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Abstract

This paper investigates the structure of optimal incentive schemes in a stochastic

environment and provides evidence consistent with the design of self-enforcing rela-

tional contracts. We show in a theoretical model that under relational contracting

firms can credibly promise to pay chief executive offi cers (CEOs) larger bonuses in

good states than in bad states, whereas under formal contracting firms offer the same

bonus in both states of the world. Estimating an empirical model using ExecuComp

data, we find that CEO annual bonuses are related to "luck" (idiosyncratic shocks and

serially-correlated states) in a manner consistent with relational contracting.

JEL Classification: C73, D86, J41

Keywords: relational contracts, CEO compensation, pay-for-luck, idiosyncratic shocks

∗California State University, East Bay. E-mail: jed.devaro@csueastbay.edu
†University of Colorado at Boulder. E-mail: jinhyuk.kim@colorado.edu
‡University of Copenhagen. E-mail: nick.vikander@econ.ku.dk

1



1 Introduction

One of the most controversial issues in CEO compensation is the historically weak link be-

tween CEO pay and firm performance (see, e.g., Murphy, 1999; Core et al., 2003, for surveys).

In particular, Hall and Liebman (1998) show that existing pay-performance sensitivities are

almost entirely driven by stock options and stock ownership, which leaves virtually no signif-

icant correlation between non equity-based compensation (e.g., salary and bonus) and firm

performance. In recent years, a number of researchers have found that CEO cash compensa-

tion responds to factors, or luck, over which the managers have no control (e.g., Blanchard et

al., 1994; Bertrand and Mullainathan, 2001; Oyer, 2004; Garvey and Milbourn, 2006; Bizjak

et al., 2008).

Bebchuk and Fried (2003, 2004) prominently argued that pay-for-luck is inconsistent with

the agency theoretic view but consistent with the hypothesis of managerial power. That is,

the Informativeness Principle suggests that only those measures that provide information

about the CEO’s desired action should be used in the CEO’s incentive contract (Shavell,

1979; Holmstrom, 1979). However, Bebchuk and Fried argue that excessive CEO power

and a lack of arm’s-length relationship with the board lead to ineffi cient forms of pay. In

this paper, we argue that pay-for-luck can actually be consistent with effi cient compensation

under relational contracting, and present empirical ev idence supporting our argument.1

The key feature of relational contracting is that decisions on performance pay are ul-

1An alternative explanation of pay-for-luck is that the firm may want to adjust CEO pay for retention
purposes in a way that is correlated with the CEO’s outside options in the labor market (Oyer, 2004; Bizjak
et al., 2008). However, Holmstrom (2005) suggests that increased demand is not likely to be the sole driver
for the rise in CEO pay, but instead argues that dynamic models where commitment problems and implicit
incentives arise should be examined.
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timately a matter of firm discretion. Firms and workers often rely on relational contracts

because complete, explicit contracts are costly to design and enforce (Kvaløy and Olsen,

2009). In a cross-sectional study, Gillan et al. (2009) found that roughly half of the S&P 500

CEOs work without an explicit employment contract. Certain arrangements that do exist

regarding executive bonuses might appear at first glance to be entirely formal.2 However,

even if firms have in place a formal shareholder-approved bonus plan, the board can exercise

discretion either in the performance metrics used or in judgments about whether certain

performance standards have been achieved. For instance, "individual bonuses may be based

in part on subjectively assessed individual performance [...] Alternatively, the boards of

directors may make discretionary adjustments" (Murphy and Oyer, 2004: 2).3

A natural question that follows is whether relational contracting plays a role in executive

compensation. Our approach is to construct a theoretical model that yields different predic-

tions under explicit (formal) and implicit (relational) contracting and to test its predictions

in an empirical analysis of CEO bonus pay. The basic theory of stationary relational con-

tracts is well known (e.g., Bull, 1987; MacLeod and Malcomson, 1989; Baker et al., 1994;

Levin, 2003; Malcomson, 2012). Relational contracts can be self-enforcing in the sense that,

when the future value of the relationship is suffi ciently large, both parties to the contract

find it profitable to adhere to their implicit obligations, rather than engage in opportunistic

behavior. In an employment model, this means that joint future surplus must overwhelm

the firm’s current temptation to renege on discretionary bonus payments promised to the

2For example, Murphy (1999) provides a detailed discussion of formula-based "80/120 plans," which are
common, piecewise-linear contracts.

3The scope for discretion in executive bonuses is further articulated in the following observation by Murphy
and Jensen (2012: 42): "sometimes these shadow plans have little or nothing to do with the performance
criteria specified in the shareholder approved plans."
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worker.

In a stationary environment with stochastic output shocks that are independent over

time, it is diffi cult to empirically discriminate between formal and relational contracts, since

both would imply that the bonus paid to a worker who succeeds should be constant over time.

The intuitive reason under relational contracts is that one-off events over which managers

have no control (i.e., "luck") only affect today’s surplus and have no relevance to the future

value of the relationship. Hence, pay-for-luck should be absent. The only difference between

formal and relational contracts is that the bonus would be smaller when the firm’s dynamic

enforcement constraint binds; however, without knowing the counterfactual for a given firm,

estimating the difference is not straightforward.

In fact, most existing studies measure luck as the portion of firm performance that can

be predicted by exogenous price changes (e.g., oil prices and exchange rates) or average

industry performance (see, e.g., Bertrand and Mullainathan, 2001), measures that tend to

be correlated over time. Serial correlation means that the future value of the relationship

is no longer independent of today’s shock, which matters for relational contracting but not

for formal contracting. Distinguishing between independent shocks and serially-correlated

shocks (which we call "state") allows us to formulate a discriminating test between formal

and relational contracts that we can then bring to the data.

More precisely, we consider a simple Markovian environment with two states of the world

(good and bad). The state directly affects output and is positively correlated over time, the

idea being that certain factors beyond the manager’s control reflect business cycle effects

that are persistent. Our main predictions concern how the sensitivity of bonus payments to

the state varies with the contracting form. If the discount factor is suffi ciently high, then
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both contracting forms imply a bonus for success that is constant across states. But if the

discount factor is suffi ciently low, relational contracting implies the bonus in the good state

exceeds that in the bad state, whereas formal contracting implies the same bonus in both

states. The intuition is that the low expected future value in the bad state increases the

principal’s temptation to renege under relational contracting.

Our results also suggest a negative correlation between pay-for-luck and performance.

Looking across a large sample, the firms that offer a bonus that varies with the state should

also have low discount factors and engage in relational contracting. These same firms will

generate lower equilibrium effort and output than others. Nonetheless, their decision to

condition the size of bonus payments on luck is effi cient, given the dynamic enforcement

constraint they face.

We investigate these predictions using a merged datafile drawn from ExecuComp, Com-

pustat, and CRSP. We estimate an empirical model for executive bonuses that includes two

types of "luck" on the right-hand side: an idiosyncratic "shock" that is independent over

time, and a serially-correlated "state". Our measure of the shock is Extraordinary Items

and Discontinued Operations (EIDO). Our measure of the state is either lagged values of

sales growth or the part of lagged sales growth that is predicted by observable variables un-

related to CEO effort (e.g. lagged Gross Domestic Product (GDP) growth rate and a time

trend), where using lags is intended to purge any influence of current effort. We verify that

EIDO is indeed serially uncorrelated and that lagged or predicted sales growth measures are

positively autocorrelated. One of the model’s premises is that these two measures of luck

positively affect the firm’s profits. We find empirically that EIDO and lagged or predicted

sales growth are indeed positively correlated with the firm’s income.
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To test the main theoretical predictions, we estimate a reduced-form bonus equation

that expresses the amount of the CEO annual bonus as a function of uncorrelated and

positively autocorrelated shocks. Our main hypotheses are that the effect of idiosyncratic

shocks on the bonus is zero and that of the correlated state is positive, to the extent that

relational contracting characterizes CEO bonus pay. Furthermore, since this relationship

only holds for a suffi ciently low discount factor, the empirical result should be stronger (and

perhaps only detectable) for low values of a discount factor proxy. To identify a proxy for

the discount factor we follow the macroeconomics literature by assuming that the firm’s

default probability —and hence the probability that the employment relationship ends —is

increasing in financial leverage. Using leverage as a proxy for the (inverse) discount factor

provides robust evidence that is consistent with our prediction.4 That is, when the discount

factor is low (as reflected by high values of leverage) the CEO’s annual bonus payment is

positively related to the state, which is consistent with relational contracting.

The remainder of the paper is organized as follows. Section 2 discusses the relevant

literatures. Section 3 describes the theoretical model, and Section 4 characterizes the optimal

contracts. Section 5 explains the data set, and Section 6 presents estimation results. Section

7 concludes.

4A firm’s financial leverage might also have a direct effect on the amount of the bonus the firm can
credibly promise (Fahn et al., 2013). Our empirical specification nests this direct effect, and we find support
for Fahn et al.’s prediction that debt weakens the firm’s incentive to honor relational contracts. Our focus
is different in that the firm’s leverage affects the bonus through the interaction with state.
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2 Related Literature

This study relates to an extensive literature on CEO compensation and firm performance

(see, e.g., Murphy, 1999, for a survey). Whereas that literature focuses on the measurement

of, and issues surrounding, the sensitivity of pay to performance, we focus on the empirical

implications of relational versus formal contracting. To our knowledge, there are no prior

studies that focus on empirically distinguishing between formal and relational contracting.

Certain work has looked at the related question of discretion in executive compensation.

For example, Murphy and Oyer (2004) derive a set of predictions regarding executive bonus

payments and test their hypotheses using a cross-sectional survey data concerning 262 firms’

annual bonus plans. They find that nearly two-thirds of the sample companies base bonuses

in part on subjective assessments of individual performance but that 33 (14%) firms utilize

no discretion in CEO bonus payouts.

Murphy and Oyer’s (2004) findings are complementary to ours in the sense that whether

firms and CEOs actually engage in relational contracting is an empirical question. Finding

evidence that is generally consistent with relational contracts may shed new light on the

recent debate on pay-for-luck; that is, CEOs are rewarded for good luck (positive industry

performance) but not punished for bad luck (e.g., Bertrand and Mullainathan, 2001; Garvey

and Milbourn, 2006). One viable explanation in a static model is that CEOs’outside option

values are correlated with their firms’performance, so that firms adjust CEO pay for reten-

tion purposes (Oyer, 2004; Bizjak et al., 2008). In a dynamic framework, our results suggest

that firms adjust CEO pay in response to the expected future value of the relationship.

Our empirical model for CEO bonuses includes a measure of the state of the world,
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which is lagged sales growth (and the component of lagged sales growth that nets out factors

that may be related to CEO effort). The relationship between sales growth and executive

compensation has also been explored in the literature. For example, Hallock and Oyer

(1999) present evidence that in addition to being rewarded for current performance, CEOs

are rewarded in year t for year t+1 increases in earnings. They also show that fourth-quarter

sales growth is a particularly good predictor of the following fiscal year’s earnings growth.

Therefore, the most recent observations on sales growth should receive the most weight in an

executive’s compensation contract. Whereas Hallock and Oyer focus on determining whether

executives have incentives to shift sales from one fiscal quarter to another, our focus is on

the role of sales growth as a persistent state variable that can be used to empirically detect

the use of relational contracts (versus formal contracts) according to our theoretical model.

Although our theoretical model describes stationary contracts, the literature has increas-

ingly considered nonstationary relational contracts. Some of the significant factors that lead

to nonstationarity include the agent’s limited liability and the principal’s private informa-

tion. For instance, Fong and Li (2012) show that limited liability can lead to backloading

of the agent’s utility, but that the optimal contract will be quasi-stationary when surplus is

suffi ciently high. Chassang (2010), Halac (2012), Li and Matouschek (2012) and Yang (2013)

show that the dynamics of relational contracts can involve nonstationary phases when the

principal has private information on its action, outside option, and costs of paying the agent,

or when the agent’s ability is private information. The main reason for the nonstationary

phase is related to learning.5

Our simple principal-agent model generates testable predictions, but it does not incor-

5We comment on the implications of uncertain information in our model at the end of Section 4.
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porate private information, and we do not consider non-stationary contracts. While un-

doubtedly important in general, nonstationarity may be of lesser concern for CEOs who

have successfully reached the top of their career ladders, and who interact with the board

frequently, potentially diminishing informational asymmetries.

Empirical evidence on relational contracting has been in scant supply in the literature.

Most of the existing evidence comes from inter-firm (supply) relationships rather than intra-

firm (employment) relationships (e.g., McMillan and Woodruff, 1999; Banerjee and Duflo,

2000; Johnson et al., 2002; Lafontaine and Slade, 2012). These papers are mainly focused

on showing that relational contracts can substitute for formal institutions like courts and

help sustain long-term relationships in many developing countries. Existing evidence on

relational employment contracts has been almost exclusively experimental (e.g., Brown et

al., 2004; Fehr et al., 2009; Camerer and Linardi, 2010), and has focused on capturing

features of competitive labor markets rather than testing the implications of principal-agent

relationships.6

3 The Model

Consider a repeated relationship between a principal and an agent, both of whom are risk-

neutral. Time has an infinite horizon with discrete periods indexed by t = 1, 2, . . .. In each

period t, the agent chooses effort et ∈ [0, 1] and produces output xt ∈ R+. Given et, the

6For instance, Brown et al. (2004) conduct experiments, where firms offer prepaid wages to workers and
workers can exert noncontractible effort. Relational contracting is operationalized by attaching ID numbers
to all firms and workers, allowing firms to make private offers to a particular worker each period. They show
that repeated interactions in the absence of third-party enforcement can lead to more effi cient outcomes than
one-shot interactions. However, there is no discretionary payment (i.e., bonus) at the end of period, and
the rationale for cooperation centers around reciprocity, so we believe that the experimental framework is
complementary to our study.
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agent incurs an effort cost C(et), with C(0) = 0, C ′(0) = 0, C ′(e) ≥ 0, C ′′(e) > 0, C ′′′(e) ≥ 0,

and lime→1C
′(e) =∞. The agent’s effort choice is not observed by the principal.

The agent’s effort generates stochastic output, xt ∈ {xF + ∆t + εt, xS + ∆t + εt}, where

xS > xF > 0, ∆t is the state of the world, and εt is a random (idiosyncratic) shock with mean

zero. We say that the agent succeeds if xt = xS +∆t+εt and that he fails if xt = xF +∆t+εt

in a given period t. The probability of success, p(et) ≡ p(xt = xS + ∆t + εt|et), is increasing

in effort, and we assume that p(0) = 0, p′(e) > 0, p′′(e) < 0, p′′′(e) ≤ 0.

Output xt is observable to both the principal and the agent, but it may not be verifi-

able by a third party. If xt is verifiable, then the principal can use formal contracting. If

xt is unverifiable, however, the principal must rely on relational contracting, as described

below. Both the principal and agent discount future payoffs at rate δ ∈ (0, 1), which can be

interpreted as the probability that the relationship continues in the following period.

There are two possible states of the world, and these are positively correlated over time.

The state evolves according to a Markov process: ∆t = {−∆,∆}, where 0 < ∆ < xF , and

P (∆t+1 = ∆t) = θ ∈ (1/2, 1). We say that the period-t state is good if ∆t = ∆ and that

it is bad if ∆t = −∆. Both states are a priori equally likely, i.e. P (∆1 = ∆) = P (∆1 =

−∆) = 1/2. Random shocks are independently and identically distributed with mean zero

on [−ε, ε], where 0 < ε < xF −∆.

The timing of the game is as follows. At t = 0, the principal offers the agent a contract

B that specifies payment at the end of each period t ≥ 1, conditional on the history of

previous play. The principal can commit to these payments when output is verifiable (formal

contracting) but not when it is unverifiable (relational contracting). At the start of any period

t ≥ 1, the state ∆t and the shock εt are publicly revealed. The agent chooses effort et, after
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which output xt is realized and publicly revealed. The principal then makes the payment

specified under B, or possibly reneges on this payment under relational contracting, and the

period ends. Play then continues to period t+ 1.

We focus on stationary Markov Perfect equilibria where, on the equilibrium path, period-

t payments and strategies depend only on xt, ∆t, and εt. We can therefore write B =

(bSG(εt), bFG(εt), bSB(εt), bFB(εt)), where bSG and bFG denote, respectively, the bonuses for

success and failure when the state is good, and bSB and bFB denote the bonuses for suc-

cess and failure when the state is bad. These bonuses may also depend on the value of

the contemporaneous shock, εt. We assume limited liability so that B ≥ 0, and we also

assume trigger strategies, where reneging on a payment specified by B causes the productive

relationship to end (Abreu, 1988). That is, the agent chooses zero effort in all subsequent

periods, and the principal offers zero bonus.

4 Theoretical Results

Markov strategies are independent of time because the state, but not time, affects current

and future payoffs. Suppose that the period-t state is good, i.e. ∆t = ∆. Then given contract

B, effort choice et, and shock εt, the principal’s expected period-t profits are πG(B, e) + εt,

where

πG(B, e) = p(e)(xS + ∆− bSG(εt)) + (1− p(e))(xF + ∆− bFG(εt)), (1)

and the agent’s expected period-t payoff is

uG(B, e) = p(e)bSG(εt) + (1− p(e))bFG(εt)− C(e). (2)
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Suppose instead that the period-t state is bad, i.e. ∆t = −∆. Then expected period-t

profits are πB(B, e)− εt, where

πB(B, e) = p(e)(xS −∆− bSB(εt)) + (1− p(e))(xF −∆− bFB(εt)), (3)

and the agent’s expected period-t payoff is

uB(B, e) = p(e)bSB(εt) + (1− p(e))bFB(εt)− C(e). (4)

For any t′ ≥ t, define Pt′,t ≡ P (∆t′ = ∆t), the probability that the period-t′ and period-t

states are the same. P (∆t+1 = ∆t) = θ implies that Pt′,t can be defined recursively by

Pt′,t = θPt′−1,t + (1− θ)(1− Pt′−1,t), (5)

for t′ ≥ t+ 1, with Pt,t = 1. Given that θ ∈ (1/2, 1), the correlation between states ∆t′ and

∆t is positive and decreasing in the time lag, t′− t: 1/2 < Pt′,t < Pt′−1,t for all t′ ≥ t+1, with

limt′→∞ Pt′,t = 1/2. Furthermore, it is straightforward to establish that Pt′,t is increasing in

θ.

Since shocks have mean zero, the present discounted value of expected profits as of a

period t when the state is good is ΠG(B, eG, eB) + εt, where

ΠG(B, eG, eB) =

∞∑
t=1

δt−1
(
Pt,1πG(B, eG) + (1− Pt,1)πB(B, eB)

)
, (6)
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with πG(B, eG) given by (1) and πB(B, eB) given by (3).7 Similarly, the present discounted

value of expected profits as of a period t when the state is bad is ΠB(B, eG, eB) + εt, where

ΠB(B, eG, eB) =
∞∑
t=1

δt−1
(

(1− Pt,1)πG(B, eG) + Pt,1πB(B, eB)

)
. (7)

Given a stationary contract and unobservable effort, the agent’s optimal effort choice in

any period t will only depend on the incentives offered in that particular period. Since both

states are a priori equally likely, and shocks have mean zero, the principal’s program under

formal contracting can be written as

max Π =
1

2
ΠG(B, eG, eB) +

1

2
ΠB(B, eG, eB), subject to (8)

eG(B) = arg max
e∈[0,1]

uG(B, e), (9)

eB(B) = arg max
e∈[0,1]

uB(B, e), (10)

B = (bSG(εt), bFG(εt), bSB(εt), bFB(εt)) ≥ 0. (11)

Under relational contracting, the principal is faced with a credibility constraint: he must

have an incentive to actually pay each bonus specified under B when called upon to do so.

Given trigger strategies, the optimal way for the principal to renege on a bonus is to withhold

it completely, so the benefit of reneging is equal to the size of the bonus. The cost of reneging

is the expected future profits lost from ending the productive relationship. This means that

7The notation makes explicit the fact that effort, eG, in the good state may differ from effort, eB , in the
bad state.
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the principal’s program under relational contracting includes the following constraints:

max{bSG(εt), bFG(εt)} ≤ δ

(
θΠG(B, eG, eB) + (1− θ)ΠB(B, eG, eB)

)
, (12)

max{bSB(εt), bFB(εt)} ≤ δ

(
(1− θ)ΠG(B, eG, eB) + θΠB(B, eG, eB)

)
. (13)

where both the cost and benefit from reneging may depend on the current state.

Note that the value of the shock, εt, does not enter into the principal’s objective function

(8), nor does it enter into any of constraints (9), (10), (11), (12), or (13). It follows immedi-

ately that the bonuses prescribed under the optimal contract are independent of εt; that is,

B = (bSG(εt), bFG(ε), bSB(εt), bFB(εt)) ≡ (bSG, bFG, bSB, bFB).

We begin with a lemma that simplifies the principal’s program.

Lemma 1 Under both formal and relational contracting, the principal never pays a positive

bonus in a period where the agent fails: bFG = bFB = 0.

The intuition for Lemma 1 is straightforward. For any given effort level, offering a

positive bonus for failure increases the principal’s expected payout. It also makes success

relatively less attractive for the agent, which reduces his incentive to exert effort. This leads

the principal to set the payment for failure as low as possible, which under limited liability

is equal to zero. In particular, this means that the optimal contract can be written as

B = (bSG, 0, bSB, 0). To ease notation, we henceforth drop the subscript S and write bG = bSG

and bB = bSB. Similarly, the optimal effort level only depends on the contract through the

bonus for success in that particular state, that is, eG(B) = eG(bG) and eB(B) = eB(bB).

Finally, Lemma 1 also implies that under relational contracting, credibility constraints

14



(12) and (13) reduce to

bG ≤ δ

(
θΠG(bG, bB, eG, eB) + (1− θ)ΠB(bG, bB, eG, eB)

)
, (14)

bB ≤ δ

(
(1− θ)ΠG(bG, bB, eG, eB) + θΠB(bG, bB, eG, eB)

)
. (15)

We now present a second lemma that will be useful in proving later results. It shows

that the optimal effort level is increasing in the size of the bonus but at a decreasing rate.8

Lemma 2 Let I ∈ {G,B}. Then bI ≥ 0 implies 0 ≤ eI(bI) < 1, where the inequality is

strict for all bI > 0. Moreover, eI(bI) is unique, with e′I(bI) > 0 and e′′I (bI) < 0.

The following proposition states our main result, where superscripts f and r denote

optimal bonuses under formal and relational contracting.

Proposition 1 If output is verifiable, then the principal will choose formal contracting and

offer the same bonus in both states: bf ≡ bfG = bfB > 0. If output is nonverifiable so that

contracting is relational, then the principal will offer a different bonus in each state if and

only if the discount factor is suffi ciently low: for any θ ∈ (1/2, 1), there exists δ0 ∈ (0, 1)

such that 0 < brB < brG ≤ bf for all δ ∈ [0, δ0) and brG = brB = bf for all δ ∈ [δ0, 1].

The principal knows that a large bonus will generate high effort, which increases expected

output and increases profits. However, a large bonus also increases the expected payment

to the agent, which decreases profits. The principal takes into account these two opposing

effects in setting the optimal bonus that gives marginal profits of zero. Marginal profits are

8Of course, under relational contracting, effort will only be positive if the promised bonus is credible.
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independent of the state, since the state does not affect the relationship between bonus and

effort, or the relationship between effort and success or failure. It follows that under formal

contracting, the principal will offer the same bonus bf in both states of the world.

The difference under relational contracting is that the principal faces a commitment prob-

lem. He would like to offer the same profit-maximizing bonus as under formal contracting,

but he must actually have an incentive to pay this bonus when the agent succeeds. Reneging

on a promised bonus increases immediate profits. However, it also decreases expected future

profits, as the agent stops working and the productive relationship ends. This means the

bonus bf will not be credible under relational contracting if it exceeds the discounted value

of expected future profits, which happens if the discount factor is suffi ciently low.

In this case, the principal can credibly promise a larger bonus in the good state than in

the bad state, since immediate profits are higher in the good state, and states are positively

correlated over time. The principal will then set brB < brG under relational contracting.

Total profits are lower than under formal contracting, since marginal profits are strictly

positive, but the principal cannot credibly commit to pay a larger bonus. The driving

force behind this result is clearly the correlation of states over time. That is, it can be

readily shown that as the realization of the future state becomes independent of the current

state (i.e., P (∆t+1 = ∆t) = θ → 1/2), the bonus paid in each state becomes identical

(limθ→1/2 b
r
B = limθ→1/2 b

r
G) because future profits have little relation to the current state.

We now describe further how the optimal bonuses depend on the discount factor.

Proposition 2 Consider the optimal bonuses bf , brG, and b
r
B, as given by Proposition 1.

Then bf is independent of δ, whereas brB and brG are increasing in δ whenever brB < bf ,
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brG < bf .

The optimal bonus under formal contracting is chosen to maximize immediate profits,

which are independent of discounting or of the future state. In contrast, the credibility

constraint under relational contracting depends on δ and θ through the discounted value of

expected future profits. When the discount factor is very low, the principal must offer a

similar bonus in both states, since only a small bonus can be credible (in fact, zero bonus as

δ → 0). An increase in δ allows the principal to credibly increase both brB and b
r
G. Proposition

1 shows that these bonuses are identical when δ becomes suffi ciently large, which means that

the difference in compensation across states is nonmonotonic in the discount factor.

We have presented a simple model to derive testable implications on the difference be-

tween formal and relational contracts. Although we have made several simplifying assump-

tions, we believe that our results would be robust to alternative assumptions. For instance,

suppose players were initially uncertain about the value of θ and held prior beliefs over

(1/2, 1). If the period-t state is good, then players will update their beliefs about θ towards

1, which drives up expected future profits, loosens the credibility constraint, and allows for

a larger bonus. If the period-t state is bad, then players will update their beliefs about θ

towards 1/2, which drives down expected future profits, tightens the credibility constraint,

and only allows for a smaller bonus. Hence, in any period t, we would still expect the bonus

to be larger if the state is good than if it is bad, but now bonuses would change over time as

players continue updating their beliefs. In the long run, beliefs would tend to the true value

of θ with probability one, and bonus payments would tend to brG and b
r
B from the above

analysis as well.
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5 Data

The executive compensation data used for the empirical analysis come from the Standard

& Poor’s Execucomp database for the period 1993—2011. Our sample comprises current

constituents of all S&P 500 (large cap), S&P 400 (mid cap) and S&P 600 (small cap)

companies.9 We focus on individuals identified as CEOs for each firm. The Execucomp

database contains an indicator for the executive who served as CEO for all or most of the year

(i.e., CEOANN); however, this variable often has missing entries, and the CEO designation

sometimes changes in a somewhat arbitrary fashion between co-CEOs and between chairman

and CEO, etc. Our solution was to check for irregular data patterns, verify the executives’

career profiles using online sources such as businessweek.com and forbes.com, and make

necessary corrections.

The data include individual executives’age and the date individuals became chief execu-

tive offi cers (i.e., BECAMECEO), from which we calculated each CEO’s tenure.10 Compen-

sation data are collected from each firm’s annual proxy (DEF 14A) and include the CEO’s

salary, bonus, equity-based compensation, and other components. Consistent with our theo-

retical model, we focus on executive annual bonus payments. Hence, our primary dependent

variable is executive i’s year-t bonus, which we denote by BONUSit. Due to the SEC rule

change (FAS 123(R)), ExecuComp made some important changes in the reporting format

for some variables as of 2006. For our purposes, the most important change was that an-

9Compustat does not show historical constituents. Thus, our sample includes new entries but not drop-
outs.
10Wherever the BECAMECEO entry was missing, we searched the executive’s career profile from the

previously mentioned source. Importantly, the ExecuComp database resets (overwrites) the BECAMECEO
variable when the same individual becomes a CEO more than once for various reasons. We did not reset the
CEO tenure whenever we found such cases.
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nual bonuses were mostly reported as Non-Equity Incentive Plan Compensation as of 2006,

meaning that the bonus variable equals zero for most cases starting in 2006. Therefore, from

2006 forward our bonus measure is defined to include non-equity incentive pay.11

After eliminating firms for which only a couple of years’ data are observed, we have

an unbalanced panel of 1490 firms by 19 years. We then obtain each firm’s financial in-

formation from the Compustat annual industrial file and match that information with the

compensation data. All financial variables in the raw data are measured in nominal values

(e.g., compensation, income, and balance sheet items), and we convert these to real values

(in 2005 dollars) using the GDP deflator. Following the literature (e.g., Bertrand and Mul-

lanaithan, 2001), we use income before extraordinary items as our measure of executive i’s

year-t performance and denote it by PERFit.

Our model includes εit, an idiosyncratic shock to executive i’s period-t performance. We

measure the shock using the sum of extraordinary items and discontinued operations, which

we denote byEIDOit. The factors included inEIDO represent financial occurrences that are

rare and unexpected. Such items would typically not factor into an evaluation of the future

prospects of a company because the events are seen as one-time shocks that should have

no bearing on the future. They are therefore considered irregular items that are separately

reported on income statements. Examples could include natural disasters and adjustments

arising from accounting changes.

In principle, EIDO should be serially uncorrelated. In practice, some serial correlation

11As Florin et al. (2010) note, "[s]trictly speaking, the bonus as listed in the table is formula-based pay
beyond cash salary. On the other hand, non-equity incentive compensation can be both short-term or long-
term pay that is based on some pre-set criteria (based on performance) whose outcome is uncertain [...] both
can be considered a type of bonus."
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might occur either because the events themselves are autocorrelated (e.g., an unexpected

hurricane on a particular segment of the coast might be the harbinger of a broader climatic

shift that makes that segment more hurricane prone in the future than it was in the past)

or because of reporting errors (e.g., management might purposely misclassify an ordinary,

recurring expense transaction as an extraordinary item or discontinued operation to make

the numbers for continuing operations on the income statement look better).

Our model also includes ∆it, the state, which is persistent (i.e., positively autocorrelated

over time). Any variable that is persistent and observed to economic agents at the time

executive actions are determined and bonuses are decided will suffi ce for our purposes. The

variable we use to capture the period-t state is SALESCHGPOSt−1, defined to be 1 if

SALESt−1 − SALESt−2 > 0, where SALESt denotes period-t sales revenue. Our use of

lagged SALESCHGPOS as a measure of the state requires discussion given that sales

growth has also been used in the literature as a measure of executive performance. As

previously mentioned, Hallock and Oyer (1999) argued that since the CEO’s goal is to

increase the firm’s scale, sales growth can be thought of as CEO performance.

Our view is that although sales growth belongs on the right-hand side of an executive

compensation equation (e.g., Murphy, 1985; and many subsequent studies), it is not an

ideal measure of CEO performance from the standpoint of our theory.12 Suppose that in

each of years t − 10, t − 9, . . . , t, company sales remain at 100. Then company sales jump

12Murphy (1985: 22) explains the rationale for including sales growth (and also the level of sales) on the
right-hand side of an executive compensation equation as follows: "In addition to stock performance, firm
size or growth may yield information relevant for determining levels of managerial effort. Indeed, several
theories of managerial production suggest that compensation should be partially determined by firm size or
growth, reflecting the quantity of resources controlled by the individual executive and the scope of managerial
responsibilities. For comparisons with previous literature, we have chosen sales and percentage change in
sales as proxies for firm size and growth."
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to 500 in year t+1, and from year t+2 forward they remain at 499. Thus, SALESCHGit−9 =

SALESCHGit−8 = . . . = SALECHGit = 0 whereas SALESCHGit+1 ' 161 and SALESCHGit+2 =

SALESCHGit+3 = . . . ' −0.2, where SALECHGit is the log-difference of sales multiplied

by 100. Using sales growth to capture CEO performance would imply a huge drop in perfor-

mance between years t+ 1 and t+ 2 and would also suggest that CEO performance in years

t+ 2 forward is lower than it was for the decade preceding year t+ 1, and both conclusions

seem unwarranted.

Although SALESCHGPOS is not ideal as a measure of CEO performance, a potential

concern from using it to measure the state in our model is that the state, ∆t, is not a function

of CEO actions, whereas sales growth from one year to the next could partially reflect those

actions. We address this concern in two ways. First, in our statistical models for the year-t

executive bonus, we include only lagged values of SALESCHGPOS on the right-hand side.

The rationale is that even if sales growth from years t− 2 to t− 1 contains some information

regarding CEO effort, this would be past effort and therefore irrelevant from the standpoint

of our theoretical model. All that we require to test our theoretical predictions is a serially

correlated variable that affects CEO performance, that is observed to economic agents at the

time of their decisions, and that is exogenous (as a consequence of being pre-determined) as

of the current year t.

Second, we also consider an alternative measure of the state: we use the predicted values

from individual regressions (one for each firm in the sample), each of which has the following

form: SALESCHGt = γ0 + Ztγ + ωt, where Zt is a vector of time-varying covariates

measuring factors that are observable to economic agents in year t, that affect sales growth,

and that are unrelated to CEO effort. We then compute a binary variable equaling 1 if
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the lagged predicted value is positive and zero otherwise. Note that the residual, ωt, is the

unexplained part of sales that can be attributed (in part) to CEO effort. Measuring the

state using predicted values nets out these effort-based components that are embedded in

ωt. In the results we report, Zt contains a linear time trend and the real GDP growth rate

between years t− 2 and t− 1.13

The final variable needed to address our model empirically is a measure of the discount

factor, δit. Recall that in the theoretical model there is a critical threshold for the discount

factor, beyond which the bonus is insensitive to the state both for formal and relational

contracts. Only when the discount factor is below the threshold does a difference emerge

between the two contract forms. We therefore need a proxy to identify low values of δit.

We rely on the probability of default: The greater the likelihood of default, the less weight

the economic agents place on future payoffs when making current decisions. Although the

likelihood of default depends on a number of factors, one such factor that clearly affects the

likelihood and that is observed in the data is leverage; that is, high leverage increases the

default risk (Crosbie and Bohn, 2003). We therefore use the measure LEV ERAGEit as an

empirical proxy for (1− δit).14

13A downside to this robustness check as compared to our main results that use lagged SALESCHGPOS
as the state variable is that the residual, ωt, likely contains more than just CEO effort, so by subtracting
ωt we are potentially netting out too much, including some information that is persistent and observed to
the economic agents and that should be included in the measure of the state.
14LEV ERAGE is defined to equal (DLTT + DLC)/(DLTT + DLC + CEQ), where DLTT and DLC

are the book value of long-term debt and debt in current liabilities, respectively. CEQ is the market value
of common/ordinary equity, which is calculated by multiplying the closing stock price and the number of
shares outstanding.
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6 Empirical Analysis

Our goal in the empirical analysis is to model the variation in executive bonuses over time

and across firms, as a function of idiosyncratic "shocks" and the persistent "state" (i.e., two

different types of "luck") to show evidence for or against relational contracts as opposed to

formal contracts.

Table 1 presents summary statistics for the variables in our main analysis. We begin

by investigating whether our measure of the shock (i.e., EIDO) is serially uncorrelated as

required by the theoretical model. Panel A of Table 2 presents an autocorrelation matrix

for EIDOt and its first three lags. These results confirm that EIDO is a good measure

of idiosyncratic shocks; the variable is positively correlated only in adjacent years, and

even those correlations are all below 0.03. Our model also requires that the measure of

state (i.e., SALESCHGPOS) be positively autocorrelated. Panel B of Table 2 presents an

autocorrelation matrix for SALESCHGPOSt and its first three lags. As required by the

theory, the state variable is positively autocorrelated, with correlations in adjacent periods

exceeding 0.21 and with correlations as far as three periods apart remaining statistically

significant at the five percent level with a magnitude exceeding 0.05.

Our theoretical model posits that the idiosyncratic shock and the persistent state both

have positive direct effects on output, or CEO performance. Therefore, we first estimate the

following CEO performance equation:

PERFit = α0 + α1EIDOit + α2SALESCHGPOSit−1 +Xitα+ θi + uit,
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where Xit includes age, age squared, tenure, tenure squared, and year dummies, and where

θi is a firm fixed effect. As seen in column 1 of Table 3, the estimates of α1 and α2 are both

positive and significant at the five percent level, suggesting that both the idiosyncratic shock

and the persistent state are positively related to CEO performance.

Turning next to the predictions on bonus compensation, we start with the following linear

bonus equation:

BONUSit = β0 + β1EIDOit + β2SALESCHGPOSit−1 +Xitβ + λSALARYit + φi + εit,

where again Xit includes age, age squared, tenure, tenure squared, and year dummies, and

where φi is a firm fixed effect. We include the CEO’s base salary on the right-hand side

because salary and bonus can be expected to positively covary, though omitting salary from

the model does not change our results of interest.

Note that our specification differs from what is typically seen in the executive compensa-

tion literature. That is, we do not include the (endogenous) executive performance measure

on the right-hand side of the compensation equation. A common objective in the executive

compensation literature is to measure pay-for-performance sensitivities, that is, the slope of

a performance measure in a total compensation regression. In contrast, consistent with our

theoretical model, our dependent variable is the executive’s bonus rather than total compen-

sation. Further, our objective is to measure the effect of stochastic "luck" (both idiosyncratic

and persistent) on the bonus. Thus, our bonus equation can be interpreted as a reduced

form in which the performance equation has been substituted for the (endogenous) CEO

performance appearing on the right-hand side of the bonus equation.
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First, our theoretical model predicts β1 = 0 in the bonus regression. Second, if the bonus

equation happens to be estimated on a sample for which the discount factor, δit, is low,

then our theoretical model predicts β2 = 0 if the data-generating process is characterized

by formal contracts and β2 > 0 if it is characterized by relational contracts. Results are

displayed in column 1 of Table 4 and reveal β2 > 0, consistent with relational contracts.

However, the result that β1 > 0 is at odds with the theory, and we discuss potential reasons

for this result at the end of the section.

If the sample includes observations for which the discount factor is high, then the pre-

ceding test may fail to produce evidence of β2 > 0 even if the data-generating process is

characterized by relational contracts. This leads us to consider the following interactive

bonus specification:

BONUSit = β0 + β1EIDOit + β2SALESCHGPOSit−1 + β3(SALESCHGPOSit−1 ×

LEV ERAGEit) + β4LEV ERAGEit +Xitβ + λSALARYit + φi + εit.

Since high leverage implies a high default risk and therefore a low value of δit, our model

predicts β2+β3LEV ERAGEit = 0 under formal contracting and β2+β3LEV ERAGEit > 0

under relational contracting. Results from the interactive bonus model are displayed in

column 2 of Table 4. The estimate of β2 is statistically insignificant, though the estimate of

β3 is positive and significant. Whereas the marginal effect of SALESCHGPOS was 165 in

the linear model of column 1, it varies considerably with leverage in the interactive model

of column 2. When evaluated at 0.04 (the 25th percentile of the LEV ERAGE distribution)

the marginal effect is only 22.5, whereas when evaluated at 0.52 (the 90th percentile of the
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LEV ERAGE distribution) the marginal effect is about 313. Given our theoretical model,

these results can be interpreted as consistent with relational contracts, though again the

result β1 = 0 is at odds with the theory.

Another interesting result from the interactive bonus model is that the coeffi cient of

LEV ERAGE is negative and significant, suggesting that companies pay considerably lower

bonuses when the default risk is high. As noted earlier, a firm’s financial leverage might

directly affect the amount of the bonus the firm can credibly promise (Fahn et al., 2013).

Our result that the coeffi cient of LEV ERAGE is negative and significant is consistent with

Fahn et al.’s prediction that debt weakens the firm’s incentive to honor relational contracts.

One might think that a firm’s leverage is an endogenous choice variable. However, Graham

et al. (2013) show that there is little relation between executive compensation and leverage

in the aggregate.15

Since the financial and utilities industries are frequently excluded from estimation samples

in the finance literature, we excluded those observations and found that our results are

insensitive to that change in sample. Our main analysis is based on the entire sample that

combines S&P 500 (large cap), S&P 400 (mid cap), and S&P 600 (small cap) companies.

We also repeated the analysis within each of those three subsamples. In each of them we

found that our main result concerning the marginal effect of SALESCHGPOS on the

bonus (and how it varies with LEV ERAGE) remained qualitatively unchanged. We also

tried including additional dummies for different ranges of values of sales growth, as opposed

15Specifically, Graham et al. (2013: 4) find that “both the level and performance sensitivity of executive
compensation was largely constant from the end of World War II through the mid-1970s —precisely when
leverage ratios underwent their largest change. Only after 1980 did executive pay experience a significant
increase in amount and sensitivity to performance, precisely as corporate leverage stabilized and began a
slight decline.”
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to simply a binary indicator for whether sales growth is positive. Again, our results were

qualitatively unchanged, though in specifications that included larger numbers of dummies

not all of them were statistically significant.

Since SALESCHGPOSt−1 is predetermined in the BONUSt equation, the fact that the

state variable may be affected by CEO effort (which is not the case in our theoretical model)

should not be a problem given that the variable is unaffected by year-t effort. Nonetheless,

as a further robustness check we computed the SALESCHGPOSt−1 dummy based on the

predicted values from the regressions discussed earlier, repeating all of our analyses with this

new state variable. Panel C of Table 2 displays the autocorrelation matrix for the new state

variable. The autocorrelations are considerably higher than those in Panel B, ranging from

0.61 to 0.67 for adjacent periods and reaching 0.38 even for the correlation three periods

apart.

Column 2 of Table 3 reveals positive and statistically significant coeffi cients on EIDOt

and (the alternative measure of) SALESCHGPOSt−1, consistent with the theory. Columns

3 and 4 of Table 4 display results from the linear and interactive bonus regressions. The

results qualitatively match those from the first two columns of Table 4 that are based on the

actual measure of SALESCHGPOSt−1.

A potential concern is that the GDP growth rates that are used to predict the alternative

measure of SALESCHGPOSt−1 are based on calendar year and are not tailored to each

firm’s fiscal-year-end month, whereas the data from firms is based on fiscal years (with end

months that are not always in December). We do not see this as a concern given that in the

prediction regressions we used lagged GDP growth to predict sales growth. However, as a

further check we restricted the sample to those firms having fiscal years ending on December
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31. The results from these estimations qualitatively match those we have already discussed.

Both the linear and interactive bonus models show a positive and statistically significant

marginal effect of EIDO even though our theory predicts a value of zero. This result suggests

that pay-for-luck in our data is partly driven by features that are not capture in the model.

One possibility is that firms are liquidity constrained and use part of any unexpected cash

flow to award CEO bonuses. Another possibility is that CEOs might have bargaining power

that allows them to claim a share of any windfall profits. If pay-for-luck were due only to

liquidity constraints, then the impact of the serially-correlated state on the bonus payment

should not depend on the discount factor, since all that matters is current cash flow. If

instead pay-for-luck were due only to bargaining power, then the impact of the state on

the bonus payment should be largest for firms with high discount factors, who are likely to

remain solvent and for whom the current state has a large impact on expected future profits.

Neither alternative explanation is consistent with the positive interaction we find between

leverage and state, which suggests a central role for relational contracting.

7 Conclusion

We have presented a simple model in which formal and relational contracts yield a different

prediction for how bonus payments respond to "luck" (as measured both by a persistent state

and by a time-independent shock). Given that differentiating theoretical prediction, our main

focus in the empirical work was on finding evidence for or against relational contracting in

CEO compensation. Drawing on a large sample of publicly-traded companies, and using
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reasonable proxies for the state and shock variables, we found evidence consistent with

relational contracting in the payment of CEO bonuses. Hence, our findings shed new light

on the debate on the pay-for-luck phenomenon. That is, the reason why firms seem to reward

CEOs for luck is that the expected future value of the employment relationship is larger in a

good state of the world than in a bad state, so that the firm’s credibility to pay bonuses as

well as the CEO’s incentive to exert effort are higher in good states. The approach we have

developed can also be applied to establish the empirical relevance of relational contracting

for other (non-executive) worker groups.

8 Appendix

Proof of Lemma 1. By (2) and (9), the agent’s optimal choice of effort in the good state

is

eG(B) = arg max
e∈[0,1]

p(e)bSG + (1− p(e))bFG − C(e),

= arg max
e∈[0,1]

p(e)(bSG − bFG)− C(e).

(16)

By (4) and (10), the agent’s optimal choice of effort in the bad state is

eB(B) = arg max
e∈[0,1]

p(e)bSB + (1− p(e))bFB − C(e),

= arg max
e∈[0,1]

p(e)(bSB − bFB)− C(e).

(17)

Consider two contracts, b = (bSG, bFG, bSB, bFB) and B′ = (b′SG, 0, b
′
SB, 0), with b′SG =

bSG − bFG and b′SB = bSB − bFB. By (16) and (17), the contracts result in identical effort

provision in both states: eG(B) = eG(B′) and eB(B)− eB(B′).
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Clearly, bFG > 0 implies bSG > b′SG. Moreover, (1) shows that πG(B, e) is strictly

decreasing in bSG and in bFG. Hence, bFG > 0 implies πG(B, e) < πG(B′, e), so that B′

yields higher profits than B in the good state. Similarly, bFB > 0 implies bSB > b′SB, and

(3) shows that πB(B, e) is strictly decreasing in bSB and in bFB. Hence, bFB > 0 implies

πB(B, e) < πB(B′, e), so that B′ yields higher profits than B in the bad state.

It then follows from (6) and (7) that both ΠG(B) < ΠG(B′) and ΠB(B) < ΠB(B′)

whenever bFG > 0 or bFB > 0. Hence, the optimal formal contract that solves (8), subject

to (9), (10) and (11), must have bFG = bFB = 0. Moreover, the credibility constraints (12)

and (13) are stricter under B than under B′ whenever bFG > 0 or bFB > 0, so the optimal

relational contract must also have bFG = bFB = 0. �

Proof of Lemma 2. Let I = G, where the proof is entirely analogous for I = B. By

Lemma 1, (2) reduces to

uG(bG, e) = p(e)bG − C(e).

C ′′(e) > 0 and p′′(e) < 0 imply ∂2

∂e2
uG(bG, e) < 0, so that arg max

e∈[0,1]
uG(bG, e) is unique.

The first-order condition is

p′(eG)bG − C ′(eG) = 0, (18)

and the second-order condition is

p′′(eG)bG − C ′′(eG) < 0.
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If bG = 0, then (18) reduces to C ′(eG) = 0. It therefore follows from C ′(0) = 0 that

eG(0) = 0. If instead bG > 0, then p′(0) > 0 and C ′(0) = 0 mean that (18) is violated at

eG = 0. Moreover, (18) must be violated at eG = 1, since p′(1) is finite and lime→1C
′(e) =∞.

Taken together, this implies eG(bG) ∈ [0, 1), with eG(bG) ∈ (0, 1) for bG > 0.

Differentiating both sides of (18) with respect to bG yields

p′′e′G(bG)bG + p′ − C ′′e′G(bG) = 0 (19)

where we drop the arguments for p′, p′′ and C ′′ for ease of exposition. Rearranging gives

e′G(bG) =
p′

C ′′ − p′′bG
,

which is strictly positive by p′ > 0 and by the second-order condition. Now differentiating

(19) with respect to bG yields

p′′′(e′G(bG))2bG + p′′e′′G(bG)b+ 2p′′e′G(bG)− C ′′′(e′G(bG))2 − C ′′e′′G(bG) = 0,

and rearranging gives

e′′G(bG) =
(p′′′bG − C ′′′)(e′G(bG))2 + 2p′′e′G(bG)

C ′′ − p′′bG
.

The numerator is negative by p′′′ ≤ 0, C ′′′ ≥ 0, p′′ < 0 and e′G(bG) > 0. The denominator

is positive by the second-order condition, so that e′′G(bG) < 0. �

Proof of Proposition 1. Relational contracting only differs from formal contracting
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through additional constraints (14) and (15). It follows immediately that the principal will

engage in formal contracting whenever it is feasible, so whenever output is verifiable.

By (18), the optimal effort in the good state is defined by p′(eG)bG−C ′(eG) = 0. Similarly,

the optimal effort in the bad state is defined by p′(eB)bB − C ′(eB) = 0. Effort does not

depend directly on the state but only on the bonus offered for success, so we can write

e(b) ≡ eG(b) = eB(b), where b ≥ 0.

By (6) and (7), Π = 1
2
ΠG + 1

2
ΠB is increasing in πG and πB. Applying Lemma 1 to (1)

yields

πG(b) = p(e(b))(xS − xF − b) + xF + ∆, (20)

and applying Lemma 1 to (3) yields

πB(b) = p(e(b))(xS − xF − b) + xF −∆. (21)

The principal’s first-order condition for b is therefore the same in both states, π′(b) = 0,

or

d

db

(
p(e(b))

)
(xS − xF − b)− p(e(b)) = 0. (22)

We know that d2

db2
p(e(b)) < 0, since p′′(e) < 0 holds by assumption and e′′(b) < 0 holds by

Lemma 2. This implies π′′(b) < 0, so that bf ≡ bfG = bfB = arg max
b≥0

πG(b) = arg max
b≥0

πB(b) is

uniquely defined by (22). Moreover, p′(e) > 0, e′(b) > 0 and p(0) = e(0) = 0 imply p(e(0)) =

0 and d
db
p(e(b)) > 0. It follows from (22) that π′(0) = d

db

(
p(e(0))

)
(xS − xF )− p(e(0)) > 0, so
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that bf > 0.

Under the relational contracting, the principal faces additional constraints (14) and (15),

given by

bG ≤ δ

(
θΠG(bG, bB) + (1− θ)ΠB(bG, bB)

)
,

and

bB ≤ δ

(
(1− θ)ΠG(bG, bB) + θΠB(bG, bB)

)
,

with effort e(bG) and e(bB) in the good and bad state, respectively. By (6) and (7), write

ΠG(bG, bB) =

( ∞∑
t=1

δt−1Pt,1

)
πG(bG) +

( ∞∑
t=1

δt−1(1− Pt,1)
)
πB(bB), (23)

and

ΠB(bG, bB) =

( ∞∑
t=1

δt−1(1− Pt,1)
)
πG(bG) +

( ∞∑
t=1

δt−1Pt,1

)
πB(bB). (24)

We showed above that πG(b) and πB(b) are both strictly concave and attain their max-

imum at bf > 0. It follows that both functions are strictly increasing for all b ∈ [0, bf )

and strictly decreasing for all b > bf . Hence, for any bB, we have ∂
∂bG

ΠG(bG, bB) > 0

and ∂
∂bG

ΠB(bG, bB) > 0 for all bG ∈ [0, bf ); ∂
∂bG

ΠG(bG, bB) < 0 and ∂
∂bG

ΠG(bG, bB) < 0 for

all bG > bf ; ∂
∂bG

ΠG(bf , bB) = 0 and ∂
∂bG

ΠB(bf , bB) = 0. Similarly, for any bG, we have

∂
∂bB

ΠG(bG, bB) > 0 and ∂
∂bB

ΠB(bG, bB) > 0 for all bB ∈ [0, bf ); ∂
∂bB

ΠG(bG, bB) < 0 and

∂
∂bB

ΠB(bG, bB) < 0 for all bB > bf ; ∂
∂bB

ΠG(bG, b
f ) = 0 and ∂

∂bB
ΠB(bG, b

f ) = 0.
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Taken together, it follows that neither bG > bf nor bB > bf can be optimal, since

marginally reducing either bonus would increase ΠG and ΠB and loosen (14) and (15). It

also follows that, for given bB, the optimal bonus in the good state, bG(bB) is the minimum

of bf and the unique value of bG for which (14) binds. Similarly, for given bG, the optimal

bonus in the bad state, bB(bG) is the minimum of bf and the unique value of bB for which (15)

binds. The optimal bonus pair (brG, b
r
B) is defined by bG(bB(brG)) = brG and bB(bG(brB)) = brB.

Without loss of generality, we can restrict both bG(bB) and bB(bG) to a domain of [0, bf ].

The function bG(bB) is continuous, with range [bG(0), bG(bf )], where bG(0) > 0 and bG(bf ) ≤

bf . We also have b′G(bB) ≥ 0 and b′′G(bB) ≤ 0, where the inequalities are strict if and only if bB

satisfies bG(bB) < bf . Similarly, the function bB(bG) is continuous, with range [bB(0), bB(bf )],

where bB(0) > 0 and bB(bf ) ≤ bf . We have b′B(bG) ≥ 0 and b′′B(bG) ≤ 0, where the inequalities

are strict if and only if bG satisfies bB(bG) < bf .

Define the correspondence f(bG) as the inverse of bG(bB): f(bG(bB)) = bB. In (bB, bG)

space, f(bG) is the reflection of bG(bB) about the 45 degree line, bB = bG. Hence, the

correspondence is continuous, with domain [bG(0), bG(bf )], range [0, bf ], with f(bG(0)) = 0,

and with f ′(bG) > 0 and f ′′(bG) > 0 on [bG(0), bG(bf )). Note that the correspondence may

be set valued at bG(bf ), where f(bG(bf )) = [limbB→bf− f(bG(bB), bf ].

Given continuity and their respective domain and range, there exists some brG ∈ (0, bf ]

for which bB(brG) = f(brG), so where the curves intersect. Moreover, since bB(bG) is increasing

and concave while f(bG) is increasing and convex, this point of intersection is unique and

defines the optimal bonus pair: brB ≡ bB(brG) = f(brG) > 0.

We will have brB < brG if and only if bB(bG) intersects the 45 degree line before f(bG) does:

that is, if bB(b) = b implies f(b) < b. Since f(bG) is the inverse of bG(bB), an equivalent
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condition is that bB(b) = b implies bG(b) > b. Similarly, we will have brB = brG if and only if

bB(b) = b implies bG(b) = b.

When b = bG = bB, the credibility constraint in the good state (14) reduces to

b ≤ δ

(
θΠG(b) + (1− θ)ΠB(b)

)
, (25)

and the credibility constraint in the bad state (15) reduces to

b ≤ δ

(
(1− θ)ΠG(b) + θΠB(b)

)
. (26)

By definition, bG(b) and bB(b) are the minimum of bf and of the value of b for which (25)

and (26) bind, respectively. Hence, we must show the following: (i) if there exists b ∈ (0, bf )

for which (26) binds, then (25) holds strictly at b (so that brB < brG), and (ii) if (26) holds

strictly for all b ∈ (0, bf ), then (25) holds strictly as well (so that brB = brG = bf). From (25),

(26) and θ > 1/2, it is suffi cient to show that ΠG(b) > ΠB(b) for all b ∈ (0, bf ), where

ΠG(b) =

( ∞∑
t=1

δt−1Pt,1

)
πG(b) +

( ∞∑
t=1

δt−1(1− Pt,1)
)
πB(b),

and

ΠB(b) =

( ∞∑
t=1

δt−1(1− Pt,1)
)
πG(b) +

( ∞∑
t=1

δt−1Pt,1

)
πB(b)

)
.

Recall that Pt,1 > 1/2. Moreover, comparing (20) and (21) shows that πG(b) > πB(b),

since ∆ > 0. Thus, we can conclude that ΠG(b) > ΠB(b).

To complete the proof, note that ΠG(b) and ΠB(b) are increasing without bound in δ.
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Define δ0 ∈ (0, 1) as the value of δ for which (26) binds at b = bf . Then (26) holds strictly

for all b ∈ (0, bf ) if and only if δ ∈ [δ0, 1]. We therefore have brB < brG for all δ ∈ (0, δ0) and

brB = brG = bf for all δ ∈ [δ0, 1]. �

Proof of Proposition 2. Under formal contracting, the optimal bonus bf is defined by

first order condition (22), which is independent of δ. It follows that bf is independent of δ.

It remains to show that brB and b
r
G are increasing in δ whenever b

r
B < bf and brG < bf . In

the proof of Proposition 1, we defined f(bG) as the inverse of bG(bB), with f ′(bG) > 0 and

f ′′(bG) > 0 on [bG(0), bG(bf )). Recall that b′B(bG) > 0 and b′′B(bG) < 0 for all bG satisfying

bB(bG) < bf . We showed that the optimal bonus pair is given by the unique point where

bB(bG) and f(bG) intersect: brB = bB(brG) = f(brG).

By (23) and (24), both ΠG(bG, bB) and ΠB(bG, bB) are strictly increasing in δ, so the right-

hand-sides of (14) and (15) are strictly increasing in δ as well. This implies ∂
∂δ
bB(bG) > 0 for

any bG satisfying bB(bG) < bf , and ∂
∂δ
f(bG) < 0 on [bG(0), bG(bf )).

Differentiating both sides of bB(brG) = f(brG) with respect to δ gives

∂bB
∂δ

+
∂bB
∂bG

dbrG
dδ

=
∂f

∂δ
+

∂f

∂bG

dbrG
dδ

,

or equivalently

dbrG
dδ

=
∂bB
∂δ
− ∂f

∂δ
∂f
∂bG
− ∂bB

∂bG

, (27)

where the right-hand-side of (27) is evaluated at bG = brG. We know that
∂bB
∂δ

> 0 and

∂f
∂δ
< 0 whenever brG < bf and brB < bf . Moreover, we must have ∂f

∂bG
> ∂bB

∂bG
when evaluated at
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brG, since bB(bG) is concave, f(bG) is convex, and (brG, b
r
G) is their unique point of intersection.

It follows from (27) that dbrG
dδ

> 0, which in turn implies dbrB
dδ

= ∂bB
∂δ

+ ∂bB
∂bG

dbrG
dδ

> 0. �
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                                              Table 1 

 

                             DESCRIPTIVE STATISTICS 
 

 Mean SD 

BONUSit 1037.359      1885.46 

SALARYit 712.138      394.103           

PERFit 0.038     0.562   

EIDOit -0.465     404.581   

SALESCHGPOSit-1 

SALESCHGPOSit-1 (predicted) 

0.737  

0.867    

0.440   

0.339         

LEVERAGEit 0.221     0.206           

AGEit 55.924     7.620          

TENUREit 8.209     8.109           

NOTE. – Sample size is 24,919 firm-years. Years cover 1993-2011. 
All monetary variables are measured in 2005 U.S. dollars, converted via  

the GDP deflator.   

 
 

 

 

                                                                                 Table 2 

 
PANEL A: AUTOCORRELATION MATRIX FOR EIDO 
 EIDOit EIDOit-1 EIDOit-2 EIDOit-3 

EIDOit 1.000    

EIDOit-1 0.027* 1.000   

EIDOit-2 0.006 0.027* 1.000  

EIDOit-3 0.007 0.006 0.026* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. 

 

 

PANEL B: AUTOCORRELATION MATRIX FOR SALESCHGPOS 
 SALESCHGPOSit SALESCHGPOSit-1 SALESCHGPOSit-2 SALESCHGPOSit-3 

SALESCHGPOSit 1.000    

SALESCHGPOSit-1 0.217* 1.000   

SALESCHGPOSit-2 0.070* 0.210* 1.000  

SALESCHGPOSit-3 0.051* 0.084* 0.232* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. 
 

PANEL C: AUTOCORRELATION MATRIX FOR (PREDICTED) SALESCHGPOS 
 SALESCHGPOSit SALESCHGPOSit-1 SALESCHGPOSit-2 SALESCHGPOSit-3 

SALESCHGPOSit 1.000    

SALESCHGPOSit-1 0.607* 1.000   

SALESCHGPOSit-2 0.462* 0.673* 1.000  

SALESCHGPOSit-3 0.379* 0.463* 0.659* 1.000 

NOTE. – * indicates correlation is statistically significantly different from zero at the 5% level. SALESCHGPOSit equals 1 if the  

the predicted value for year t from an individual regression for the ith firm is positive, and equals 0 otherwise, where the regression 

for firm i takes the following form: SALESCHGt = γ0 + Ztγ + ωt, where Zt includes the first lag of real GDP growth, a linear time 

trend, and a constant.  
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                                          Table 3 

 

         CEO PERFORMANCE REGRESSIONS 

 

                                              (1)                   (2)                     
 PERFit PERFit 

EIDOit        0.006 

(0.002)*** 

      0.006 

  (0.002)*** 

SALESCHGPOSit-1 16.753 

(1.903)*** 

      

 

SALESCHGPOSit-1 (predicted)       18.009 

     (2.569)*** 

AGEit 2.154 

(1.562) 

      1.971 

     (1.492) 

(AGEit)
2 -2.346 

(1.382)* 

      -2.178 

     (1.320)* 

TENUREit 0.224 

(0.370) 
       0.300 

     (0.354) 

(TENUREit)
2 0.849 

(1.128) 
       0.672 

     (1.077) 

Constant       -1.675 

      (43.943) 

      1.902 

     (41.982) 

Sample Size N = 18,511 N = 19,117 

NOTE. – Both specifications include year dummies and firm fixed effects.  
Standard errors are in parentheses below each estimate. Statistical  

significance at the 10%, 5%, and 1% levels denoted by *, **, and ***.  

Dependent variable, PERFit, is income before extraordinary items.  
SALESCHGPOSit-1 (predicted), used in model (2), is computed as described  

in the note to Table 2, Panel C. All coefficients and standard errors are 

multiplied by 1000 for easier reading.    
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                                         Table 4 

 

CEO BONUS REGRESSIONS 

 

                                                         (1)               (2)              (3)  (4) 
 BONUSit BONUSit BONUSit BONUSit 

EIDOit      0.076 

(0.024)*** 

0.069 

(0.024)*** 

        0.076 

      (0.024)*** 

0.069 

(0.024)*** 

SALESCHGPOSit-1 165.425 

(27.525)*** 

-2.451 

(41.069) 

       

 

 

SALESCHGPOSit-1×LEVERAGEit  604.068 

(124.233)*** 

  

SALESCHGPOSit-1 (predicted)         121.806 

     (37.482)*** 

-126.123 

(56.503)** 

SALESCHGPOSit-1×LEVERAGEit (pred.)    845.427 

(155.722)*** 

LEVERAGEit  -1885.230 

(139.139)*** 

 -2196.837 

(168.533)*** 

SALARYit 1.100 

(0.060)*** 
1.108 

(0.060)*** 

       1.253 

      (0.058)*** 

1.257 

(0.058)*** 

AGEit -26.416 

(22.573) 
-22.798 

(22.462) 

    -11.589 

    (21.801) 

-10.070 

(21.689) 

(AGEit)
2 21.365 

(19.965) 

18.025 

(19.866) 

     10.033 

    (19.279) 

8.924 

(19.181) 

TENUREit 17.834 

(5.394)*** 

17.666 

(5.369)*** 

     12.448 

    (5.2005)** 

12.326 

(5.179)** 

(TENUREit)
2 -33.061 

(16.379)** 
-31.136 

(16.301)* 

    -20.592 

    (15.788) 

-20.676 

(15.711) 

Constant     1202.062 

   (634.983)*       

1551.748 

(632.449)** 

     492.942 

    (612.833) 

990.369 

(611.599) 

Sample Size N = 18,323 N = 18,300 N = 18,929 N = 18,906 

NOTE. – All specifications include year dummies and firm fixed effects. Standard errors are in parentheses below  

each estimate. Statistical significance at the 10%, 5%, and 1% levels denoted by *, **, and ***. Dependent variable,  

BONUSit, is the year-t bonus for firm i’s CEO in 2005 dollars. SALESCHGPOSit-1 (predicted), used in models (3) and 

(4) is computed as described in the note to Table 2, Panel C.    


