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Abstract

On normal days, the temperature decreases with altitude, allowing air pollutants to rise

and disperse. During inversion episodes, a warmer air layer at higher altitude traps pollu-

tants close to the ground. We show how readily available NASA satellite data on vertical

temperature pro�les can be used to measure inversion episodes on a global scale with high

spatial and temporal resolution. Then, we link inversion episode data to ground level

pollution monitors and to daily in- and outpatient records for the universe of children in

Sweden during a six-year period to provide instrumental variable estimates of the e�ects

of air quality on children's health. The IV estimates show that the respiratory illness

health care visit rate increases by 8 percent for each 10 µm/m3 increase in PM10; an es-

timate four times higher than conventional estimates. Importantly, by linking the health

care data to detailed records of parental background characteristics, we show that chil-

dren from low-income households su�er signi�cantly more from air pollution than children

from high income households. Finally, we provide evidence on the importance of several

mechanisms that could contribute to the di�erence in the impact of air pollution across

children in rich and poor households.
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1 Introduction

Children in low- and high-income households di�er in their health and wellbeing. The socio-

economic health gap is present at birth and increases over the child's life cycle (Case, Lubotsky

and Paxson, 2001). The capacity formation framework of Cunha and Heckman (2007) illus-

trates how childhood health could generate signi�cant e�ects on subsequent health, educational

attainment and labor market outcomes through dynamic complementarities and cross produc-

tivity with the development of cognitive and non-cognitive skills. An increasing number of

design based studies have also found that early life health does not only in�uence adult health,

but also educational attainments (Almond, Edlund and Palme, 2009) and labor market out-

comes (Almond, 2006; Nilsson, 2008). By now, there is strong evidence on the link between

parents' socio economic status and child health (c.f. Currie, 2008 and Currie and Almond,

Almond and Currie (2011)); a link that suggests that parts of the intergenerational persistence

in inequality are due to di�erences in childhood health conditions. Yet, why children from

poorer socio-economic backgrounds experience more frequent and more severe health problems

is far from clear.

Di�erences in environmental amenities have been suggested as one culprit believed to

contribute to the socio-economic gap in child health. In this paper, we focus on identifying how

one aspect of the environment, ambient air pollution, in�uences children's respiratory health

and to what extent and why poor air quality a�ects children from di�erent socio economic

backgrounds di�erentially. Respiratory illnesses among children account for a large proportion

of the health care costs and productivity loss due to parental work absence related to child

health, and asthma is one of the most common chronic conditions among children, a�ecting

around 10-15% of the children in developed countries. Air pollution is believed to be an

important factor causing and aggravating respiratory illnesses.

The identi�cation of the causal relationship between air quality and child health is, how-

ever, hampered by a number of factors. First, high-income parents tend to reside in larger

metropolitan areas where pollution levels are, on average, higher and, at the same time, high

income parents may have more resources available to mitigate the e�ects of poor air quality,

which potentially leads to the health costs on the general population being understated. Such

between city residential sorting may induce substantially biased estimates of the e�ects of

poor air quality. Second, within city sorting may also lead to that families with low-income

more often may live close to major roads than high income families, and may therefore be

exposed to worse air quality. At the same time, houses in neighborhoods close to the major
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roads may have a worse standard in general. Thus, there is a clear risk using cross sectional

data that the in�uence of ambient air pollution is overstated if, for example, we are not able

to take housing standard, or other aspects of the home environment such as parental smoking,

into account. Alternatively, families with children who su�er from e.g. asthma may choose to

locate in areas with better air quality, which if not properly taken into account would bias the

e�ect of poor air quality on respiratory illness downwards. Third, since individual monitoring

of air pollution exposure is expensive, air quality measures typically stem from a few ambient

air quality monitors located in the most polluted areas. Hence, measurement error in pollution

exposure is likely to be a serious concern.

To address these issues, this paper uses NASA satellite data on vertical temperature pro-

�les to provide causal estimates of the short term e�ects of poor air quality on children's

health using inversion episodes as an instrumental variable. On normal days, the tempera-

ture decreases monotonically with altitude and the constant �ow of air between warm and

cool areas helps clear pollutants from the ground level air layer. During inversion episodes,

the temperature follows a non monotonic pattern in altitude. The temperature �rst increases

with altitude up to the inversion layer, and then decreases with altitude. This leads to a sharp

deterioration of air quality in the ground level air layer since pollutants are trapped under the

inversion layer.

Using the vertical temperature pro�le data, which is readily available with high spatial

resolution on a global scale, we identify daily temperature inversion episodes for six years.

We merge the inversion episode data with ground level air quality monitor data, and provide

nonparametric estimates showing that, conditional on ground level weather conditions, there

is no apparent relationship between PM10 levels and inversion strength � the temperature

di�erence between the ground level air layer and the air layer just above it � following normal

nights. However, following inversion nights, there is a strong positive relationship between

inversion strength and PM10 levels.

When combining these data sources with administrative in and outpatient health care

records, we �nd a corresponding pattern between inversion strength and children's respiratory

illnesses. On average, following inversion nights, the 24h PM10 levels are 30 percent higher

than after normal nights and the respiratory illness rate is �ve percent higher. At the rela-

tively low pollution levels considered, these estimates suggest that an increase of 10 µm/m3

PM10 is associated with an increase of the respiratory health care visit rate by eight percent.

This instrumental variable estimate is more than four times larger than the corresponding

ordinary least squares estimate from the same data. The relationship between the OLS and
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the IV is almost identical to estimates in previous studies that also address measurement error,

avoidance behavior, and other forms of endogeneity problems but use more context speci�c

instrumental variables (see e.g. Moretti and Neidell, 2011).

The validity of the instrumental variable approach developed here hinges on the assumption

that inversion episodes only in�uence respiratory health by their impact on air quality. This

identifying assumption could, for example, be violated if inversion episodes also change e.g.

children's outdoor activities. For example, if inversion episodes are not only associated with

pollution levels but also colder outdoor temperatures, changes in cloud coverage, or other

weather conditions that reduce outdoor activities, our instrumental variable estimator would

produce biased estimates of the e�ects of air pollution on health outcomes.

We address this important concern in two ways. First, all our baseline estimates control

�exibly for ground level temperatures, cloud coverage, humidity and precipitation, wind speed

and season of the year. Second, as a falsi�cation exercise we make use of data on information

on external causes for health care visits. Since accidents are related to children's activity

patterns but arguably not directly to pollution levels, we check whether the changes in air

pollution from inversion episodes are related to the risk of having to visit the health care

providers due to an injury with external causes. We �nd no evidence of a correlation between

inversion episodes and injuries due to external causes.

Our study contributes to the literature on air pollution and health in several ways. First,

the instrumental variable approach we develop can be used with high resolution in both space

and time on a global scale. Previous design-based studies have used instrumental variables

that provide a valid inference in their particular contexts, typically in areas with relatively high

pollution levels. The method can easily be extended to other countries, to other outcomes,

and to other populations. Our approach opens up the possibility for comparative studies

of the e�ects of air pollutants in various contexts using the same instrument. This could

mitigate the concern that di�ering estimates of e�ects of air pollution are due to di�erences

in estimation methods, rather than di�erent e�ects on populations in e.g. developing vs.

developed countries. The inversion data can potentially also be used in combination with

more location speci�c instruments to improve estimation precision.

Second, as compared to other countries, Sweden has relatively low air pollution levels,

and previous studies have only shed limited light on health e�ects in low pollution areas.

For example, the 24-hour mean PM10 level in our sample is 20µg/m3 , 35µg/m3 in the

United States, and 67µg/m3 in Mexico City. Yet, we still �nd substantial e�ects from modest

increases in PM10 levels. Our non parametric estimates indicate a linear relationship at least
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up to 50µg/m3 (the current WHO 24 hour air quality guideline), and hence, our results

suggest that increasing the Swedish 24-h average PM10 level to the United States level would

increase children's respiratory health care visit rate by, on average, 12 percent. Clearly, even

at levels well below current regulatory standards, signi�cant bene�ts on child health can be

expected from improvements in air quality. These bene�ts should be taken into account when

considering the net bene�ts of stricter air quality standards.

Third, the richness of the data allows us to examine the e�ects of air pollution by back-

ground characteristics in a more detailed way than most previous studies. For example, while

we �nd that parents' educational attainments seem to play a limited role, household income

seems to matter much more. The estimated e�ects are about twice as large on children in

households with an income below the median as compared to those above. We also assess the

relevance of some of the potentially important mechanisms behind the SES-gap in the e�ects

of air pollution. In particular, we �nd that the gap between children in rich and poor house-

holds decreases substantially if comparing children with relatively poor baseline health. We

�nd no indication that the SES-gap is explained by strong di�erences in avoidance behavior

across rich and poor households.

Combined with the absence of di�erential e�ects across households with di�ering educa-

tional attainment, and no indication of strong nonlinearities in the e�ects of PM10, these

results suggest that economic resources via di�erences in children's baseline health play a big-

ger role than information di�erences in generating the SES-gap in the health e�ects of air

pollution in our low pollution setting. Since pollution exposure early in life has also been

found to in�uence economic outcomes later in life (Nilsson, 2009; Sanders, 2012; Isen, Rossin-

Slater, Walker, 2013), it seems that environmental policies could also play an important role

in reducing inequality in economics outcomes.

Finally, the AIRS data can be incorporated in models predicting pollution levels at many

more locations than what is currently possible using ground based vertical temperature sounders

(e.g. available in 4 locations in Sweden, and 90 locations in the US). By developing methods to

produced more precise location-speci�c pollution forecasts and e�ective means of disseminating

such forecasts, the health care costs associated with respiratory symptoms could potentially be

reduced by allowing sensitive populations to more e�ectively engage in defensive investments.

The rest of the paper is structured as follows: we start with a simple conceptual framework

to guide our empirical exercise in section 2. In section 3, a background on air pollution

and health is presented, and the data used is described in section 4. Section 5 discusses

the econometric methodology, and the results can be found in section 6. The �nal section
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summarizes and concludes the paper.

2 Conceptual Framework

To �x ideas, and motivate our empirical exercise, suppose that respiratory illnesses induced

by changes in air pollution are capture by the three key factors in equation (1)

Resp = f(P,A,H) (1)

where respiratory illnesses (Resp) are a function of ambient air pollution, (P), parental

awareness/avoidance behavior (A), and baseline child health (H ). P, A, and H can be viewed as

functions of parents' income and/or education. In this paper, our three primary objectives are

(i) �rst to provide causal estimates of the direct biological e�ect of air pollution on respiratory

health, ∂Resp/∂P. For this purpose, our empirical strategy is designed to isolate the in�uences

of pollution while holding avoidance behavior and baseline health �xed. (ii) Our second

objective is to document to what extent the e�ects of pollution on child health may di�er

between children in di�erent socio economic groups. Recent studies (Nilsson, 2009; Currie,

2008) �nd suggestive evidence that the reduced form e�ects of air pollution on children's health

tend to be larger on children in low socio economic status (SES) households. i.e.:∣∣∣dResp
dP

∣∣∣
LowSES

>
∣∣∣dResp

dP

∣∣∣
HighSES

However, conclusive evidence on the mechanisms behind the SES-gap in the e�ects is still

missing. So our third objective is to (iii) provide insights on the key underlying mechanisms.

To emphasize the di�erent channels highlighted in previous work, assume that Equation (1)

can be represented by the linear approximation that allows for interaction e�ects between P

and A, and P and H :

Resp = α1 + α2P + α3A+ α4H + α5P
2 + α6A× P + α7H × P (2)

In Equation (2), respiratory illnesses are portrayed as a function of the three key factors

displayed in equation (1), and capture three mechanisms that could contribute to di�erences in

the marginal e�ects of air pollution on children across socio-economic groups. First, ambient

air pollution a�ects child respiratory illnesses negatively through an increase in P via α2+α5,

where α5 captures potentially nonlinear e�ects of ambient air pollution levels on child health.
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Second, the e�ects of an increase in P can be mitigated by parental avoidance behavior (A)

through the negative α6. Finally, the in�uences of marginal changes in pollution can also be

a�ected by the child's health stock. Children with a higher level of H are assumed to be more

resilient to e�ects of changes in P and hence, α7 < 0.

This stylized framework suggests that children from poorer households can be more a�ected

by changes in ambient air pollution than children from richer households for three reasons.

First, as noted in the introduction, children from poorer households generally have poorer

health than children in rich households. Second, parents in richer households generally have

higher educational attainments and hence, may be more aware of e�ects of air quality on child

health or, alternatively, parents in high income households may be more willing to engage in

avoidance behavior to reduce the risk of children's respiratory illnesses since the parental costs

of child illness could be higher in terms of lost parental labor earnings. Third, children in

poorer households may be observed to be more in�uenced by average pollution levels within

a municipality since the pollution levels vary even within small neighborhoods. If noise from

tra�c or ambient air pollution levels are re�ected in housing prices, children from poorer

households may more often tend to reside closer to pollution sources and hence, be exposed

to higher levels of pollution. In other words, if children to poor and rich are equally a�ected

but we are not able to observe individual levels of exposure, only e.g. municipality means, it

may occur that children in poorer households are more a�ected given the same level of average

pollution levels within a municipality.

Equation (2) shed light on the importance of the three mechanisms, however it can, of

course, be extended to be made more complex and more realistic. For example, it is possible

that the extent of parental avoidance behavior depends on the level of P, i.e. that parents in

high pollution areas (such as Los Angeles) are more likely to be willing to engage in (poten-

tially costly) avoidance behavior than parents in low pollution areas (such as in our setting).

Similarly, parents of children with a lower health stock may also be more willing to engage in

avoidance behavior if their child is more likely to be a�ected by changes in pollution levels.

Below we provide evidence on the general e�ect, e�ects on children from di�ering socio

economic backgrounds and also try to shed some light on the importance of the three mech-

anisms highlighted in equation (2); (i) non linearities in e�ects of air pollution, di�erences in

(ii) avoidance behavior and/or (iii) baseline health across children in rich and poor households.
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3 Background on the relationship between air quality and health

3.1 Particulates, Health, and Air Quality Policies in the European Union

Epidemiological studies have attributed negative health e�ects from exposure to particulate

matter (PM). PM is a general term used for particles where the major components are sul-

fate, nitrates, ammonia, sodium chloride, carbon, mineral dust and water. The particles are

identi�ed according to their aerodynamic diameter, as either PM10 (with a diameter of 10 mi-

crometers or less1) or PM2.5 (with a diameter smaller than 2.5 µm). When breathed in, the

particles are su�ciently small to penetrate to the thoracic region, where the �ner fraction has

a high probability of deposition in the smaller conducting airways and alveoli. Inhalation of

PM has been found to trigger in�ammation in the smaller airways, leading to the exacerbation

of asthma and chronic bronchitis, airway obstruction and decreased gas exchange(Nel et al.,

1998; Ghio and Devlin, 2001). Besides aggravated asthma and increased respiratory symp-

toms, inhalation of PM has also been associated with heart attacks were evidence suggests

that the e�ects may be expressed through several, probably interrelated, pathways (WHO,

2006).

To mitigate the e�ect on public health and environmental protection, Sweden follows the air

quality standards set by the EU-directive 2008/50/EG. For PM10, the limit values for short-

term (24 hours) are 50 µg/m3 (not to be exceeded more than 35 times per calendar year)

and 40 µg/m3 long term (annual) exposure.2 However, the inability to identify a threshold

below which adverse health e�ects are not observed implies that any limit value may leave

some residual risk when exposed to PM. This has led the World Health Organization (WHO)

to recommend more stringent air quality guidelines (WHO, 2006), with a 24-hour mean of 50

µg/m3 and an annual mean of 20 µg/m3. The US EPA 24-hour PM10 standard is 150 µg/m3

(not to be exceed more than 1 time per year).

In Europe, it is the short-term limit of PM10 that is most often exceeded in cities and

urban areas. Countries such as Poland, Italy, Turkey, Latvia, Lithuania, Sweden, the United

Kingdom and the Balkan region all exceeded the daily limit value in 2010. Sites that exceeded

the 24 hour limit value were tra�c sites (33 percent), urban background sites (29 percent),

other, mostly industrial sites (17 percent) and rural sites (14 percent) within the EU (EEA,

2012). Figure A1 shows the attainment situation for PM10 in 2010 in the EU-27 countries.

1By de�nition, PM10 thereby includes both `coarse particles' and the �ner PM2.5 particles. Due to data
availability, we focus on PM10 in the current paper.

2Limits also exist for PM2.5, but so far only at the long-term annual level.
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In Sweden, the total emission of particles decreased by around 23 percent between 1990

and 2000, but has since remained constant (see Figure A2). In Sweden, the energy and

transport sector contribute to more than 75 percent of total particle emissions (SEPA, 2012).

The dominant factors contributing to the emissions are electricity and heat production, and

in urban areas emissions from road vehicles including road wear.

3.2 Previous studies on Pollution and Respiratory Health

Epidemiology

Epidemiological studies on the health e�ects of air pollution have to a large extent relied

on cross sectional data and compared the prevalence of hospitalizations due to respiratory

illness in cities with di�ering pollution levels at a single point in time, or used time-series data

for e.g. PM10 levels and asthma for a particular city or region. Using these approaches, it is

di�cult to draw causal conclusions about the magnitude of the e�ects on health.

Cross-sectional studies are likely to confound e�ects of pollution with e�ects of unobserved

factors that are correlated with pollution levels and respiratory illnesses in the cross section.

It is not even clear in which direction omitted variables will tend to bias such estimates;

a higher pollution level could signal better employment opportunities and income which, in

turn, may mitigate the risk of experiencing respiratory health problems. Alternatively, higher

air pollution levels could simply capture e�ects of unobserved factors such as a generally

worse environment, housing standard, parental or child smoking patterns, etc. which, in turn,

may result in overstated estimates of the e�ects of air pollution. Pure time series studies

may, on the other hand, not only capture the e�ect of variations in pollution but also other

unobserved factors that co varies with pollution patterns, for example, weather conditions,

seasonal variations in activity patterns As discussed further below, temporal �uctuations in

air quality are also, to the extent that they are captured in pollution forecasts, potentially

related to defensive investments or avoidance behavior among sensitive populations such as

asthmatics. Such behavioral changes are likely to lead to understated e�ects of poor air quality.

There are a few exceptions in the epidemiological literature on the e�ects of air pollution

on health that employ a design based approach for inference. Pope, Schwartz and Ransom

(1992) examine the e�ects of variations in PM levels following a temporary shutdown of pro-

duction in a steel mill. By comparing respiratory related emergency room visits in the valley

where the mill was located to the neighboring valley, they �nd that when PM levels dropped

following the plant shut down so did respiratory illnesses.
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Economics

Economists have contributed to the literature on e�ects of poor air quality on health in several

ways during the last decade, primarily by highlighting potential identi�cation problems and

by using increasingly sophisticated empirical strategies designed to address these endogeneity

problems.

First, air pollution is not randomly assigned across locations. Chay and Greenstone (2003b)

note that air quality is capitalized in house prices where individuals with a higher income

(which can be seen as a function of productivity and health) and/or individuals with prefer-

ences for clean air may sort into better air quality areas. Thus, exposure to pollution levels is

typically endogenous. Failing to account for this kind of residential sorting, unobserved deter-

minants of health may bias the estimation of the e�ect of pollution on health. In the absence

of a randomized experiment, this has led to a rise in estimation techniques to isolate exogenous

changes in pollution. For example, Chay and Greenstone (2003b,a) use the implementation of

the Clean Air Act of 1970 and the recession of the early 1980s to exploit the induced temporal

and spatial variation in TSP levels in the United States. Lleras-Muney (2010) use seemingly

random allocations of military families across military bases in the US to estimate the e�ects

of air pollution on children's hospitalizations.

Some studies use seasonal variations in pollution levels within residential areas to address

endogenous sorting (e.g. Currie and Neidell (2005); Currie, Hanushek, Kahn, Neidell and

Rivkin, 2009) . One potential problem with using seasonal variation is the risk of confounding

by weather conditions, since weather directly a�ects health (Deschenes and Moretti, 2009)

and pollution levels. Accounting for all possible weather factors in�uencing both pollution and

health is a challenging task. Knittel, Miller and Sanders (2011) show that including higher

order terms for temperature and precipitation as well as second-order polynomials for some

weather conditions, such as wind speed, humidity, and cloud cover, have a substantial impact

on estimates of pollution on infant mortality.

A third complication arises from measurement error both in monitored pollution levels

but even more importantly when assigning pollution exposure to the individual. In particular

when using �xed e�ect models. Since individual exposure indicators are typically only available

for small samples, the predicted pollution level is at best a noisy measure for true exposure.

Studies typically assign data from ambient air pollution monitors to the residential location

of the individuals, an approach that is likely to generate substantial measurement errors due

to the spatial variation in pollution. If the measurement error in e.g. PM10 levels can be
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written as PM10 = u+ PM10∗ , where PM10 is the observed exposure, PM10∗ is the true

level of exposure and u is the measurement error, assumed to be independent from the true

exposure level cov(u, PM10∗) = 0, then the OLS estimates of the e�ects of air pollution will

be biased towards zero. There are good reasons to suspect that measurement error is an

important problem in pollution exposure studies and that accounting for measurement error

is important.

A �nal problem is that the e�ect of pollution on health might be highly dependent on

behavioral responses. For example, individuals might undertake defensive investments by pur-

chasing preventive pharmaceuticals (Deschenes et al., 2012) or, perhaps particularly relevant

in high pollution settings, engage in avoidance behavior and reduce their time spent outdoors

(Neidell, 2009). Ignoring behavioral responses could generate downward biased estimates. To

account for avoidance behavior, Moretti and Neidell (2011) estimate the health e�ects of ozone

by employing data on daily shipping tra�c in the port of Los Angeles as an instrumental vari-

able for ozone levels. Their �ndings are striking. The OLS estimates are signi�cant but small;

exposure to ozone causes $11.1 million per year in annual hospital costs in Los Angeles. IV

estimates, accounting for behavioral responses, measurement errors and potential confounders

are considerably higher; indicating an annual cost of $44 million from respiratory related hos-

pitalizations. Their results underscore the importance of accounting for unobserved factors in

order to understand the full welfare e�ects caused by air pollution.

Schlenker and Walker (2011) instrument air pollution using air tra�c congestion in re-

mote major airports to estimate the health impact of air pollution on populations living in

the vicinity of 12 local major airports in California. They �nd that carbon monoxide (CO)

leads to signi�cant increases in hospitalization rates for asthma, respiratory, and heart related

emergency room admissions that are an order of magnitude larger than conventional estimates.

They assess the di�erential impact across age groups, but they do not examine whether the

e�ects di�er across socio economic groups.

3.3 Previous Studies on Temperature Inversions, Pollution, and Health

As we will see in our analysis, the majority of inversion episodes are far from catastrophic;

however, many of the worst pollution episodes on record have been found to coincide with

inversion episodes.3 Most recently, in January 2013, severe smog marked three straight days

3E.g. Donora, Pennsylvania (1948), The London Fog (1952), and the Union Carbide plant disaster in Bhopal
(1984).
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of dangerous air pollution in Beijing, China. The hazardous airborne smoke, with alarming

levels of PM matter exceeding 900 µg/m3 in some districts, led the authorities to implement

an emergency response plan for the �rst time in the Chinese history.

Many studies have previously related inversion episodes to poor air quality. For example,

a study by Kukkonen et al. (2005) �nds that inversion periods in European cities coincide

with levels of PM far above average. Likewise, in January 2004, Utah's Cache Valley (US)

experienced an event of stagnant weather conditions that drove particulate concentrations to

new levels, two times the 24-hour standard used at the time by the US EPA (Malek, Davis,

Martin and Silva, 2006).

A few studies have also examined the e�ects of inversion episodes on public health. Abdul-

Wahab, Bakheit, and Siddiqui (2005) suggest an association between the monthly number of

inversion days and the monthly mean of daily visits to the emergency department in Oman.

Beard et al. (2012) used weather balloon data in Salt Lake County and related inversion

episodes to emergency room visits and found a positive correlation. Wallace, Nair and Ka-

naroglou (2010) �rst used the AIRS data to look at public health using cross section data on

674 asthmatics (on average 55 years old) in Hamilton, Ontario, Canada. They found evidence

of an association between an indicator for inversion and sputum cell counts (an indicator of

airway in�ammation).

Methodologically, the most similar previous work is a recent study by Arceo-Gomez, Hanna

and Olivia who uses information on inversion episodes measured in one (1) location over Mexico

City4. Arceo-Gomez et al. exploit the number of thermal inversions over the city per week

as an instrumental variable for weekly pollution levels in the municipalities within the city.

Their result indicates that a 1 percent increase in PM10 over a year leads to a 0.42 percent

increase in infant mortality, while a 1 percent increase in CO results in a 0.23 percent increase

in infant mortality. They do not provide any results across socio economic groups.

Arceo-Gomez et al. compare the estimates from their developing country setting to esti-

mates from US studies, but acknowledge that they are not fully comparable since the models

di�er across studies. By using the approach developed in the current study, comparative stud-

ies can be conducted on a global scale; in areas with high (such as Mexico City, with a PM10

24-h mean of 67 µg/m3), medium (e.g. the United States, PM10 24-h mean of 35 µg/m3), or

relatively low levels of pollution (e.g. the Swedish cities in our sample, PM10 24-h mean of 20

4The instrumental variable approach we use was developed independently and without knowledge of their
paper. The �rst-stage results were presented at the ASSA Meetings in Chicago in 2010, Uppsala University
(2010), and at SIEPR, Stanford University (2010).
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µg/m3) using the same identi�cation strategy.

4 Data

We compiled a dataset on daily health care visits, weather conditions and pollution measures

from September 2002 until September 2007. Each data source is described in detail below and

summary statistics is provided in Table 1.

4.1 Data sources

i) Identifying inversion episodes

To identify inversion episodes, we exploit vertical temperature pro�le data available from

NASA's Atmospheric Infrared Sounder (AIRS).5 In 2002, the AIRS instrument was launched

onboard the NASA satellite AQUA. AIRS produces a 3-D map of temperature and water

vapors in the atmosphere. The primary mission of AIRS is to improve weather predictions,

and collect a wide range of data twice a day.

NASA provides the AIRS data in three di�erent forms. Level 1 data provides the highest

resolution (1.5km×1.5km) and is not yet available to researchers outside NASA. Level 2 data

(L2) has a spatial resolution of approx. 45km×45km. Level 3 data (L3), which we use,

has a spatial resolution of 1°×1° which corresponds to approximately 100km×100km at the

relevant latitude. The data is collected twice a day; at 02am and 02pm local time. The L3

standard products are the primary public L3 product that only contains well-validated �elds

and includes temperature and water vapor pro�les that are reported for 24 pressure levels.

Grid maps coordinates range from �180.0° to +180.0° in longitude and from �90.0° to +90.0°

in latitude. In the current study, we use L3 data due to the easy access and its readiness for

use by researchers. Downloading the L3 data for a particular region is straightforward and

irregularities have been corrected by the NASA. Future studies could exploit additional spatial

variation using L2 data.

The L3 temperature pro�le data contains temperatures for 22 layers, de�ned by average

air pressure in the layer. To identify inversion episodes, we use the temperatures for the two

pressure levels closest to the ground (1000 hPa and 925hPa).6 The 1000hPa layer tempera-

ture corresponds to the surface conditions and 925hPa layer measure conditions at approx.

5As part of the activities of NASA's Science Mission Directorate and it is archived and distributed by the
Goddard Earth Sciences (GES) Data and Information Services Centre (DISC).

6AIRS Level 3 version 5 with spatial box: 55S, 10W, 70N, 24E.
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600m above the sea level. In the analysis, we use the temperature di�erences between these

two layers to identify inversion episodes and inversion strength. Under normal conditions,

the temperature decreases with altitude and hence, the temperature di�erence between the

925hPa and 1000hPa air layer is negative. Under inversion episodes, the di�erence is positive.

As further motivated in section 4, we focus on night-time inversion episodes which occurred

on around 25 percent of the days in our sample. The inversion strength is de�ned as the tem-

perature di�erence between the two layers during inversion, with higher values corresponding

to stronger inversions7.

We also use information on cloud coverage and humidity from the AIRS data. Cloud

coverage is important since the AIRS instruments cannot retrieve temperature pro�les if the

grid cell is under complete cloud coverage. Missing values from the inability to measure

temperature pro�les is another reason why researchers may prefer to use L3 data over L2

data.8 Humidity data is also important, since it has been linked to both air pollution level

and health.

We also gathered wind and precipitation data measured every third hour at 119 weather

stations around Sweden maintained by the Swedish Meteorological and Hydrological Institute

(SMHI) as additional controls in our analysis. As a �rst step, daily means are calculated, after

which the distance to the closest temperature grid point is obtained. Then, we assign the mean

of the six nearest weather stations to each grid point, weighting by the inverse distance between

the station and the grid centroid. Missing values were replaced by the monthly-municipality

mean. We also present estimates without these additional weather variables included.

ii) Pollution data

Pollution data for the period studied is obtained from the Swedish Environmental Research

Institute, IVL. Pollution monitors collect data on either an hourly or a daily basis. We assign

each pollution monitor to the nearest temperature grid by calculating the distance to the grid

cell centroid (see Figure 1). Since some of the municipalities have more than one monitor,

a daily municipality-pollution mean is calculated. Out of Sweden's 290 municipalities, 90

measured PM10 daily during the period studied. We concentrate on PM10 levels due to data

availability; other pollutants are measured with much lower frequency, consistency, and spatial

7It is possible to calculate whether inversion occurs at higher altitudes as well. We abstained from doing
so since we expected that the strongest e�ect on pollution would come from inversion episodes close to the
ground.

8In our sample, on average 13.5 % (i.e. around 4 days per month) of the AIRS observations are missing due
to full cloud coverage. The share of missing temperature pro�le days per month: Jan (.196) Feb ( .160) March
(.111) April (.093) May (.095) June (.113) July (.132) Aug (.107) Sept( .119) Oct (.149) Nov (.171) Dec (.178).
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coverage. The PM10 levels are furthermore highly focused on in policy circles due to the health

e�ects associated with PM exposure.9

However, a cautionary note is clearly in order before interpreting our results as the e�ects

of PM10 on children's health outcomes. Since data on other pollutants is patchy in spatial

and temporal coverage, we are not able to assess the in�uence of inversion on other pollutants

in our setting; hence, our subsequent two stage least squares results of the e�ects of PM10

on health outcomes should be interpreted with care, because they may re�ect the impact of

e.g. nitrous oxides or particulates, or a combination of these pollutants. This is an endemic

problem in the air pollution literature since all air pollutants are never measured. Because of

this, we conservatively interpret the PM10 levels as a measure of air quality. Future studies

with more diverse data on pollutants could examine which types of measured pollutants are

most a�ected by inversion episodes. Notice that we also discuss the role of other pollutants

further along with the reduced form results below.

We link the inversion data to the pollution data by assigning each pollution monitor to its

closest AIRS grid centroid point located over land, and use the 24h average PM10 concentration

as our air quality indicator.

iii) Health data

Health measures were constructed utilizing both inpatient and outpatient data from the

Swedish National Board of Health and Welfare (Socialstyrelsen), and cover all children living

in Sweden in the age span of 0-18 years.10 The inpatient data contains information on all visits

to the health care providers which result in an overnight stay at hospitals. The outpatient data

captures visits where the patient does not stay overnight.11 The data includes information

on date of admission, type of diagnosis and municipality of residence. The ICD codes have

9Sweden follows the air quality standards set by the EU-directive 2008/50/EG. For PM10 there are limit
values for short-term (24 hours) and long-term (annually) exposure. However, the consequent inability to
identify a threshold below which adverse health e�ects are not observed implies that any limit value may leave
some residual risk when exposed to PM. This has led the World Health Organization (WHO) to recommend
more stringent air quality guidelines (WHO, 2006).

10Young children are among the most susceptible to e�ects of air pollution (ALA, 2001; Kim et al., 2004).
Compared to adults, children have higher breathing rates and therefore a higher intake of air pollutants per
unit of body weight. Since children's lungs and immune system are not fully developed, exposure to air
pollution opens up for the possibility of di�erent responses than seen in adults. Furthermore, they also spend
more time outdoors than adults when concentrations from air pollution are generally higher, thereby adding
to their potential exposure. Since as much as 80 percent of alveoli are formed postnatally and the lung
continues to develop throughout adolescence, exposure to air pollutants poses a serious risk to this population
group(Schwartz, 2004).

11As all children in Sweden have access to free healthcare through taxation these measures of respiratory
health problem should be highly valid.
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been aggregated using the Clinical Classi�cation Software (CCS) developed by the Agency for

Healthcare Research and Quality (AHRQ).

Using individual identi�ers, it is possible to link these administrative records to background

data on individual characteristics, such as year and month of birth, place of residence, parents'

income and educations from Statistics Sweden. Using these two data sources, we calculated

the rate of health care visits due to respiratory illness by dividing the number of daily visits

in each municipality by the total number of children residing in the municipality, multiplied

by 10,000.

4.2 Summary statistics: Health, Weather and Pollution

Table 1 provides summary statistics of the variables described above. Panel A presents the

means and standard deviations for the outcome variables used in the analysis. Information on

the rate of health care visits is divided into cause of visit, and broken down by age. We also

provide statistics on health care visits due to external causes. Since there exists no obvious

causal pathway relating these accidents to air pollution or our instrumental variable, we later

use the rate of visits caused by externally reasons in a check of the internal validity of our

�ndings.

Panel B in Table 1 summarizes descriptive statistics for the key covariates used in our

analysis. In order to shed some light on how pollution levels are a�ected by the occurrence of

inversions, the weekly development of PM10 levels during night-time inversions as compared

to normal nights is illustrated in Figure 2. As expected, the pollution levels are signi�cantly

higher following inversion episodes. The level of PM10 accumulates over the week, increasing

from Monday to Fridays and diminishes over the weekend. This weekend e�ect is due to

decreased tra�c volumes (Murphy et al., 2007), and occurs both during normal conditions

and inversion episodes.

Figure 3 shows the monthly patterns of PM10 levels and shows peaks in March and April,

much likely due to both residential and commercial heating, as these are in general cold months

in Sweden. But this is also due to the fact that snow coverage on roads is largely absent during

these months, while studded tires are used which increase road wear and which are also strongly

associated with PM levels. During our sample period, most nocturnal inversions occur during

the �rst (55 percent) and second (24 percent) quarter of the year. For the third and fourth

quarter of the year, the corresponding frequencies were 6 percent and 15 percent, respectively.

Moreover, on a monthly basis, the PM10 levels are on average higher during inversion episodes
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as compared to normal nights. From Figures 2 and 3, it is clear that the weekly and seasonal

changes in�uence the behavior of pollutants under both inversions, as well as under normal

conditions. This implies that both seasonal and weekly variations are important factors to

take into account in our analysis since, for example, children's outdoor activity patterns are

also likely to vary across weekdays and seasons.

For the 90 municipalities measuring PM10 in the period September 2002 to September

2007, there are 34,175 valid vertical temperature pro�les, that is when temperature readings

are non missing in both layers. Out of these, 8,608 night-time inversions were identi�ed.

Descriptive statistics for the key variables conditional on inversion status are provided in

Table 2. Comparing normal nights with inversion nights, we conclude that the health care

visit rate is, on average, 4.7 percent higher during the latter. Similarly, the PM10 level is on

average 59.6 percent higher throughout inversion nights, con�rming the pattern in Figures 2

and 3.

As expected, both daily and nightly temperatures are, on average, higher during normal

conditions, since inversion episodes are more frequent during the winter months than during

the summer months. A similar pattern can be observed for the remaining four weather vari-

ables. These mean di�erences in weather conditions across seasons highlight the importance

of �exibly accounting for season of the year, day of week patterns, and weather conditions in

the analysis for our identi�cation strategy to provide valid causal inference. Our econometric

speci�cation is presented next.

5 Econometric framework

The purpose of this paper is to study the causal relationship between air quality (PM10m)

on child health (the rate of hospital visits related to respiratory illnesses per 10 000 children).

To motivate the use of instrumental variables, let us �rst consider the structural equation of

the e�ect of PM10 on health, where we, for brevity, omit the time aspect:

Healthm = β0 + β1PM10m + em (3)

β1 is the parameter of interest and our primary objective is to test whether β1 6=0. In other

words, if exposure to air pollution has an e�ect on respiratory illness related hospital visits in

municipality m. em, is the error term. Under the identifying assumption that the error term

is uncorrelated with pollution exposure, PM10⊥em, the ordinary leasy square estimate of β1
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re�ects the causal impact of one additional unit of PM10 per m3 on the rate of health care

visits due to respiratory illnesses.

As pointed out in previous studies and as discussed above, several factors complicate the

estimation of this relationship and we have strong reasons to question whether the exogeneity

assumption holds. To deal with the endogeneity of residential location, weather conditions,

measurement error, and avoidance behavior we use the incidence of nighttime inversions as

an instrumental variable in a municipality by date panel data framework. We estimate the

following two equations by Two Stage Least Squares (2SLS):

Respiratory Illness Ratemd = β0 + β1PM10md + α′Wmd + ηd + θm + emd (4)

PM10md = γ0 + γ1Inversionmd + ρ′Wmd + ηd + θm + vmd (5)

where (4) is the second-stage and (5) is the �rst-stage equations. Inversionmd is our binary

instrumental variable indicating whether an inversion occurred in municipality m at date d, or

not. Both equations contain a vector of weather and time changing demographic characteristic

Wmd where α1 and ρ1 are corresponding parameter vectors that will be estimated. We include

in Wmd, precipitation, wind speed, humidity, cloud cover, and their squared counterparts,

together with daily and nightly temperature polynomials to account for a potential nonlinear

relationship between temperature, pollution levels and respiratory illnesses. We also include

timevarying variables such as the average age of the children in the municipality and the share

of mothers with college degrees as additional controls in Wmd.

ηd is a set of common year by month e�ects and day-of-week e�ects that nonparametrically

accounts for year-speci�c seasonal e�ects and weekday variations in pollution and respiratory

illnesses. The year-month e�ects take into account, for example, year-speci�c seasonal patterns

in respiratory illnesses associated with e.g. in�uenza outbreaks. θm are municipality-speci�c

e�ects which are included in order to account for permanent di�erences across municipalities

a�ecting pollution concentrations and respiratory illnesses (e.g. time invariant demographic

characteristics, industry composition, altitude and other geographic conditions).

In all estimations the errors are clustered at the municipality level, since all children in the

same municipality are exposed to the same levels of predicted pollution, which are measured

with error and are likely to be correlated over time within municipality.
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Two Speci�cation Issues

Two general speci�cation issues are worth noting before discussing the validity of the inversion

episodes as an instrument variable. First, it is far from obvious that the linear speci�cation

as outlined in equation (2) is the appropriate functional form between PM10 and respiratory

illnesses. Nonlinearities in the e�ects of PM10 are interesting for regulatory threshold pur-

poses. But they are also of interest for the extrapolation of our low pollution setting results

to higher pollution settings, since if strong nonlinearities are present, there is a clear risk that

our estimates would understate the predicted e�ects in higher pollution regions. Nonlinearities

could also be important when trying to understand the di�erences across socio economics for

the reasons discussed above.

Below, we provide non parametric estimates of the reduced form and �rst stage from a

generalized additive model (Hastie and Tibshirani, 1986) using a local linear smoother with a

narrow bandwidth to assess whether our baseline linear estimator is appropriate. This highly

�exible model, which non parametrically takes daily weather conditions and seasonal patterns

into account, provides estimates that are highly similar to the results from our 2SLS estimator

outlined above. As shown below, the non parametric estimates provide no indication of strong

nonlinearities in the e�ects of PM10 on respiratory illnesses in our setting.

Second, note that we focus on the contemporaneous e�ects of changes in air quality on

health care visits due to respiratory illnesses. A potential concern with this daily speci�cation

is that temporary increases in pollution levels may simply displace the timing of respiratory

illnesses forward. Such a short term forward shift in the timing of health e�ects, so-called

harvesting e�ects, would imply that while we may see an increase in health e�ects on high

pollution days, the respiratory illness rate may fall and be fully compensated for over the

following days. To check the validity of this concern, we estimate distributed lag model as-

sessing whether a lagged increase in pollution following inversion episodes reduces the current

respiratory illnesses rate. We also checked if instrumenting the PM10 levels during the past

few days using the share of inversion nights during those days changes the results. We �nd no

indications of strong displacement e�ects.

Instrument validity

Before proceeding to the results, we conclude this section with some additional remarks on

identi�cation with respect to inversion episodes as an instrumental variable. The exclusionary

restriction may not hold if sensitive individuals are able to correctly understand and predict
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inversion occurrences and their e�ects on pollution levels. We believe this to be unlikely in gen-

eral, and particularly in our setting. Information or predictions of inversion episodes are not

available to the public. Neither information on inversion, nor inversion strength, are published

in Swedish media or by local authorities, and vertical temperature pro�les were not available

on a large scale, nor was the data from the four Swedish ground level sounder stations used

in pollution level forecasts.12

Yet, it is possible that particularly sensitive populations may have strong enough incen-

tives to gather private information on inversion episodes since it is such a strong predictor

of air quality. In some heavily polluted areas around the world, temperature inversions can

sometimes be observed with the naked eye. In Sweden, this is generally not the case due to

relatively low pollution levels and low humidity. But to address this potential concern, we

focus on the e�ects of night-time inversion episodes. Night-time inversion episodes are also

more frequent and constitute a stronger predictor of PM10 levels in our setting.13 As dis-

cussed above, previous studies from high pollution settings (Los Angeles) have suggested that

avoidance behavior may understate the e�ects of pollution on health (Neidell, 2009; Moretti

and Neidell, 2011). Hence, for our estimation strategy to provide estimates that hold avoid-

ance behavior �xed, it is crucial that individuals cannot perfectly observe inversion status and

inversion strength and adjust their behavior accordingly. By using night-time inversions, we

believe that the risk of instrument observance is minimized. Even if individuals understand

the meteorological relationship in question in general, it seems unlikely that they are able

to correctly identify inversion episodes and inversion strength at 2 am in the morning. For

these reasons, we believe that the instrumental variable approach used here should be able to

provide causal estimates that hold avoidance behavior �xed.

However, we also provide indirect evidence to try to back up this assumption. Any test

of the extent and prevalence of avoidance behavior relies on proxies (Gra� Zivin and Neidell,

2012). We check whether children's activity patterns change during inversion episodes by

examining whether the health care visit rate due to injuries with external causes changes

during inversion episodes by estimating the following modi�ed version of the second-stage

12Personal communication with Michael Norman at IVL, where the pollution data is stored and provides the
pollution prognosis for Stockholm, September 6 2013. Access to SMHI's and the Swedish Military's in total 4
weather balloon stations that measure vertical temperature pro�les on a daily basis is under way according to
SMHI but is not available at present (2013-11-04) .

13And second, as expected from the e�ects on air quality, when entered in the same equation as the night-
time inversion indicator, the reduced form e�ects on respiratory illnesses are negligible in size and insigni�cant,
unlike the night-time inversion indicator which remains strong and positive.
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equation:

Rate External Causesmd = β0 + β1PM10md + α′Wmd +Md + θm + emd (6)

The idea is that if inversions are associated with substantial changes, not only in pollution

levels but also in e.g. children's indoor/outdoor activity patterns, we may detect that injuries

due to external causes also change, i.e. that β1 6= 0 in equation (6). In other words, if

inversion episodes do not a�ect our proxy of avoidance behavior, we would expect that β1 = 0

in equation (4).14

6 Baseline Results

We begin by providing an illustration of the identi�cation strategy from non parametric esti-

mates of the reduced form and the �rst stage, and then report the �rst stage and reduced form

result from the fully speci�ed linear model in Section 5.1. Throughout, we provide a compar-

ison of the ordinary least square (OLS) and the two-stage least squares (2SLS) estimate. In

section 5.2, we examine the robustness of the results to changes in the speci�cation and in

section 5.3 we look at the impact across socio economic groups and document a substantial

gap in the e�ects between children in households with high and low income. In section 5.4,

we examine the potential causes of this gap.

6.1 First Stage and Reduced Form

We begin by presenting nonparametric estimates of the �rst stage and the reduced form. Fig-

ure 4 shows the narrow bandwidth multivariate local linear regression estimates of the �rst

stage (PM10 level on inversion strength) and the reduced form (respiratory illness rate on

inversion strength) that �exibly control for ground level temperature and calendar month.15

14Finally, instrument validity may theoretically also be compromised by reversed causality in the �rst stage
equation. That is, if emissions levels are an important determinant of ground level air temperature, then
we could �nd that higher pollution levels reduce the incidence of inversion episodes. However, �rst, it seems
unlikely that local anthropogenic emissions have a strong di�erential impact on temperature in the two layers.
Second even if so, our estimates would likely be downward biased since local emissions primarily heat the
ground level air layer, reducing the occurrence of inversion. Third, we in Table A1 we test the likely severity of
this concern by exploiting the well known variation pollution levels over the weekdays. See section 5.2 below.

15We begin by presenting nonparametric estimates of the �rst stage and the reduced form. Figure 4 shows
the narrow bandwidth multivariate local linear regression estimates of the �rst stage (PM10 level on inversion
strength) and the reduced form (respiratory illness rate on inversion strength) that �exibly control for ground
level temperature and calendar month. The x axis displays the inversion strength, i.e. the temperature
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The x-axis displays the inversion strength, i.e. the temperature di�erence between the two air

layers. Negative inversion strength values correspond to the relationship between the outcome

variables and the temperature di�erences on normal days, and positive values to the relation-

ship on inversion days. The left-hand side y-axis measures the average PM10 level and the

right-hand side y-axis measures the respiratory health care rate. The kernel density estimate

(dashed) shows the distribution of observations with respect to the instrument. Around 25

percent of the days in the sample are inversion days.

Figure 4 shows that, conditional on ground level temperature and the calendar month,

under normal circumstances the rate of hospital visits (black) and PM10 levels is not strongly

correlated with the temperature di�erence between the two air layers. However, once an

inversion occurs, both PM10 levels and the respiratory illnesses rate increase almost linearly

with the strength of the inversion. This �rst set of results and the implied elasticity between

PM10 and health care visits summarize the main results of the paper. As we will see, even

after adding a large set of additional control variables, the estimated elasticity never deviates

substantially from that which can be inferred from this parsimonious, but highly �exible non

parametric speci�cation.

Table 3 reports the fully speci�ed linear version of the reduced-form, the �rst stage, OLS,

and the IV speci�cations. In column (1), the PM10 levels are regressed on the inversion

dummy, and the other control variables, year by month time e�ects, and municipality �xed

e�ects as speci�ed above in equation (2). The point estimate suggests that the PM10 level is,

on average, 6.15 µm/m3 higher following nigh-time inversion episodes. Hence, relative to the

mean PM10 level, inversion episodes increase the PM10 levels by approximately 30 percent.

In column (2), the health care visit rate is regressed on the inversion dummy and the other

control variables. As expected, health care visits are positively and signi�cantly related to

inversions. During inversion episodes, the respiratory illness health care visit rate increases by

close to 5 percent.

Column (3) reports the standard OLS estimates from the fully speci�ed model and column

(4) the instrumental variable estimate. Similar to previous studies using an instrumental vari-

able approach that accounts for measurement error and avoidance behavior, the instrumental

variable approach IV estimates are up to four times larger than the OLS estimates. Relative

di�erence between the two air layers. Negative inversion strength values correspond to the relationship between
the outcome variables and the temperature di�erences on normal days, and positive values to the relationship
on inversion days. The left-hand side y-axis measures the average PM10 level and the right-hand side y axis
measures the respiratory health care rate. The kernel density estimate (dashed) shows the distribution of
observations with respect to the instrument. Around 25 percent of the days in the sample are inversion days.
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to the mean respiratory illness rate, the IV estimate implies that for each 10 microgram/m3

increase in daily PM10 levels, health care visits due to respiratory illnesses increase by 8

percent. The corresponding �gure from a simple OLS estimate is 2 percent. These huge dif-

ferences underscore the importance of properly accounting for measurement error, avoidance

behavior and other endogeneity problems.

6.2 Robustness

The OLS and IV comparison continues in Table 4 where, for comparison, the baseline model

estimates for OLS and the IV are once more reported in column (1). In column (2), we add

average age and age squared of the children in the municipality and year to the baseline model,

and in column (3) we add information on the share of mothers with college education in the

municipality of residence. None of these modi�cations signi�cantly changes the estimated ef-

fects. In column (4), we restricted the sample to children living within 2 km of the nearest

pollution monitor. Notice that since pollution monitors are located in downtown areas, the

mean of respiratory related hospital admissions is higher. Moreover, notice that when restrict-

ing the sample to only those close to the monitors, the OLS estimate changes dramatically

(≈ 33 percent lower), while the IV estimate changes marginally (≈ 6 percent lower). The

di�erences in the robustness of the results between OLS and IV are an indication of the valid-

ity of the research design, since if unobservable covariates are uncorrelated to the instrument

but not to PM10 levels, we would expect the OLS to be more sensitive to changes in the

speci�cation than the IV estimate. In column (5), we assess the robustness of the estimates

with respect to the included weather variables. If we drop the precipitation and wind variables

from the ground level weather stations, and instead only use the NASA satellite weather data,

the estimates hardly change at all. Hence, the IV-approach could be implemented only using

the NASA data.

Table A1 in Appendix A report additional speci�cation checks intended to capture cumu-

lative/displacement e�ects. Column (1) review the baseline IV estimates for comparison,

Column (2) report the estimate when using the average PM10 levels between t and t-5 using

the share of days with inversion as an instrument on day t respiratory illness rates. Column (3)

report the cumulative e�ect of PM10 over the last 5 days, i.e. the sum of the lagged coe�cients

from a distributed lag model where each lag is instrumented with the inversion status of that

particular day. If harvesting e�ects where an important concern in the current setting we

would expect to �nd that the cumulative e�ect over the recent past to be smaller than the
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e�ect from the baseline contemporaneous model (i.e.
∑5

k=0 β
full
t−k < βbaset ). The impact of the

average PM10 level over the past 5 days should also be smaller than the contemporaneous

e�ect. If anything both the estimates are larger, but they are not statistically distinguishable

from the baseline estimates.16

Finally, the last two columns of table A1 assess the relevance of reversed causality in the

�rst stage equation. To gauge the severity of this concern, we check whether pollution levels

a�ect inversion episodes by exploiting the well documented decrease in pollution levels during

weekends. In particular we regressed the inversion dummy on a weekend dummy and the

other variables in the main model (excluding the day of week e�ects) Column (4) show that

PM10 decreases by around 23 percent (-4.754/20.8) during weekends. But despite this huge

improvement in air quality, the frequency of inversion episodes are not a�ected; the point

estimate is not statistically signi�cant, positive, and close to zero. Thus, reversed causality in

the �rst stage equation does not seem to be a major concern.

6.3 Heterogeneity: by respiratory diagnosis and child age

So far, all respiratory illnesses have been lumped together, but it is possible that the e�ect of

PM10 varies across type of respiratory illness. In Table 5, we supply estimates of the e�ect

of PM10 separately across type of illnesses. In columns (2) to (5), we separately explore the

e�ect of air pollution by type of respiratory illness. We split the respiratory illness diagnosis

data into Pneumonia, Bronchitis, Asthma, and Other respiratory conditions. The �rst three

conditions are likely to be exacerbated from current exposure as opposed to conditions such

as Emphysema where the e�ect of exposure is cumulative over time. Therefore, we expect to

�nd the largest e�ects for the �rst three conditions. This pattern is also largely con�rmed by

both the OLS and the IV estimates, with the highest percent e�ect for Asthma, Bronchitis and

Pneumonia, and substantially lower but still signi�cant for the other respiratory conditions.

Columns (6) and (7) provide separate estimates for pre-school children (0-5) and school

age children (6-18). Note that the mean respiratory illness rate is higher for children in the

age span 0 5 years. Relative to the mean respiratory illness, the OLS estimates are higher for

the older children than for the younger children. The IV estimates are positive and signi�cant

16Except for the contemporaneous e�ect, none of the lagged coe�cients in the distributed lagged model are
statistically signi�cant, and do not follow any obvious pattern. Note that missing values on any of the past
days leads to that the day t is dropped from the distributed lag estimation, leading to a substantially smaller
sample size. We also estimated a model using full set of contemporaneous weather controls but only lagged
ground level temperature to minimized missing values. Results were very similar. The full set of estimates are
available on request. Schenkler and Walker (2011) use a similar speci�cation and �nd similar patterns.
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with the largest percentage e�ect on the increase of respiratory related hospital admissions for

the older age group.

However, note the di�erences between the OLS and the IV estimates in the two age groups.

The IV estimate is about 7 and 3 times larger than the OLS for the younger and the older

children respectively, potentially indicating that avoidance behavior is more important among

(the parents of) the younger children.

6.4 Examining the E�ects across Socio-Economic Groups

Next we report estimates by parental socio economic characteristics. In Table 6, we report

the separate estimates for the sample of children with mothers having more than high school

education and for those who do not. We do not �nd any substantial di�erences in the e�ects

with respect to maternal education (columns 2-3). However, when turning to columns 4 and

5, we see clear evidence of the di�erential e�ect, depending on household income. The IV

estimates for low-income households (below median income) suggest that the e�ects of a 10

µg/m3 increase in PM10 are around twice as large as on children in high-income households

(12 percent vs. 6 percent). Figure 5 illustrates the di�erences by SES-groups graphically.

The �nding that children from low-income families are much more a�ected by changes in

air quality than children from high income families clearly suggests that policies that reduce

pollution levels may also reduce the inequality in childhood health. As highlighted in the con-

ceptual framework outlined above, several potential mechanisms have previously been brought

forth that could potentially explain SES di�erences in the e�ects of air pollution. A better

understanding of the underlying mechanisms could be informative for understanding which

types of policies that are likely to not only reduce the e�ects of pollution, but potentially also

reduce the socioeconomic di�erences in the impact. In the following section, we �rst discuss

how our previous results square with the suggested mechanisms and use the data at hand to

try to quantify the importance of the di�erent mechanisms.

6.4.1 Evidence on the mechanisms behind the SES-gap

(i) Non-linearities

An important di�erence between rich and poor households could be that residential segregation

leads to di�erences in average levels of pollution exposure. In the case of road tra�c, if

environmental disamenities such as air pollution and noise from tra�c are valued in the housing

market, this would lead children from poorer households to be located, all else equal, closer
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to major roads. Since local road tra�c contributes to a substantial share of the total PM10

exposure, a potentially important mechanism behind the SES-gap could be that children

from poorer households are exposed to higher pollution levels than children from wealthier

households. Since we measure average PM10 levels at the municipality of residence level, the

observed SES di�erences could hence stem from nonlinearities in the e�ects of PM10.

However, this interpretation squares poorly with the results from the non parametric es-

timates in Figure 4 that give no indication of strong nonlinearities between PM10 and respi-

ratory illnesses. Still, since we are only able to directly assess the e�ects of PM10 on health,

careful readers may worry that inversion episodes could generate a substantial increase in

other, unobserved, pollutants which, in turn, may be nonlinearly related to respiratory ill-

nesses. However, again, if non linearities in other unobserved pollutants are important, we

would expect that the reduced form relationship between inversion strength and respiratory

illnesses should also be strongly non linear during inversion episodes in Figure 4, which is not

the case. In summary, at the relatively low pollution levels considered, our results do not

provide any strong evidence in favor of the hypothesis that the di�erences in the observed ef-

fects between rich and poor households are driven by non linearities in the e�ects of air quality.

(ii) Avoidance Behavior

Another reason why children from di�ering socio-economic backgrounds could su�er more from

changes in pollution levels is di�ering parental responses to changes in pollution levels. As

discussed above, avoidance behavior could in�uence estimates of the e�ects of air quality on

respiratory illnesses. If high socio-economic status parents are more likely to engage in avoid-

ance behavior, the SES-gap in the e�ects of ambient air pollution could stem from di�erences

in avoidance behavior.

Note �rst that, as argued above, our identi�cation strategy is explicitly designed to hold

parental avoidance behavior �xed. Second, to the extent that knowledge about risks of high

pollution episodes following inversion episodes is more prevalent among highly educated par-

ents than low educated parents, we would expect to see di�erences in the e�ects across house-

holds with di�ering educational attainment. As shown by Table 6 and Figure 5, there is no

indication of di�erential e�ects across families with di�erent educational attainments.

However, we also try to directly assess the prevalence of avoidance behavior. Any test of

the extent and prevalence of avoidance behavior relies on proxies (Gra� Zivin and Neidell,

2012). Previous studies examining avoidance behavior have used visits to outdoor facilities

(e.g Zoos or sporting events) in connection with warnings of predicted high ozone episodes
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(Neidell, 2009; Moretti and Neidell, 2011) in high pollution settings.

Here, we use changes in in- and out patient health care visits due to externally caused

injuries to proxy for changes in children's activity patterns. The idea is that if inversion

episodes are associated with substantial changes in children's activity patterns, for example

that parents are keeping their children indoors instead of allowing them to play outside to

reduce exposure, we would expect that the risk of accidental falls, accidents with cyclists, or

motor vehicles, etc. could change as well. Moreover, the externally caused injury rate per

10,000 children has a similar mean and distribution as the respiratory illness rate.

Since there is no obvious direct relationship between air quality and externally caused

injuries except through changes in activity patterns, we would expect to see that changes in

air pollution also change the risk of injuries due to external causes if avoidance behavior is

highly prevalent. Moreover, for avoidance behavior to be a strong explanatory factor for the

observed SES gap, children from richer households should experience a substantially stronger

relative change in the externally caused injury rate.

The estimates in Table 7 column (1) show the e�ect for the full sample and columns (2) and

(3) show the results for children in rich and poor households separately, a non signi�cant and

small correlation between changes in PM10 and externally caused injuries. The percent e�ect

for respiratory illness is more than six times larger than the e�ect on externally caused injuries.

Moreover, there are no di�erences between children in low- and high-income households.

These results �rst of all indicate that di�erences in avoidance behavior are not likely to

be the cause of the SES-gap in our low-pollution context. This result is consistent with the

absence of di�erential e�ects by maternal education. If knowledge of risks of high pollution

episodes is more prevalent among highly educated parents, we would expect to see di�erences

in e�ects across households with di�ering educational attainment; which we do not.

In addition, the fact that the rate of externally caused injuries does not create any change

in response to high pollution episodes as instrumented by inversion episodes can also been

seen as a falsi�cation test of our identifying assumptions. It indirectly validates that our in-

strumental variable estimates are not a�ected by e.g. changes in activity patterns caused by

or other unobserved variables correlated with both inversion episodes and children's respira-

tory illnesses. In other words, it seems reasonable to assume that our instrumental variable

estimates shift pollution exposure while parental responses are held �xed.
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(iii) Di�erences in Baseline Health

Children from poorer backgrounds have worse health in general (Currie et al., 2010). If children

with poorer general health are more susceptible to pollution shocks, the SES gap in the e�ects

of pollution could in part be explained by di�erences in children's baseline health across rich

and poor households.

To assess the relevance of the hypothesis of di�erences in health capital between children

in high- and low-income households, we make use of data on health at birth. Health at birth

data is useful since it is a strong predictor of subsequent health in childhood and beyond,

but also because this measure has been collected in a similar manner for all cohorts and is

available for virtually all children in our sample. Speci�cally, we construct an index of initial

health using the �rst principal component of gestational week at birth and birth weight. The

children are then split into a good and poor health status group if they are above or below

the median of the initial health index.

Table 8 presents the results for the full sample split into high and low health children in

columns (1) and (2). Columns 3 through 6 then show the results after splitting the sample

further into high- and low-income of the parents. The �rst two columns show that the IV

e�ects of pollution are larger for children with poorer initial health than children with bet-

ter initial health, while the OLS di�erences are negligible. An increase of 10µg/m3 PM10

increases the respiratory illness rate by 4 percent for children with good health and high-

income parents, but are around three times larger for children with good health but who have

poorer parents. The two �nal columns in Table 9 show that this huge SES gap decreases

substantially if comparing children with worse initial health in rich (9 percent) and poor (11

percent) households. Note also that the standard errors are higher for children in low-income

households with good initial health than for low-income household children with poor initial

health, and vice versa for children from high-income households. This re�ects the fact that

children from low-income households are substantially more prevalent in the poor initial health

group, and high-income household children are more prevalent in the high initial health group.

Summary of the evidence on the underlying mechanisms

In summary, out of the mechanisms suggested to be able to explain di�erential e�ects of ambi-

ent air quality on children's health, di�erences in initial health across households with di�ering

economic conditions seem to be key in explaining the di�erential impact of air quality on res-

piratory illnesses. However, since our identi�cation strategy is designed to hold avoidance

behavior �xed, our estimates re�ect the �biological� e�ects. In high pollution settings where
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information di�erences across socio economic groups are strong, it is likely that avoidance

behavior plays a more prominent role in generating di�erences in the e�ects of air pollution

across socio economic groups.

Finally, an additional mechanism could be that parents with more resources may have

greater opportunities for, or receive higher returns (e.g. by reducing the lost income due to

work absence during children's illness spells) from, medical defensive investments. A higher

level of defensive investments may reduce the need for visits to health care facilities in con-

nection with high pollution days and hence, this could also contribute to parts of the SES-gap

in the e�ect on health care visits. There is little evidence of the importance of defensive in-

vestments with respect to air quality, but Deschenes et al. (2012) document that when ozone

levels decrease, so does medication expenditure. To our knowledge, there are no studies exam-

ining whether defensive investments related to respiratory illnesses di�er for children between

socio-economic groups.

Di�erence in medical defensive investments is di�cult to completely rule out as an addi-

tional explanatory factor given the lack of data on daily medical consumption. However, in

Sweden all children have health insurance, and medical expenses of children (under age 18)

are all fully subsidized if the sum of expenses of all children in the same family exceeds SEK

2200 ( ≈ USD 320) for 12 months after the date when the threshold is exceeded. Health care

visits are free of charge for children aged below 19. Hence in our setting, it seems unlikely that

di�erences in defensive investments constitute a major contributing factor to the SES gap in

the e�ects of air quality on health.

7 Conclusions

The main contribution of this paper is the instrumental variable approach we develop for causal

inference in short term e�ects of poor air quality. The method can be used on a global scale

with a high spatial and temporal resolution. As an illustration of the usefulness of the data,

we examine the short run e�ects of pollution on children's respiratory illnesses in Sweden. The

results are robust to a number of alternative speci�cations and suggest that poorer air quality

signi�cantly increases health care visits due to respiratory illnesses for children aged below 18.

There is a striking di�erence in the costs associated with high pollution levels as predicted

by the OLS and IV estimators. OLS estimates of particle pollution on health care visits are

statistically signi�cant although small in magnitude. In contrast, IV estimates accounting for

avoidance behavior and measurement errors indicate a four times larger toll of pollution on
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respiratory illnesses.

Moreover, the di�erences in the response to air quality changes across children in high and

low-income households clearly suggest that environmental policies that curb local pollution

levels could reduce the persistence of inequalities in health. In our setting, despite heavily

subsidized and universal access to preventive care, di�erences in economic resources seem to be

more important than information di�erences across households. The non parametric estimates

show no indication of strong nonlinearities in the e�ects of PM10. Hence, our examination of

the channels through which the di�erential e�ects arise suggests that baseline health di�erences

between children in rich and poor households are key. Since pollution exposure early in life

has also been shown to in�uence cognitive ability, educational attainments and outcomes in

the labor market (Nilsson, 2009; Sanders, 2012), it seems that environmental policies could

also play an important role in reducing inequalities in economic outcomes. More research on

long term e�ects of early life air pollution exposure and the interaction with parental income

is of clear interest.

Note that since we only examine the impact on health care visits and disregard other

outcomes, such as parental work absence or use of pharmaceuticals, they represent a lower

bound of the total welfare costs of poor air quality. In addition, while the focus on short-term

changes in air quality aids the identi�cation, our results only provide limited insights into the

e�ect of environmental policies that permanently improves air quality. Since health is a stock

variable (Grossman, 1972), it is possible that the full health bene�ts of a permanently lower

pollution level could be much higher than what is suggested by our short-term e�ect estimates.

Further research is needed on health e�ects of policies that �permanently� change pollution

levels. In addition, while the focus of the current paper is not about identifying potential

heterogeneous SES e�ects from di�erent air pollutants, future studies with better data on

di�erent pollutants could examine the e�ects inversion episodes have on other air pollutants

besides PM10.

But the method could also be used to shed some additional light on e�ects of air quality on

e.g. labor supply on the extensive (Hanna and Oliva, 2011) and intensive margin (Gra� Zivin

and Neidell, 2009) among adults. These studies have used panel data methods to quantify

the e�ects of poor air quality on labor supply in a setting with high pollution levels and

for farm workers, respectively. The NASA vertical temperature pro�les data opens up the

possibility of comparative studies from areas with widely di�ering pollution levels, di�erent

economic circumstances, and in various occupations. Using similar identi�cation strategies

across studies could reduce the risks of mistaking treatment heterogeneity across locations
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and/or populations with di�erences in estimation strategies. The inversion data could also be

used in combination with more location-speci�c instrumental variables to boost precision of

estimates.

Finally, the AIRS data can be incorporated in models predicting pollution levels at many

more locations than what is currently possible using ground based vertical temperature sounders

(e.g. available in four locations in Sweden). By developing methods to produce more precise

location speci�c pollution forecasts and e�ective means of disseminating such forecasts, the

health care costs associated with respiratory symptoms could potentially be reduced by allow-

ing sensitive populations to more e�ectively engage in defensive investments.
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Figure 1: Municipalities, Temperature Grid Centroids (⋄) and Air Quality Monitors (∆). 

 
 



 

Figure 2: Comparison of 24h-mean PM10 levels during normal and inversion episodes 
 

 

 
 

Figure 3: Seasonal comparison of 24h-mean PM10 levels during normal and inversion episodes 
 

 
 
 
 
 

 



 
Figure 4: Non-parametric Reduced Form and First-stage Estimates  
Generalized additive model estimates of respiratory health care visits per 10,000 children (black) and PM10 level (gray) on  inversion 
strength using a narrow bandwidth local linear smoother, controlling for calendar month and an extensive set of weather variables (see the 
text for details). Kernel density distribution estimate in the background (dashed), current WHO 24-h PM10 µg/m 3 guideline for reference 
(dotted). 
  



 

Figure 5: OLS and IV Estimates by Socio-Economic Status (10 μg/m3 PM10 increase)  



 

 
Table 1: Summary statistics for Health Care Visits, PM10, and covariates  
 Mean Standard deviation 
   
A. Dependent variables   
Rate of daily respiratory related hospital visits per 10,000 children 
Any respiratory illness 2.16 2.55 
Age 0-5 4.45 5.77 
Age 6-10 1.47 3.40 
Age 13-18 1.03 2.19 
Asthma 1.68 2.55 
Pneumonia 0.56 1.52 
Bronchitis 0.78 1.88 
Other respiratory illness 1.82 2.51 
External causes 2.44 2.33 
   
B. Independent variables   
PM10 (μm/m3) 20.77 17.57 
Temperature (̊Kelvin) 
Daytime (ground level) 

277.57 9.31 

Temperature (̊Kelvin) 
Nighttime (ground level) 

275.04 7.99 

Precipitation (mm) 
(N=33,079) 

0.51 1.14 

Windspeed (m/s) 
(N=33,079) 

3.26 1.75 

Daily Cloud cover ratio 0.43 0.28 
Nightly Cloud cover ratio 0.45 0.27 
   
Share of Inversion days 0.25 0.43 
Inversion strength  -1.35 2.80 
Number of Observations 34 175  

 

  



 
Table 2: Descriptive statistics for key variables conditional on inversion 
status 
Normal Nights 
N=25,567 Mean Standard Deviation . 
    
Rate of health care visits per 
10,000 children: 

 

Any respiratory illness 2.14 2.51 
    
PM10 (μm/m3) 18.06 13.09 
Temperature (̊Kelvin) 
Daytime (ground level) 

277.80 8.90 

Temperature (̊Kelvin) 
Nighttime (ground level) 

276.06 7.48 

Precipitation (mm) 
(N=24,862) 

0.63 1.24 

Wind speed (m/s) 
(N=24,862) 

3.48 1.79 

Daily Cloud cover ratio 0.47 0.27 
Nightly Cloud cover ratio 0.49 0.26 
Inversion nights  
N=8,608   
   
Rate  of health care visits per  
10,000 children: 
Any respiratory illness 2.24 2.68 
    
PM10 (μm/m3) 28.82 25.08 
Temperature (̊Kelvin) 
Daytime (ground level) 

276.87 10.40 

Temperature (̊Kelvin) 
Nighttime (ground level) 

272.01 8.68 

Precipitation (mm) 
(N=8,217) 

0.15 0.59 

Windspeed (m/s) 
(N=8,217) 

2.61 1.46 

Daily Cloud cover ratio 0.33 0.27 
Nightly Cloud cover ratio 0.32 0.26 

 

  



 

 
Table 3: Baseline Estimates 
 First-stage Reduced 

form 
OLS IV 

Dependent variable: 

 
Pm10 

 

Respiratory 
related health 

care visits 
per 10,000 

children 

Respiratory 
related health 

care visits 
per 10,000 

children 

Respiratory 
related health 

care visits 
per 10,000 

children 
 (1) (2) (3) (4) 
Inversion 6.154*** 

(0.892) 
0.106*** 
(0.0275) 

  

PM10   0.00398*** 
(0.000908) 

0.0172*** 
(0.00253) 

Number of clusters 90 90 90 90 
Mean of dependent variable 20.78 2.164 2.164 2.164 
Observations 34 156 34 156 34,156 34,156 
Weather controls (Nasa+SMHI): Yes Yes Yes Yes 
First-stage F-stat.    47.99 
Notes: Robust standard errors in parentheses clustered at the municipality level, *** p<0.01, ** p<0.05, * p<0.1. This 
table presents the first-stage and reduced-form estimates of the effect of pollution on respiratory related hospital visits 
for children aged below 18 in Sweden. The rate of hospital visits is calculated by dividing the number of hospital visits 
each day in each municipality by the total number of children in the municipality and then multiplying by 10,000. Thus, 
the coefficient can be interpreted as the number of hospital visits per day and 10,000 children aged below 18. This model 
includes year-month fixed effects, municipality fixed effects and day-of-week fixed effects. Temperature controls 
(polynomials of degree up to four) of the daily and nightly temperatures, cloud coverage, cloud coverage^2, humidity, 
humidity^2, H20 levels, precipitation, precipitation^2, wind speed, wind speed^2  are included in all regressions. Each 
regression is weighted by the total number of children in the municipality. The percent effect is (PM10 
coefficient*10)/(mean of dependent variable) in the last two columns. 

 

  



 
Table 4: OLS and IV Regression results for the effect of PM10 on respiratory illnesses 
Dependent 
variable: 

Respiratory related health care admissions per 10,000 children 

Specification: Baseline 
specification: 

Baseline 
specification: 

Full Baseline 
specification: 

Full Baseline 
specification: 

Full Baseline 
specification: 

 
 

 + age + age 
+ maternal 
education 

within 2km 
of pollution 

monitor 

without 
weather 

station data 
 (1) (2) (3) (4) (5) 
 
OLS estimates 

     

PM10 0.00398*** 0.00398*** 0.00394*** 0.00262*** 0.00401*** 
 (0.000908) (0.000914) (0.000926) (0.000744) (0.000901) 
IV estimates      
PM10 0.0172*** 0.0173*** 0.0174*** 0.0166*** 0.0171*** 
 (0.00253) (0.00252) (0.00251) (0.00421) (0.00225) 
Observations 34,156 34,156 34,156 34,156 34,156 
Other Controls No Yes Yes Yes Yes 
SMHI weather Yes Yes Yes Yes No 
NASA weather Yes Yes Yes Yes Yes 
Mean outcome 2.164 2.164 2.164 2.215 2.164 
F-stat 1st  Stage  47.67 47.67 47.99 49.88 44.80 
# of cluster 90 90 90 90 90 
Effect OLS  1.8% 1.8% 1.8% 1.2% 1.9% 
Effect IV  7.9% 8.0% 8.0% 7.5% 7.9% 
See notes to Table 1. Column (4) represents children living within 2km of the nearest pollution monitor. The percent 

effect is (PM10 coefficient*10)/(mean of dependent variable)  

 

 

 

 

 

 

 

 

  



 
Table 5: Effects by child age and by sub-diagnosis. 

 
Dependent Variable: Respiratory related health care admissions per 10,000 children 
 (1) (2) (3) (4) (5) (6) (7) 
 Full baseline 

specification 
Asthma Bronchitis Pneumonia Other 

respiratory 
Pre-School 

Kids 
School-age 

Kids 
        
OLS estimates 
PM10 

0.00394*** 
(0.000926) 

0.00283*** 
(0.000601) 

0.000385** 
(0.000192) 

0.000052 
(0.000087) 

0.000670*** 
(0.000221) 

0.00422** 
(0.00163) 

0.00343*** 
(0.0007) 

IV estimates 
PM10 

0.0174*** 
(0.00251) 

0.00956*** 
(0.00181) 

0.00190* 
(0.000986) 

0.00108** 
(0.000483) 

0.00485*** 
(0.00155) 

0.0280*** 
(0.00618) 

0.0123*** 
(0.00193) 

Weather controls Yes Yes Yes Yes Yes Yes Yes 
Other Controls Yes Yes Yes Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 34,156 34,156 34,156 
F-stat first-stage IV 47.67 47.99 47.99 47.99 47.99 46.92 48.63 
Number of clusters 90 90 90 90 90 90 90 
Mean respiratory illness  2.164 0.890 0.188 0.115 0.971 4.445 1.184 
Percent effect (OLS) 1.8% 3.2% 2.0% 0.5% 0.7% 0.9% 2.9% 
Percent effect (IV) 8.0% 10.7% 10.1% 9.4% 5.0% 6.3% 10.4% 
Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Table 6: Examining the Effects across Socio-Economic Groups. 

 
Dependent Variable: Respiratory related health care admissions per 10,000 children 
 (1) (2) (3) (4) (5) 
 Full baseline 

specification 
University 

mums 
High school 

mums 
High Family 

Income 
Low Family 

Income 
      
OLS estimates 
PM10 

0.00394*** 
(0.000926) 

0.00497*** 
(0.00113) 

0.00333*** 
(0.000897) 

0.00392*** 
(0.000833) 

0.00422*** 
(0.00117) 

IV estimates 
PM10 

0.0174*** 
(0.00251) 

0.0190*** 
(0.00319) 

0.0183*** 
(0.00374) 

0.0120*** 
(0.00441) 

0.0307*** 
(0.00365) 

Weather controls Yes Yes Yes Yes Yes 
Other Controls Yes Yes Yes Yes Yes 
Observations 34,156 34,156 34,156 34,156 34,156 
F-stat first-stage IV 47.67 45.02 44.27 46.26 42.72 
Number of clusters 90 90 90 90 90 
Mean respiratory illness  2.164 2.186 2.266 2.011 2.584 
Percent effect (OLS) 1.8% 2.3% 1.5% 1.9% 1.6% 
Percent effect (IV) 8.0% 8.7% 8.1% 6.0% 11.9% 
Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

 



Table 7: Examining the Causes of the SES-gap in the Effects: Avoidance Behavior 
Dependent variable: Injuries due to External Causes per 10,000 children 
   
  Family income 
 All  High income Low Income 
Specification: (1) (2) (3) 
    
OLS estimates 0.000317 0.000258 0.000362 
PM10 (0.000970) (0.00107) (0.000961) 
    
IV estimates 0.00448 0.00407 0.00473 
PM10 (0.00586) (0.00588) (0.00700) 
    
Weather controls Yes Yes Yes 
Other controls No No No 
    
Observations 34,156 34,156 34,156 
F-stat first-stage IV 49.13 50.40 47.44 
Number of clusters 90 90 90 
Mean resp. illness rate 2.437 2.482 2.393 
Effect on outcome variable OLS 0.1% 0.1% 0.2% 
Effect on outcome variable IV 1.8% 1.6% 1.8% 
Notes: The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Table 8: Results for subsamples based on initial health index and family income. 
 Respiratory related health care admissions per 10,000 children 
  
 Health Index Good Initial Health (High index) Bad Initial Health (Low index) 

Dependent Variable: High Low High income 
families 

Low income 
families 

High income 
families 

Low income 
families 

 (1) (2) (3) (4) (5) (6) 
       
OLS  
Pm10 

0.00432*** 
(0.00107) 

0.00427*** 
(0.00112) 

0.00441*** 
(0.00109) 

0.00424*** 
(0.00123) 

0.00393*** 
(0.000895) 

0.00478*** 
(0.00161) 

       
IV       

Pm10 
0.0183*** 
(0.00362) 

0.0257*** 
(0.00437) 

0.00851** 
(0.00396) 

0.0337*** 
(0.00744) 

0.0201** 
(0.00867) 

0.0330*** 
(0.00551) 

Weather controls Yes Yes Yes Yes Yes Yes 
       
Observations 33,231 33,231 33,231 33,231 33,231 33,231 
Number of clusters 88 88 88 88 88 88 
Mean resp. illness rate 2.178 2.490 1.920 2.539 2.161 2.885 
F-stat 1st Stage 43.93 44.57 44.55 42.87 45.33 43.34 
       
Effect on outcome OLS 2.0% 1.7% 2.3% 1.7% 1.8% 1.7% 
Effect on outcome IV 8.4% 10.3% 4.4% 13.3% 9.3% 11.4% 
Notes: The health index is based on the first principal component using birth weight and gestational weeks at birth. The children are split into high and low initial health based on 
whether they are above or below the median of the index. See Table 4 for full specification details. The percent effect is (PM10 coefficient*10)/(mean of the dependent variable) 

 

  



Appendix A 

 

 
Figure A1: The graph illustrates the range of concentrations from all types of stations in 
μm/m3 officially reported by the EU member states and how the concentrations relate to the 
limit value set by EU legislation (marked by the red line). Source: EEA (2012). 

  

 

 

 

Figure A2: PM10 emissions in Sweden between 1990 and 2010, measured in thousands of 
ton. Source: SEPA. 
 



 

Table A1: Additional Specification Checks 
Dependent variable: Respiratory Illness Rate at day t PM10 Inversion 
Specification: (1) (2) (3) (4) (5) 
PM10 (t) (baseline) 0.017*** 

(0.003) 
    

PM10�������(avg. past 5 days)  0.020*** 
(0.003) 

   

Cumulative PM10 Effect ( ∑ 𝛽𝑡−𝑘 )5
𝑘=0    0.019*** 

(.007) 
  

Weekend Dummy    -4.754*** 
(0.993) 

0.0042 
(0.003) 

Weather controls Yes Yes Yes Yes Yes 
Other controls Yes Yes Yes Yes Yes 
Observations 34,156 34,156 9,591 34,156 34,156 
Number of clusters 90 90 88 90 90 
Mean outcome var. 2.2 2.2 2.1 20.8 0.25 
Notes: All reported estimates are IV estimates, except last two columns. Robust standard errors in parentheses clustered at the 
municipality level, *** p<0.01, ** p<0.05, * p<0.1. Column (1) repeats fully specified model IV model results (see Table 4), 
Column (2) use the share of inversions nights between t to t-5 to instrument average PM10 levels during the same period. Column 
(3) presents the cumulative effect from a instrumented distributed lag model from t to t-5. Column (4) show the drop in PM10 
levels on weekends, while column (5) show that the sharp drop in pollution levels on weekends do not influence inversions. 
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