the Appendix B.

The top panel of table 2 displays descriptive statistics of the structural shocks as well as �rm

level prices for the sample (41; 105 observations in 6; 137 �rms) for which we can construct the

structural shocks (given the restrictions from the estimation approach; see next section).
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Table 2: Summary Statistics
(1) (2) (3) (4) (5)

Category Mean S.d. p(25) p(75) Observations
Industry Statistics Data (IS)

�a overall - 0.101 -0.056 0.058 41; 105
within 0.101

�! overall - 0.162 -0.086 0.085 41; 105
within 0.162

Output Growth overall 0.028 0.190 -0.073 0.133 41; 105
within 0.176

Price Growth overall 0.022 0.069 -0.001 0.044 41; 105
within 0.064

Registry Based Labor Market Statistics (RAMS)
Employment Growth overall 0.012 0.267 -0.062 0.089 40; 451

within 0.252
Net Employment Rate overall 0.012 0.208 -0.062 0.089 40; 451

within 0.195
Hiring Rate overall 0.150 0.151 0.063 0.200 40; 451

within 0.127
Separation Rate overall 0.138 0.152 0.061 0.174 40; 451

within 0.131

Note: The "Within" rows show the dispersion within a �rm. p(N) denotes the N:th percentile of the data.
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In order to relate the �rm-level structural shocks to employment and entry and exit of workers

we link the �rm-level data to detailed information on each of the employees in each of the �rms

in the sample using the Register Based Labor Market Statistics data base (RAMS) maintained by

Statistics Sweden. This data base contains information about annual labor earnings with links to

the employing �rm for all private sector employees in Sweden. We are primarily interested in how

�rms adjustment the number of non-marginal employees as measured at the end of the year. We

therefore measure employment in November following the practice of Statistics Sweden and only

use employees working close to full time, focusing on each worker�s primary job.7

Using these data, we compute various measures of job and worker �ows using the metrics in the

spirit of Davis, Haltiwanger, and Schuh (1996). Net Employment growth is de�ned as the change

in employment relative to the preceding year, divided by the average employment during the two

years. Similarly, we de�ne the Hiring (Separation) rate as the number of new (separated) employees

between t and t� 1, divided by the average number of employees during the two years. With these

de�nitions net employment growth will be the di¤erence between the hiring rate and the separation

rate and the timing of the �ows is de�ned such that the �ow equation of employment holds.8 All

in all, we are able to match these �ow measures to 6; 130 �rms in the �rm data (described above).

Descriptive statistics of these measures for the sample where we can construct the structural shocks

(40; 451 observations) are found in the lower panel of 2.

3.2 The Shocks

3.2.1 Estimation

We extract the shocks from a VAR model conditional on year dummies and �rm �xed e¤ects.

When estimating the VAR, we use an Arellano and Bond (1991) estimator which is developed in

order to avoid the problems involved with �xed e¤ects and lags of the dependent variable in a panel

data setting (see Nickell, 1981). A key point here is that the Arellano and Bond (1991) estimator

7The raw data was compiled by the Swedish Tax Authority in order to calculate taxes. Data include information

on annual earnings, as well as the �rst and last remunerated month received by each employee from each �rm. Using

this information, we can construct a measure of monthly wages for each employee in each of the �rms in our sample.

In order to restrict attention to workers employed working close to full time, we only keep employees whose (monthly)

wage exceeds 75 percent of the mean wage of janitors employed by municipalities.
8That is, Employmentt = Employmentt�1 +Hirest � Separationst.
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relies on asymptotics in the cross-sectional dimension. Since the identi�cation of structural shocks

with long-run restrictions crucially hinges on the quality of the estimated VAR coe¢ cients and the

covariance matrix, this is a very useful feature in the current context of a but wide, but short (12

years), panel of about 6; 000 �rms. The procedure implies that we account for any �rm-speci�c

trends in the levels of the variables in the model. We also include time dummies which capture all

aggregate shocks shared by di¤erent �rms within the manufacturing sector.

Appendix C discusses speci�cation tests and shows impulse responses and variance decompo-

sitions of the main VAR model using output as a fourth variable alongside the core system. Two

particular results are relevant for the analysis ahead. The �rst is that we �nd a fairly limited

amount of dynamics, in particular in the Solow residual. The main reason for this somewhat sur-

prising �nding is that the Solow residual is de�ned in physical gross terms and much of the dynamics

in standard measures of Solow residuals appear to be due to the dynamics of idiosyncratic prices

(see Carlsson and Nordstrom Skans, 2012, for direct evidence on relative price dynamics).

The second �nding is that the residual shock explain very little of the variance in our key

variables. Since the model is estimated conditional on time dummies, this �nding is in line with the

result of Franco and Philippon (2007) who show that transitory shocks, although highly correlated

across �rms (and therefore of macroeconomic importance), matter only marginally at the �rm level.

The appendix also displays the shock distributions, normalized to have a unit standard deviation

which will be the normalizatio we will rely on in most of what follows. However, when re-normalizing

the system (see Appendix A), we �nd that the standard deviation of the demand shock is about 35

percent larger than the technology shock (standard deviations of 16:02 and 11:86 percentage units,

respectively).

3.2.2 Validation: The Impact on Prices and Output

Since the shocks we are analyzing are idiosyncratic, we cannot cross-validate their interpretation

through correlations with aggregate shocks such as oil price or exchange rate movements unless

we have strong priors regarding heterogeneous impacts of these shocks across �rms. Instead, we

perform a number of alternative corroboration exercises. A �rst piece of evidence supporting our

interpretation of the shocks is presented in Appendix C which shows theory-consistent impulse

responses for the three unrestricted responses within the VAR-system: The estimated response of
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�wnulcjt to a technology shock is, as predicted from the theoretical model, negative. Similarly,

the estimated responses from both technology shocks and factor prices on �wndjt are negative, as

expected from the model.

A second piece of evidence comes from relating the structural shocks to our �rm-speci�c price

index and to output. It should be clear from how the shocks are de�ned that a positive technology

shock only can a¤ect sales if prices goes down (since the demand curve is �xed). In contrast,

demand shocks, de�ned as shifts in the �rm-speci�c demand curve, allows the �rm to sell more at

a given price suggesting that prices should remain unchanged in the response to a demand shock

unless the �rm�s technology features non-constant returns to scale, or input prices change when the

scale of production is altered. Hence, theory suggest that technology and demand shocks should

a¤ect output, whereas prices primarily should respond when technology changes. Figure 1 shows

the impulse responses of prices and output to our measured shocks of interest. The picture clearly

validates the theoretical predictions; output responds to both shocks (although somewhat more to

a one standard deviation demand shock), but prices only respond to the technology shock.

Finally, results presented in section 4.5 explore the relationship of our estimates to outcomes

from other, alternative, empirical methods proposed in the literature.

4 Results

4.1 Idiosyncratic Shocks and Employment Adjustment

In order to measure how employment respond to permanent idiosyncratic technology and demand

shocks, we �rst estimate the SVAR-system using employment as the fourth variable. Figure 2

shows the impulse responses with con�dence bands. A key result emerging from this picture is

that idiosyncratic demand shocks are substantially more important for �rms�adjustments of labor

inputs than idiosyncratic technology shocks. A one standard deviation shock to demand increases

employment by slightly more than 6 percentage points, whereas the impact of a technology is

negligible (and statistically insigni�cant). A second important result is that the time dynamics in

labor adjustments is limited. More than 90 percent of the long run adjustments in response to

permanent demand shocks takes place within the �rst year.

In order to analyze the robustness of these results, we have estimated a wide set of variations of
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Figure 1: Impulse Responses in percentage points of Output and Price to a Technology- and a

Demand Shock. Lines depict the mean of the bootstrap distributions. Shaded areas depict the

bootstrapped 95-percent con�dence intervalls calculated from 1000 replications.
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Figure 2: Impulse Responses in percentage points of Employment to a Technology- and a Demand

Shock. Lines depict the means of the bootstrap distributions. Shaded areas depict the bootstrapped

95-percent con�dence intervalls calculated from 1000 replications.
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the original model. First, we have varied the modelling of the fourth variable, which is included in

the system in order to improve the model�s performance in terms of short-run dynamics. In the end,

however, this variable plays a negligible role for the results. This is already hinted at in the variance

decomposition shown in Appendix C. To make this point more explicitly, we have re-estimated the

VAR using di¤erent variables as the fourth variable (sales per workers, employment, prices and

wages) extracting the shocks of interest, and then analyzed their impact on employment, without

any major impact on the results, see Appendix D.

We have also re-estimated the VAR-model using alternative values of the demand elasticity. Our

main model uses an elasticity of 3; 3 based on estimates using the Solow residual as an instrument

for prices (following Foster et. al., 2008). We have experimented with a wide range of assumptions

for � (from 1:1 to 10) with robust results. We have also reestimated the model allowing for industry

speci�c estimates of the demand elasticity instead, but the results are unchanged (see Appendix

E).The main reason for the low sensitivity to the estimated demand elasticity is that it enters

the system with a weight equal to the labor share, which is around 0:25 since we rely on a gross

production function.

The main model assumes constant returns to scale, but it is straightforward to change the model

to incorporate increasing or decreasing returns to scale instead. Changing the assumed returns to

scale (see Appendix E) a¤ects both the estimated sign and statistical signi�cance of the technology

shock in the employment regression. However, the main message still holds: in spite of substantial

variations of the assumed returns to scale the demand shock remains more important than the

technology shock by at least an order of magnitude.

One general advantage of our approach relative to macro data VAR:s is that we are able to

estimate the system with considerable precision by relying on cross-sectional asymptotics. This

comes at the (potential) cost of assuming that the dynamic process is equal across di¤erent �rm

types. In order to address this concern, we have reestimated the model allowing for separate

dynamics for each two-digit industry, and the results remain unchanged (see Appendix E).

Since the allocation of output across plants within multi-plant �rms during parts of our sample

period (after 1996) is imputed, we have also redone the analysis for the sample of single plant �rms,

as well as for a mixed sample including multi-plant �rms until 1996, but not thereafter. The results,

presented in appendix G, are completely robust to these alterations of the sample.

In appendix G, we also estimate models focusing on "normal" shocks (in the Lester range, from
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Figure 3: Sample Exit Probability as a (non-linear) function of an x-standard deviation lagged

Technology- and Demand shock. Shaded areas depict 95-percent con�dence intervalls.

�2 to 2 standard deviations). This restriction does, however, not change any of our results.

Finally, a possible concern with the analysis is that we disregard the process of �rm exit. In order

to address this concern, we have analyzed the relationship between the shocks and the probability

of exit from the sample using a kernel-weighted local polynomial regression. The results are shown

in Figure 3 As is evident, the main driver of �rm exit is very large negative demand shocks. The

fact that demand shocks are more important for �rm exits than technology shocks is well in line

with results in Foster, Haltiwanger, and Syverson (2008). In order to see if this has any bearing

on the results of our main analysis, we have analyzed the employment impact of the shocks across

two periods instead (which allows us to include exiting �rms, see Appendix F for details), but the

results are insensitive to weather we include or exclude exiting �rms.

IS THIS IN OR OUT? In our view, given the robustness of the result, it seems reasonable to

conclude that shifts in �rms�idiosyncratic demand curves are a much more important driving force

behind �rms� idiosyncratic net employment adjustment than shifts in �rms physical production
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functions.

4.2 Idiosyncratic Shocks, Hires and Separations

In order to shed further light on the �rms�labor adjustment process, we now turn to a micro-level

analysis of �rms�di¤erent possible adjustment margins. In order to make the analysis more concise,

we extract the shocks from the VAR-system using output as the fourth variable and analyze their

impact on a set of labor adjustment concepts while focusing entirely on the short run impact of the

shocks.

We analyze three measures of labor adjustments in the Davis, Haltiwanger, and Schuh (1996)-

tradition: the Separation rate, the Hiring rate, and Net employment. The hiring rate is de�ned as

the number of entrants (i.e. workers that did not work in the �rm in t�1 but work in the �rm in t)

divided by the average employment over the current and the lagged year. Similarly, the separation

rate is de�ned as the number of employees who worked in the �rm in year t� 1 but does not work

there in t; divided by average employment across the two years. The net employment change is

de�ned as the change in employment between the two years, i.e. the di¤erence between the hiring

rate and the separation rate.

We think of the three measures as choice variables for the �rm (i.e. �rms choose employment

growth and turnover based on the shocks), and we estimate an equation of the form

Outcomet = �ajt�1 + �
!
jt�2 + �t�� + �j + �jt; (4)

where Outcome denotes each of the three variables for �rm j at time t: The coe¢ cients �1 and �2

measures the impact of the �rm-level structural shocks on the outcomes.9 Moreover, we include

time, �t, and �rm �xed e¤ects, �j , in line with the VAR formulation above. This ensures that

identi�cation is driven by idiosyncratic, rather than aggregate shocks.

9Since the shocks are identi�ed as structural orthogonal innovations, they are uncorrelated with each other

conditional on the year and �rm �xed e¤ects of the VAR.
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Table 3: Contemporaneous E¤ects
(1) (2) (3)

Net Employment Hiring Rate Separation Rate
A) One s.d. shock
�a 0.115 -0.050 -0.165*

(0.119) (0.075) (0.078)
�! 5.609** 2.906** -2.703**

(0.173) (0.096) (0.120)
B) Elasticities
�a 0.011 -0.005 -0.016*

(0.012) (0.007) (0.008)
�! 0.347** 0.180** -0.167**

(0.011) (0.006) (0.007)

Observations 40; 451 40; 451 40; 451
Firms 6; 125 6; 125 6; 125

Robust standard errors in parenthesis. Regression includes time dummies and �rm �xed e¤ects. Regression sample limited
to observations where the absolute value of both the technology and the demand shock is less than or equal to two standard
deviations in size.

The results can be found in table 3. We present estimates scaled according to standard deviations

of the shocks, and as elasticities (see Appendix A for details). As expected from the results of the

previous subsection, the impact of technology on net employment is small (and not statistically

signi�cant). 10 The point estimate for the short-run impact suggest that a one standard deviation

increase in TFPQ decreases employment by 0:12 percentage points, and the estimate is therefore

insigni�cant despite being estimated with considerable precision. In elasticity form, the short run

impact is 0:01. The impact of demand shocks are substantially larger, both in terms of the impact

of a normal (one s.d.) shock and in terms of elasticities. A normal shock to demand increases

employment by 5:60 percentage points on impact. This e¤ect corresponds to an elasticity of 0:35.

Turning to worker �ows instead we see a that a normal demand shock is estimated to increase

the hiring rate by 2:9 percentage points, and reduce the separation rate by 2:7 percentage points.

Thus, on average, the adjustment of net employment is achieved to 52 percent using the hiring

margin and to 48 percent using the separation margin. These numbers should be compared to

10Note that results in this and the previous section do not need to be identical since employment changes are mea-

sured from two di¤erent sources. Employment changes here are obtained from RAMS; which measures employment

spells that are observed in November each year. Employment changes in the previous section are obtained from the

�rm-level data (IS), which measures average yearly employment in the �rm.
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an average hiring and separation rate of about 14 percent each, see Table 2 above. This result is

interesting in the light of the literature on labor �ows and the business cycles (see Shimer, 2012,

and Fujita and Ramey, 2009). It suggests that any quantitatively important asymmetries between

hiring and separations over the business cycles should be explained by asymmetries in the market

responses, and not as asymmetries in �rm-level adjustments costs.

4.3 Idiosyncratic Shocks and Nonlinearities

As shown above, �rms appear to adjust their labor in response to the demand shocks almost as

much through separations as through hires. But an interesting question is to what extent the

adjustments di¤er between positive and negative shocks.

When analyzing potential nonlinearities in the impact of the shocks on overall employment it

is obvious that �rms�adjustment to positive and negative shocks may di¤er due to asymmetries in

rigidities on other adjustment margins faced by the �rm. In addition, the VAR assumes linearity in

the adjustments to the variables that are included in that system. However, Appendix C shows that

adjustments of the elements within the VAR, including output, are approximately linear, suggesting

that other, non-labor adjustment impediments are of minor importance in this context.

Figure 4 shows how �rms adjust hirings in response to positive and negative shocks of di¤erent

magnitudes. Each �gure shows the predicted impact based on regressions allowing for a separate

second order polynomial above and below zero.11 The estimates should be interpreted as deviations

from a zero-shock state. For completeness, we show the responses to both technology and demand,

but as expected from the results above,we see very little adjustments in response to technology

shocks, and therefore focus our attention towards the demand-shock responses. Two patterns are

particularly noteworthy. The �rst is that the response to positive shocks is exactly linear. That

is, the impact of a two standard deviations shock is exactly twice that of a one standard deviation

shock, suggesting that the costs of increasing hirings are approximately linear. The second is that

the response in terms of hiring is considerably smaller if shocks are negative. The results suggest

that �rms that are hit by a two standard deviations negative demand shock (and thus, on average,

reduce their employment by about 10 percent), continue to hire at a rate of about 12 percent, a

result which we return to below.
11 In order to facilitate the interpretation of the graphs, we show the sum of the predicted estimates and the average

net employment change in the sample.
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Figure 4: Contemporaneous Hiring Rate in percentage units as a (non-linear) function of an x-

standard deviation Technology- and Demand shock. Shaded areas depict 95-percent con�dence

intervalls.
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Figure 5: Contemporaneous Separation Rate in percentage units as a (non-linear) function of an

x-standard deviation Technology- and Demand shock. Shaded areas depict 95-percent con�dence

intervalls.

Figure 5 shows the corresponding patterns for separations. The shapes and magnitudes (again

focusing on the demand shocks) are not far from mirror images of the impact on hirings. When the

shock is negative, the response is exactly linear. Thus, the estimates suggest that a two standard

deviations negative shock causes a separation response which is exactly twice as large as the response

to a one standard deviation shock. This suggests that the costs of increasing separations are

approximately linear (or non-existent) on average. The result, together with �gure 4, also imply

that �rms primarily adjust employment through separations in response to permanent negative

shocks despite ample opportunities to adjust further through reduced hires. Figure 5 also shows

that separations goes down when shocks are positive, but this impact is somewhat smaller than the

hiring-response to negative demand shocks.

As could be imagined from the combination of �gures 4, and 5, the e¤ects on net employment

are fairly linear (see �gure 6). The fact that the kink at zero is more pronounced for hires than
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Figure 6: Contemporaneous Net Employment Change in percentage units as a (non-linear) func-

tion of an x-standard deviation Technology- and Demand shock. Shaded areas depicts 95-percent

con�dence intervalls.

for separations, implies that the slope is somewhat lower on the positive side for net employment,

but although the di¤erence in slopes is statistically signi�cant, the di¤erence in magnitude is fairly

small, impling approximately 11 percent adjustment in response ot a 2 standard deviations positive

shock and a 13 percent adjustment in response to a 2 standard deviation negative shock.

.

4.4 Decomposing Net Employment Adjustment in Response to Perma-

nent Demand Shocks (this text is very preliminary)

The results presented above depicts the responses of hires, separations and net employment to �rm-

level shocks. The results seem to suggest that �rms induce separations rather than reduce hiring

when hit by negative shocks. To complement this analysis we here present an explicit decomposition
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of �rm-level net employment adjustments in response to permanent demand shocks. We focus on

permanent demand shocks since the other shocks are found to have a negligable impact on net

employment.

A set of previous papers (Abowd, Corbel and Kramarz, 1999, and Davis, Faberman and Halti-

wanger, 2012) have decomposed positive and negative changes in net employments into di¤erent

components. The results di¤er between these studies in particular in the dimension that Abowd,

Corbel, and Kramarz (1999) �nd that shrinking French �rms reduce employment by reduced hirings,

a result which do not appear in Davis, Faberman, and Haltiwanger (2012) data from the U.S. A

key di¤erence is that these studies have presented raw decompositions, where short-run �uctuations

in employment may be driven by quits rather the other way around. In contrast, we instrument

the employment adjustment by the demand shock which allows us to provide a decomposition in

response to a well-de�ned non-labor shock with a long-run impact on the optimal employment level

of the �rm. As far as we are aware, the �ows have never previously been related to measures of

structural shocks.

In practice, we proceed by characterizing employment adjustment by two second order poly-

nomials, one for positive values and one for negative values. We then instrument this adjustment

by a similarly constructed set of polynomials in the demand shock.12 We use the hiring rate as

our outcome, but since net employment adjustment is identical to the di¤erence between hirings

and separations, the impact on separations can be easily be deduced. The results are presented in

the left-hand panel of �gure 7. Consistent with what we saw when focusing on the direct impact

of the shock, we �nd a strong and linear relationship between net employment adjustments and

hirings when shocks are positivebut a very modest relationship between the magnitude of nega-

tive employment adjustments and hirings. To make this point clear, the right-hand side of �gure

7 shows the share of employment adjustments through hires as function of demand-induced net

employment adjustments. This share jumps from 20 to 95 precent when employment adjustments

become positive instead of negative. .

One interpretation of the �gure is that �rms are relatively unconstrained in their use of sep-

arations in the sense that they seem to rely on increased separations even when they could have

adjusted through reduced hires.To make this point more precise �gure 8, repeats the patterns shown

12The IV strategy essentially implies that we scale the shock impact on hirings presented in �gure 4 above with

the �rst-stage which correspond to �gure 6
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in the righ-hand side of �gure 7, but focusing on negative values. As contrasts, the �gure also de-

picts two hypothetical adjustments. The �rst, assuming homogenous �rms, imposes the observed

average steady state (i.e. whithout employmet adjustment) separation rate of 10 percent on all the

�rms, and showing how much the �rms could have reduced employment by only relying on hires.

As long as the need for adjustment is 10 percent or less, reduced hires could fully accomodate the

necessary adjustments and if the shock is 20 (30) percent instead, the �rm could instead accomo-

date half (one third) of the adjustment through reduced hires. Notably, this curve assumes that

10 percent of employees leave each �rm every year, which clearly is not the case. If we instead

assume that each individual leaves each �rm at a rate of 10 percent, we can tease out a distrib-

ution of quit rates accross the �rms. By randomly allocating quits across the workers within our

full sample and then aggregating to the �rm level, we get the �rm-level distribution of quit rates.

Whith this distribution, which naturally gets wider if �rms are small, some �rms will not experience

any quits at all, which means that they are unable to accomodate even the smallest employment

adjustments through reduced hires, whereas other �rms will experience many random separations,

allowing them to accomodate very large employment adjustments through reduced hires. The curve

denoted Hypothetical Heterogeneous displays the simulated frontier of adjustments with random

individual quits using our actual distribution of �rm sizes.

The idea here is that in rigid world where employees own their jobs as long as �rms are hiring

someone, then �rms would adjust according to the hypothetical curve. As is evident, real adjust-

ments are far from this baseline. The distance between the heterogeneous hypothertical curve and

the actual behavior of the �rm could be interpreted as a region of �exibility. It shows the amount of

negative labor adjustments through induced separations (i.e. separations above the random rate)

which could have been accomplished through reduced hires instead.

To further investigate the role played by size and heterogeneity in restricting adjustments,

appendix H shows separate estimates by size brackets and by the amount of skill dispersion within

�rms. We �nd very small di¤erences accross these di¤erent �rm types.
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Figure 7: Left-side panel: Contemporaneous Hiring Rate in percentage units as a (non-linear)

function of employment adjustment in percentage units. Employment adjustments are instrumented

by demand shocks. The model imposes a separate quadratic polynomial above and below zero for

both employment adjustment and the instrument. Shaded areas depicts 95-percent con�dence

intervalls. Right-side panel: Implied fraction of employment adjustment achieved through changes

in hirings as a function of the size and magnitude of the employment adjustment.
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Figure 8: Actual (estimated from data) and hypothetical maximum (simulated) fraction of negtive

employment adjustments achieved through changes in hirings. "Hypothetical homogenous" assumes

that the same frction of workers always leaves the �rm. "Hypothetical heterogeneous" imposes a

random individual quit rate on the actual �rm-size distribution.
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4.5 Transitory Idiosyncratic Shocks (Before IV?)

The focus of the analysis so far has been to disentangle how �rms adjust their labor input when

hit by permanent idiosyncratic shocks. It is however noteworthy that the variance decomposition

shows that the technology shock is very close to being the sole determinant of the physical gross

Solow residual at all horizons. As a result, the correlation between the Solow residual and the

permanent structural innovation is close to unity (0:980 see table ). This has two implications, the

�rst is that the physical gross output Solow residual is a valid measure of technology shocks. The

second is that technology shocks appear to have only have a marginal transitory component.

The situation for demand shocks is, however, quite di¤erent. To derive a measure of transitory

demand shocks, we �rst follow Foster, Haltiwanger, and Syverson (2008) and use the Solow residual

as an instrument for prices in a demand equation. Since, the ensuing residuals represent changes

in sales without price adjustments they serve as a measure of demand shocks (henceforth, FHS-

demand). In contrast to the SVAR �lter, this procedure does however not di¤erentiate between

permanent and transitory shocks.13 The correlation between FHS-demand and our regular demand

shocks is 0:538 (see table 4) and the standard deviation is considerably higher for the FHS-demand

(0:24, vs. 0:16). This suggests that the two demand shock series contain a common component

without being identical.

Using FHS-demand and the Solow residual as measures of shocks (see, table 4) and estimating

the impact on employment, produces demand estimates that are less than half the size as in our

baseline speci�cation (2:8 vs. 6:3), at the same time as the point estimate for technology shocks

becomes somewhat larger. However, the magnitude of the technology shock is still tiny and the

overall impression that demand is the key driving force behind job reallocation is preserved; demand

shocks are estimated to be ten times more important than technology shocks also in this case.

As noted above, FHS-demand includes both transitory and permanent shocks. In order to see if

the impact of demand shocks di¤er depending on their time series properties, we have decomposed

the FHS-demand into two components. Running a regression with FHS-demand as the dependent

variable and our permanent shocks as regressors, we use the residual as a measure of transitory

demand shocks and contrast the impact of these shocks with the impact from the permanent shocks.

14

13 In addition, these alternative series are not necessarily uncorrelated with other shocks.
14The decomposition resembles Guiso, Schivardi, and Pistaferri (2005) who extract the permanent component of
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Figure 9: Contemporaneous Net Employment Rate in percentage units as a (non-linear) function

of an x-standard deviation (permanent) Demand shock and as a function of a Transitory Demand

shock (residual component of FHS-demand). Shaded areas depict 95-percent con�dence intervalls.
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Table 4: Baseline estimates vs. Solow residuals and FHS-demand
(1) (2)

Baseline FHS

�a 0.153 0.33283*
(0.159) (0.168)

�! 5.986** 3.40621**
(0.233) (0.183)

Observations 40; 451 40; 451
Firms 6; 125 6; 125
S.d. �a 10:06 10:58
Correlation with baseline �a 1 0:980
S.d. �! 16:18 23:90
Correlation with baseline �! 1 0:538

Robust standard errors in parenthesis. Regression includes time dummies and �rm �xed e¤ects. Regression sample limited
to observations where the absolute value of both the technology and the demand shock is less than or equal to two standard
deviations in size.

We analyze the impact on our measures of worker �ows in �gure 9. The results show that the

impact of the transitory shocks is substantially lower than the impact of the permanent shocks.

These results which resembles those of Guiso, Schivardi, and Pistaferri (2005) who show that

wages respond to permanent shocks, but not to transitory shocks, implies that �rms�adjustment

of employment crucially depend on the time series properties of the shocks that hit them. This

is important because the welfare consequences of �rms�lack of adjustment are likely to crucially

depend on these properties; (labor hoarding vs inability to structurally adjust). It also suggest that

cross-country comparisons of labor �ows would become more informative if they would be able to

account for the time series properties of the underlying structural shocks

5 Conclusions

This paper has analyzed how ongoing �rms adjust their labor inputs in response to idiosyncratic

�rm-level innovations in technology, demand, and the prices of other inputs. We estimate the shocks

using a structural VAR relying on long-run restrictions derived from a simple �rm-level model as-

suming that constant returns to scale and monopolistic competition with isoelastic demand provide

�rm-level value added using high order polynomials of lags as instruments. Although the mechanics of the methods

di¤er, the underlying logic is very similar.
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reasonable approximations of �rms�long-run behavior. We estimate the model on a unique data

set which merges information about inputs, outputs and prices of Swedish ongoing manufacturing

�rms to a linked employer-employee data set. We estimate the VAR using dynamic panel data

methods which allows us to identify the system with considerable precision. The interpretation of

the shocks is supported by theory-consistent responses in �rm-level prices which are shown to fall

in response to technology shocks and increase in response to input prices, but remain independent

of product demand innovations.

The results of this paper show that both the nature and the time series properties of the

shocks matter. Permanent demand shocks, which a¤ect output, but not relative prices, has a very

pronounced impact on employment. Technology shocks on the other hand have very little e¤ects

on employment, despite a¤ecting both output and relative prices. Similarly, temporary demand

shocks have very little e¤ect on employment adjustments.

Further results suggest that employment adjustments are fast and symmetric. By far the largest

part of employment adjustment takes place within a year. Almost as much of the employment

adjustments are through changes in the separation rate as through the adjustments of hiring rates.

There are also no signs of non-linear costs of hires or separations. Finally, the sign of the shock

determines the primary margin of adjustment: �rms primarily adjust through separations if shocks

are negative, and primarily though hires if shocks are positive.

The speed of adjustment, the symmetry between hires and separations as adjustment margins,

and the continued recruitment of workers in the face of negative shocks jointly suggest that labor

market rigidities play a very limited role in hampering �rm-level labor adjustments in the face of

permanent idiosyncratic demand shocks. The adjustments towards temporary shocks are however

heavily muted. Considering that OECD ranks Sweden as an average country in terms of institutional

labor market rigidities, this may suggest that labor markets within the OECD in general are �exible

enough for �rms to accommodate the impact of permanent shocks, while pushing �rms towards

hoarding labor when hit by temporary shocks.
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Appendices

A Identi�cation of Structural Shocks

A.1 Derivation of Long-run Restrictions

We use the stylized model presented in the paper to �lter out shocks that permanently shifts the

�rms�production functions and demand curves. To �lter out the shocks of interest, we �rst note

that the assumptions of the model ensures that the only shock that can a¤ect the physical gross

output Solow residual (A) is the technology shock. Since we only impose this restriction in the long

run, we are able to allow for temporary variations in factor utilization and inventories.

Further, we use the standard result that a �rm�s optimal pricing rule under these conditions is

to set the price, Pjt; as a constant markup �=(� � 1), over marginal cost, MCjt. Marginal cost is,

in optimum, equal to

MCjt = A�1jt

�
Wjt

�

��
PFjt : (A1)

Using (A1) and that MCjt = (WjtNjt) =(�Yjt) in optimum to get

ULCjt (Wjt)
��
= �A�1jt P

F
jt ; (A2)

where unit labor cost, ULCjt, is de�ned as WjtNjt=Yjt and � = �1��. Thus, expression (A2)

will be a¤ected by technology as well as factor-price shocks, but not demand shocks. It is also

worth noting that any direct shocks to the �rm-level wage-setting relationship (such as changes in

the degree of competition over similar types of labor) will not drive this expression. Essentially,

expression (A2) is a measure of marginal cost net of wage setting disturbances. Henceforth, we will

label the variable wage-neutral labor cost (WNULCjt).

Using expressions (2) and (A1), as well as the fact that the price is set as a constant markup

over marginal cost we arrive at

Yjt (Wjt)
��
=  YtP

�
t (Ajt)

� �
PFjt
���


jt; (A3)

where  =
�
1
�

���� � �
��1

���
. Thus, expression (A3) will, apart from aggregate factors (which

will be captured by time dummies in the empirical implementation below), be driven by shocks

to technology, factor prices other than labor, and demand. In e¤ect, expression (A3) is demand

adjusted for wage setting disturbances. Thus, we label this variable wage-neutral demand (WNDjt).
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A.2 The Structural VAR

The model outlined in the paper provides a set of three equations that depend on the three structural

shocks. The left hand side variables in these equations, which all can be constructed from our �rm

level data, motivate a recursive sequence of long-run restrictions. In order to extract the shocks

of interest from the four series, we estimate a VAR. Since our interest lies in how other variables

(such as output, prices and employment) respond to the shocks of interest, we include these other

variables as fourth variables in the system, allowing each to have a long-run e¤ect on itself, but not

on the other variables in the system. They will thus soak up all remaining transitory dynamics. In

practice, we rotate across these variables while keeping the core system of the �rst three equations

intact as in ?.15

The VAR system, which is a fully interacted dynamic system of the variables, can, under stan-

dard regularity conditions, be written (on vector moving average form, using lower case letters for

logarithms and denoting the fourth variable by �) as:

2664
�ajt

�wnulcjt
�wndjt
��jt

3775 =
2664
C11(L) C12(L) C13(L) C14(L)
C21(L) C22(L) C23(L) C24(L)
C31(L) C32(L) C33(L) C34(L)
C41(L) C42(L) C43(L) C44(L)

3775
2664
�ajt
�fjt
�!jt
��jt

3775 : (A4)

We assume that the shocks themselves (i.e. [�ajt; �
f
jt; �

!
jt; �

�
jt]) are structural innovations and hence

mutually orthogonal and serially uncorrelated. Since the shock associated with the fourth variable

lacks a theoretical interpretation we refer to it as the "residual" shock in what follows. The terms

Crc(L) are polynomials in the lag operator, L, with coe¢ cients crc(k)Lk at each lag k. Since

the shocks are orthogonal (and using a standard normalization) we get E�t��t = It, where �t =

[�ajt; �
f
jt; �

!
jt; �

�
jt]
0.

Following standard practice, we denote the elements of the matrix of long-run multipliers cor-

responding to (A4) as Crc(1). Relying on the model outlined above, we know that the technology

shock, �ajt, is the only shock with a long-run impact on ajt so C12(1) = C13(1) = C14(1) = 0 in

the matrix of long-run multipliers.16 Similarly, only the technology and the factor price shock have

a long-run e¤ect on wnulcjt, so C23(1) = C24(1) = 0. Finally, since the residual shock has no

15Parts of our analysis relies on extracting the technology and demand shocks from the system. In these exercises

we use output as the fourth variable, but we also present several robustness checks showing that the results are

insensitive to this choice.
16That is, the coe¢ cients c12(k) are such that

P1
k=0 c12(k) = 0, and similarly for the coe¢ cients c13(k) and c14(k).
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long-run e¤ects on wage-neutral demand, it follows that C34(1) = 0.

Given these assumptions we can recover the time series of the �rm�s structural shocks �jt from

an estimate of the VAR(p) formulation of the system (A4), i.e. from

�xt =
PP

0 Ap�xt�p + et; (A5)

where Ap is matrices with coe¢ cients, �xt = [�ajt;�wnulcjt;�wndjt;��jt]
0, et is vector of

reduced form disturbances and we have suppressed constants to save on notation (see Appendix A

for details regarding the relationship between reduced form and structural representations). Under

standard regularity conditions, there exist a VAR representation of the MA representation (A4) of

the form

xt = A(L)Lxt + et; (A6)

where xt = [�ait, �wnulcjt, �wndjt;��jt]; Arc(L) =
P1

k=0 arc(k)L
k and et is a vector of reduced

form errors. Since the errors in the VAR, et, are one-step ahead forecast errors we will have that

et = c(0)�t; (A7)

where c(0) is the matrix of crc(0) coe¢ cients from the MA representation and �t = [�
a
jt; �

f
jt; �

!
jt; �

�
jt]
0.

Thus, if the c(0) coe¢ cients where known we could recover �t. To derive the �rst 10 restrictions

we need to solve for the 16 elements in c(0). We �rst use (A7) and that E�t�
0
t = It together with

an estimate of 
 = Eet�et obtained from an estimate of (A6). To get the additional six restrictions

we impose three long-run restrictions. Rewriting (A6) we can obtain the MA form, by using (A7),

in terms of coe¢ cients from (A6) and the c(0) coe¢ cients as

xt = [I �A(L)L]�1c(0)�t: (A8)

Then, the six long-run restrictions implies equally many restrictions on the matrix [I�A(L)L]�1c(0),

that together with an estimate of (A6) yields six additional restrictions on c(0): Finally, given an

estimate of the c(0) matrix, ĉ(0), we can solve for the structural shocks using (A7)

ĉ(0)�1êt = �̂t: (A9)

When deriving results in term of elasticities, and to obtain an estimate of the standard deviation

of the structural shocks, we use a re-normalized ĉ(0) where each element is divided by the column

diagonal element.
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B Data

The �rm data set we use is primarily drawn from the Industry Statistics Survey (IS) and contains

annual information for the years 1990� 2002 on inputs and output for all Swedish manufacturing

plants with 10 employees or more and a sample of smaller plants. Here we focus on �rms with at

least 10 employees and that we observe in a spell with at least 5 observations, the minimum panel

dimension required for the SVAR to pass diagnostic tests.

Our measure of real output, Yjt, is the value of total sales taken from the IS de�ated by a �rm-

speci�c producer-price index. The �rm-speci�c price index is a chained index with Paasche links

which combines plant-speci�c unit values and detailed disaggregate producer-price indices (either

at the goods level when available, or at the most disaggregate sectoral level available). Note that in

the case in which a plant-speci�c unit-value price is missing (e.g., when the �rm introduces a new

good), Statistics Sweden tries to �nd a price index for similar goods de�ned at the minimal level of

aggregation (starting at 4-digits goods-code level). The disaggregate sectoral producer-price indices

are only used when a plausible goods-price index is unavailable.

To compute the input index, �zjt, used to compute �ajt, real intermediate inputs, M , are

measured as the sum of costs for intermediate goods and services (including energy) collected from

the IS de�ated by a three-digit (SNI92/NACE) producer-price index collected by Statistics Sweden.

The real capital stock, Kjt, is computed using a variation of the perpetual inventory method. In

the �rst step we calculate the forward recursion

Kjt = max((1� �)Kjt�1 + Ijt; BookV aluejt) (B10)

where � is sector-speci�c depreciation rate (two-digit SNI92/NACE) and is computed as an asset-

share weighted average between machinery and buildings depreciation rates (collected from Me-

lander (2009), table 2), Ijt is real net investments in �xed tangible assets (computed using a

two-digit SNI92/NACE sector-speci�c investment de�ator collected from Statistics Sweden) and

BookV aluejt is the book value of �xed tangible assets taken from the Firm Statistics data base

maintained by Statistics Sweden, de�ated using the same de�ator as for investment. Moreover, Kj0

is set to zero if the initial book value is missing in the data. Since, for tax reasons the �rm want to

keep the book values low, we use the book values as a lower bound of the capital stock. In a second
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step, we then calculate the backward recursion.

Kjt�1 =
Kjt � Ijt
(1� �) ;

where the ending point of the �rst recursion, KjT , is used as the starting point for the second

backward recursion. This is done in order to maximize the quality of the capital-stock series given

that we lack a perfectly reliable starting point and the time dimension is small. Labor input, i.e.

number of employees, are taken from the IS.

To compute the cost shares, we also need a measure of the �rms�labor cost, which is de�ned as

total labor cost (including pay-roll taxes) in the IS.

When computing �ajt, we take an approach akin to the strategy outlined by Basu, Fernald,

and Shapiro (2001). Thus, the CJ (i.e. the output elasticities) are treated as constants. Second,

the cost shares are estimated as the time average of the cost shares for the two-digit industry to

which the �rm belongs (SNI92/NACE). Third, to calculate the cost shares we take total costs as

approximately equal to total revenues.17 The cost share of capital is then given by one minus the

sum of the cost shares for all other factors.

When computing �wnulcjt and �wndjt we use CN as the estimate of � and the measure of the

�rms labor costs together with the measure of real output and labor input (all discussed above).

Also, when computing �wndjt we set � equal to our estimate of 3:016. Finally, we remove 2 percent

of the observations in each tail for each of the distributions of �ajt;�wnulcjt;�wndjt;�yjt and

again require the �rm to be observed in spells of at least �ve years (since we are interested in the

within �rm dynamics when estimating the VAR). This has little e¤ect on estimated coe¢ cients,

but ensure that the VAR passes diagnostic tests.

17Using the data underlying Carlsson (2003), and relying on a no arbitrage condition from neoclassical investment

theory (also taking the tax system into account) to calculate the user cost of capital, we �nd that the time average

(1968� 1993) for the share of economic pro�ts in aggregate Swedish manufacturing revenues is about �0:001. Thus,

supporting the assumption made here.
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C The SVAR: Tests, Impulse Responses and Variance De-

compositions

Relying on the Arellano and Bond (1991) autocorrelation test of the di¤erenced residual, two lags

in the VAR is enough to remove any autocorrelation in the residuals in all four equations. Here

we rely on the two-step Arellano and Bond (1991) di¤erence estimator with the second to the

fourth lag of the levels as instruments. It is worth noting though that the parameter estimates are

not sensitive to the actual choice of where to cut the instrument set. As a second precaution, we

collapse the instrument set in order to avoid over�tting. That is, we impose the restriction that

the relationships in the ��rst stage�are the same across all time periods (see e.g. Roodman, 2006,

for a discussion). For all equations, the Hansen test of the overidentifying restrictions cannot reject

the null that the model is correctly speci�ed and the instruments are valid.

In �gure 10 to 13 we plot the impulse responses to each of the variables in the baseline VAR in

levels to each of the structural shocks. Since the estimated system converges fairly rapidly, we only

plot the initial �ve periods. All impulse responses are precisely estimated as indicated by the tight

(95 percent) con�dence bands based on 1; 000 bootstrap replications. The high level of precision is

not very surprising, given that we estimate the impulse responses on 34; 968 �rm/year observations

across 6,137 �rms (after considering all restrictions in terms of lags, instruments and di¤erencing).

Unfortunately, we have not been able to �nd any statistical tests of stationarity that are suitable

for a setting with a short but wide panel. However, it should be clear from the �gure that this

issue is of little importance in the current setting. Importantly, the �gure is expressed in log-levels

and the clear �at, non-zero, end-segments in the responses implies that shocks do have permanent

e¤ects on the levels of the series (i.e. levels are I(1)) and that the di¤erenced series are stationary

(I(0)).

In �gure 10, we trace out the impulse responses of the Solow residual, the wnulc, the wnd and

output to a one standard deviation technology shock, �ajt. Technology shocks have a positive per-

manent e¤ect on the Solow residual with a �normal�(i.e. one standard deviation) shock increasing

the Solow residual with slightly less than ten percent in the long run. The estimated model does not

impose any restrictions on how technology shocks a¤ect wnulc and wnd: However, the results do

concur with predictions from expression (A2) in the sense that wnulc falls permanently in response
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Figure 10: Impulse Responses of the baseline VAR in percentage points to a Technology Shock.

Lines depict the means of the bootstrap distributions. Shaded areas depict the bootstrapped 95-

percent con�dence intervalls calculated from 1000 replications.

to the (permanent) technology shock. Similarly, we �nd that a permanent technology shock raises

wnd, as predicted from expression (A3). Moreover, output increases with about �ve percent in the

long run.

In �gure 11, we report the impulse responses to a one standard deviation (permanent) factor-

price shock. A "normal" factor-price shock increases the wnulc permanently and lowers wnd perma-

nently (theoretically working through marginal cost, price setting and demand). The latter result

is, again, an unconstrained result in line with predictions from expression (A2). By the same logic,

output also falls permanently in response to a factor price shock. The Solow residual is a¤ected in

the very short run by factor price shocks, but converges to the long-run restriction fairly rapidly.

In �gure 12 we plot the impulse responses to a permanent demand shock. As shown in the �gure,

wnd is permanently increased in response to a permanent demand shock. In the short run, demand
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Figure 11: Impulse Responses of the baseline VAR in percentage points to a Factor Price Shock.

Lines depict the means of the bootstrap distributions. Shaded areas depict the bootstrapped 95-

percent con�dence intervalls calculated from 1000 replications.
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Figure 12: Impulse Responses of the baseline VAR in percentage points to a Demand Shock. Lines

depict the means of the bootstrap distributions. Shaded areas depict the bootstrapped 95-percent

con�dence intervalls calculated from 1000 replications.
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Figure 13: Impulse Responses of the baseline VAR in percentage points to a Residual Shock. Lines

depict the means of the bootstrap distributions. Shaded areas depict the bootstrapped 95-percent

con�dence intervalls calculated from 1000 replications.

shocks increases the Solow residual and reduces wnulc. A demand shock also has permanently

positive e¤ect on output as expected, increasing by about 10 percent.

For completeness, �gure 13 reports the responses to the residual shock, which raises output

permanently by slightly more than �ve percent.

Figure 14 presents forecast-error variance decompositions for each of the variables in the VAR

in levels, decomposing the movements of the three variables. Again, bootstrapped con�dence bands

are extremely tight. Quantitatively, the Solow residual is solely driven by technology shocks on all

horizons. The wnulc is mostly driven by factor price shocks (80% of the variation) and partly by

technology shocks (20%). Demand shocks explain about 70% of the movements in wnd, whereas

factor-price shocks explains about 15%: We also see in the �gure that there is a role for technology

shocks in explaining wage-neutral demand movements, it account for about 15%. For output, we

see that about 55% of the variation is driven by demand shocks, and the rest being explained by
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Figure 14: Forecast-error variance decompositions of the VAR in levels. The left-most panel show

the percentage of the forecast-error variance in the Solow residual that can be explained by each

structural shock at di¤erent horizons. Lines depict the mean of the bootstrap distributions. Shaded

areas depict the bootstrapped 95-percent con�dence intervalls calculated from 1000 replications.

factor price shocks (about 20%), technology (about 15%) and the transitory shock (about 10%).

Overall though, we �nd the transitory shock to be of little importance. Given that we include time

dummies in the VAR, this �nding is in line with the result of Franco and Philippon (2007), who

�nd that transitory shocks is not very important on the �rm level, but account for most of the

volatility of aggregates since they are correlated across �rms.

Figure 15 shows the distributions for extracted innovations to technology and demand. As can

be seen in the two panels of the �gure, neither the demand nor the technology shock distributions are

particularly skewed (skewness coe¢ cients of �0:02 and 0:15, respectively), whereas they are both

leptokurtic (kurtosis coe¢ cients of 5.76 and 4.67). This is also clearly visible in the graphs where

the dashed line depicts a normal distribution, and a standard skewness/kurtosis test (D�Agostino,
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Figure 15: Histograms of the demand- and the technology shock distribution. Dashed line depicts

a normal distribution.
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Figure 16: Contemporaneous response of variables included in the baseline VAR in percentage units

as a (non-linear) function of an x-standard deviation Technology shock. Shaded areas depict the

95-percent con�dence intervalls.

Belanger and D�Agostino, 1990) rejects the null of normality for both distributions (p-value of 0:00

in both cases). The shock distributions depicted in �gure 15 are normalized to have a unit standard

deviation. When re-normalizing the system (see Appendix A), we �nd that the standard deviation

of the demand shock is about 35 percent larger than the technology shock (standard deviations of

16:02 and 11:86 percentage units, respectively).

A maintained assumption in the analysis is that the baseline VAR is linear in the structural

shocks. In �gures 16 and 17 we plot the predicted contemporaneous responses of the variables

included in the VAR as (possibly non-linear) functions of structural shocks (allowing for a separate

second order polynomial above and below zero). As can be seen in the �gures, the results do support

the maintained linearity assumption.
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Figure 17: Contemporaneous response of variables included in the baseline VAR in percentage

units as a (non-linear) function of an x-standard deviation Demand shock. Shaded areas depict the

95-percent con�dence intervalls.
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D Robustness: Alternative Residual Shocks

In table 5 we show results from regressions using the log employment as the dependent variable in

regressions where the extracted shocks serve as independent variables. The di¤erent columns show

what happens if we include di¤erent variables as the fourth variable in the systems before extracting

the shocks. Column (1) show our baseline speci�cation where we use output as the fourth variable.

Columns (2) to (3) show estimates when relying on sales per worker, annual employment (from

IS) and end of the year employment (from RAMS) as the fourth variable. Overall, the picture is

very close to that of the main text. The lower panel shows the long-run impact which displays a

somewhat larger impact of technology, but the e¤ect remains muchs smaller than for demand.

Table 5: Contemporaneous and Long-Run E¤ect on Log Employment - Varying the Fourth Variable

in the VAR

(1) (2) (3) (4)
Fourth Variable of VAR: Output Sales per Worker Employment (IS) Employment (RAMS)

Contemporaneous E¤ect

�a 0.153 0.524** 0.263 0.499**
(0.159) (0.154) (0.143) (0.061)

�! 5.986** 5.840** 5.261** 6.986**
(0.233) (0.234) (0.212) (0.086)

Observations 40; 451 40; 284 38; 213 37; 234
Firms 6; 125 6; 113 5; 879 5; 703

Long-Run E¤ect
�a 0.504* 0.812** 0.644** 0.643**

(0.214) (0.218) (0.209) (0.097)
�! 6.357** 6.134** 5.477** 7.514**

(0.310) (0.317) (0.266) (0.121)

Observations 34; 414 34; 260 32; 407 31; 531
Firms 6; 116 6; 102 5; 871 5; 703

S.d. �a 10.06 9.980 9.971 9.964
S.d. �! 16.18 16.39 15.35 15.13

E¤ect of one s.d. shock. Robust standard errors in parenthesis. Regression includes time dummies and �rm �xed e¤ects.
Long-run estimates is the sum of the contemporaneous impact and one lag.
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E Robustness: Returns to Scale and Sectoral Processes

In table 6 we �rst allow for speci�c estimates of the demand elasticity (�) for each two digit industry.

We then add variations in the assumed returns to scale, allowing for both increasing and decreasing

returns. We then control for sector time dummies, and �nally reestimate the entire SVAR for each

two digit industry. The number of observations is slightly smaller for the sectoral estimates since

some sectors are too small for us to get any sensible precision within these, none of the di¤erences

in estimates depend on the sample, however. Although magnitudes, signs and signi�cance levels of

the estimates vary across columns, the main quantitative results that demand is the primary driver

of employment adjustment remains robust. Even in column (4), where we allow for substantially

decreasing returns which increases the estimated importance of technology, is the estimated impact

of a normal demand shock on employment more than 6 times as large as the impact of a normal

technology shock.The lower panel, shows the long-run impact. As before the impact of technology

is larger here throughout, but signi�cantly smaller than for demand.

In the second table below we instead show robustness to cases where we allow the full process

to be sector speci�c by estimating the VAR by sector. For this to be meaningful, we ned to exclude

the smallest sectors, and we therefore also show estimates from the pooled model for this sample.

Again, we see very small di¤erences in the results.
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Table 6: Contemporaneous and Long-Run E¤ect on Log Employment - Sectoral Heterogeniety

(1) (2) (3) (4)
Baseline Sectoral � RTS = 1:1 RTS = 0:9

Contemporaneous E¤ect
�a 0.153 0.192 -0.492** 0.95505**

(0.159) (0.161) (0.149) (0.161)
�! 5.986** 5.693** 5.541** 6.14867**

(0.233) (0.221) (0.223) (0.233)

Observations 40; 451 40; 214 39; 788 41; 132
Firms 6; 125 6; 102 6; 065 6; 193

Long-Run E¤ect
�a 0.504 0.599 -0.244 1.378

(0.214)* (0.214)** (0.232) (0.211)**
�! 6.357 5.996 5.978 6.313

(0.310)** (0.302)** (0.301)** (0.310)**

Observations 34; 414 34; 198 33; 811 35; 031
Firms 6; 116 6; 094 6; 055 6; 184

S.d. �a 10.06 10.03 10.37 10.04
S.d. �! 16.18 17.09 13.45 18.74

E¤ect of one s.d. shock. Robust standard errors in parenthesis. Regression includes �rm
�xed e¤ects and time dummies. Long-run estimates is the sum of the contemporaneous
impact and one lag.

F Robustness: A Two-PeriodModel, Allowing for Firm Exit

Our baseline model ignores the role of �rm exits. As shown in the paper, demand shocks appears

to be more important than technology also in this dimension, in particular when shocks become

su¢ ciently large. Our baseline strategy is to relate yearly shocks to the end of the year employment,

but if the �rm exit during the year, we are unable to measure the shocks. In order to see if this

a¤ects the results, we have reestimated the model, taking a two period approach. In practice this

implies that we relate the shock to the labor �ows across two years. Since the labor �ows are

de�ned even if all workers exit, we are able to calculate the impact of the shocks while excluding

ad including the �rms that exit during the year after the shock. Since the relationship between the

shocks and �rm exit appear to be non-linear, we perform this robustness analysis in the non-linear

framework of section 4.3. The results, indicate that the results are completely insensitive to how

we treat the exiting �rms, see the table below .
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Table 7: Contemporaneous and Long-Run E¤ect on Log Employment - Sectoral dynamics and

sector by time dummies
(1) (2) (3) (4)

Contemporaneous E¤ect
�a 0.153 0.192 0.147 0.126

(0.159) (0.161) (0.162) (0.162)
�! 5.986** 5.693** 5.520** 5.506**

(0.233) (0.221) (0.222) (0.225)

Observations 40; 451 40; 214 39; 580 39; 580
Firms 6; 125 6; 102 5; 997 5; 997

Long-Run E¤ect
0.504* 0.599** 0.510* 0.490*
(0.214) (0.214) (0.217) (0.221)
6.357** 5.996** 5.811** 5.737**
(0.310) (0.302) (0.306) (0.302)

Observations 34; 414 34; 198 33; 667 33; 667
Firms 6; 116 6; 094 5; 989 5; 989

Sectoral Sigma No Yes Yes Yes
Pooled Dynamics Yes Yes Yes No
Large Sectors Only No No Yes Yes
Sector by Time Dummies No No Yes Yes
S.d. �a 10.06 10.03 9.94 9.88
S.d. �! 16.18 17.09 16.98 16.80

E¤ect of one s.d. shock. Robust standard errors in parenthesis. Regression includes �rm
�xed e¤ects and (columns 1-2) time dummies or ((columns 3-4) ) two-digit NACE sector by
time dummies (columns 3-4). Long-run estimates is the sum of the contemporaneous impact
and one lag.

G Robustness: Data window

The allocation of output across plants within multi-plant �rms during parts of our sample period

(after 1996) is imputed. We have therefore redone the analysis for the sample of single plant �rms,

as well as for a mixed sample including multi-plant �rms until 1996, but not thereafter. The results,

presented below, are completely robust to these alterations of the sample.
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Table 8: Contemporaneous and Long-Run E¤ect on Log Employment - using outcomes over one

and two periods, with and without �rm exits in the second period.
(1) (2) (3)

One Step Two Step - No Zeros Two Step Zeros
Contemporaneous E¤ect

�a 0.115 0.328* 0.278
(0.119) (0.153) (0.164)

�! 5.609** 5.431** 5.749**
(0.173) (0.375) (0.376)

Observations 40; 451 39; 822 40; 238
Firms 6; 125 6; 114 6; 121

Long-Run E¤ect
�a 0.412* 0.420 0.380

(0.163) (0.350) (0.368)
�! 6.009** 4.112** 4.696**

(0.228) (0.391) (0.422)

Observations 34; 414 33; 830 34; 243
Firms 6; 116 6; 099 6; 110

E¤ect of one s.d. shock. Robust standard errors in parenthesis. Regression includes �rm
�xed e¤ects and time dummies. Long-run estimates is the sum of the contemporaneous
impact and one lag.

H Size and Employee Heterogeneity

A possible reasons for why �rms rely so heavily on separations rather than refraining from hiring

when faced by a negative shock, is that they may be constrained in terms of the composition of the

workers. Even though some workers always leave the �rm, so that the �rm potentially could shrink

by not recruiting, it may be the wrong workers who leave. To shed some further light on this issue

we have analyzed small (less than 20 employees) and large �rms separately, as well as separated

the �rms according to the dispersion of educational �elds and level within the �rm.

The idea behind the second exercise is that �rms with a more homogenous workforce should

care less about who leaves, whereas �rms with a more heterogeneous workforce should be more

prone to hire and separate at the same time when hit by a negative shock. In practice, we calculate

the fraction of coworkers (to each worker in the data) that has the exact same type of education

(3-digit �eld and 2-digit level) and take the average of this share for each �rm. This gives an
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Figure 18: Contemporaneous Separation Rates in percentage units as a (non-linear) function of

an x-standard deviation Demand shock in subsamples de�ned by employee heterogeneity (upper

graphs) and �rm size (lower graphs). Shaded areas depicts 95-percent con�dence intervalls.
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Table 9: Contemporaneous and Long-Run E¤ect on Log Employment - Sample Variations

(1) (2) (3) (4)
Sample Baseline Single Plant Always Single Plant After 1996 � �2 S.d. Shocks

Contemporaneous E¤ect
�a 0.153 0.421** 0.312* 0.040

(0.159) (0.158) (0.151) (0.164)
�! 5.986** 5.500** 6.244** 6.317**

(0.233) (0.236) (0.238) (0.205)

Observations 40; 451 20; 877 30; 234 36; 072
Firms 6; 125 3; 246 5; 259 6; 111

Long-Run E¤ect
�a 0.504* 0.534* 0.669** 0.336

(0.214) (0.233) (0.215) (0.234)
�! 6.357** 5.715** 6.657** 6.397**

(0.310) (0.309) (0.326) (0.294)

Observations 34; 414 17; 638 25; 040 30; 693
Firms 6; 116 3; 246 5; 250 6; 066

S.d. �a 10.06 9.13 9.41 10.06
S.d. �! 16.18 15.07 14.79 16.18

E¤ect of one s.d. shock. Robust standard errors in parenthesis. Regression includes �rm
�xed e¤ects and time dummies. Long-run estimates is the sum of the contemporaneous
impact and one lag.

index of how exposed the average worker within each �rm is to similarly trained workers. This

procedure is a straightforward implementation of standard practices when measuring segregation,

see e.g. ?. In a second step, we split our �rm-level data across the median of this index, and

analyze the two samples separately. Figure 18 shows the results for the impact of instrumented

employment adjustments on hires.Quite surprisingly, we �nd very little to support the notion that

size or within-�rm heterogeneity is an important explanation for the heavily reliance on separations

(rather than a reduction in hires) when �rms are hit by negative demand shocks.
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