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The extensive use of short-time work is given credit to be a major cause for
the extraordinary stability of the German labor market during the recession
in 2009. Although there are numerous empirical analyses on the incidence
and the extent of short-time compensation programs, the attempts to capture
the effects of this kind of subsidy and its various designs on the decision
making processes of the individual firm on a theoretical level are still largely
insufficient. The model at hand exhibits short-time work from an investment
point of view. In an exogenous uncertain market environment, implemented
through a Geometric Brownian Motion, a firm optimizes its factor input of
labor by variations of the amount of labor force and operational working
hours. Dependent on its parameter respective strategy, the firm has to face
hiring and firing cost or remanence cost. Utilizing methods of stochastic
control the firm can continuously maximize its expected future profits. Based
on numerical results the present framework gives insights to the respective
extent of labor hoarding and the way the trade-off between hours of work
reduction and dismissals is affected by the presence and design of a short-time
compensation program in times of a cyclical downturn.

JEL Classification: J08, J22, J38

1 Introduction
As a preventative measure against unemployment short-time work has been an estab-
lished remedy of economic policy in times of economic recession for roughly 85 years
in Germany.1 This kind of subsidy on a reduction of operational working time through
a state short-time compensation (STC) program, as a reaction to a temporary cyclical
downturn in sales, is not indisputable in research. In their empirical analysis Brenke/

∗IAB Nuremberg and University of Regensburg.
1See Flechsenhar (1980), p. 14-18.
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Rinne/Zimmermann (2011) find that the impact of the economic crisis of 2009 on the
German labor market might have doubled the increase in unemployment, if no STC
had been available. Three out of four short-time workers are guessed to have skipped
unemployment, following Deeke (2009). An international comparison of STC programs
in 19 OECD countries in Hijzen/Venn (2011) grants a high effectiveness to the German
"Kurzarbeitergeld".2 In contrast its role is seen as rather minor in Boysen-Hogrefe/
Groll (2010), who underline the advantage of internal flexibility of working time, while
Burda/Hunt (2011) give credit to the dilatory hirings in the preceding boom period.
Boeri/Bruecker (2011) finally stress the dependence of a running STC program on the
leverage effect of other employment stabilizing policies such as job protection.
In consequence of its frequent application in the economic crisis around the year 2009

short-time work has drawn attention to itself. Still research to its effectiveness is mostly
descriptive in nature. Theoretic work, like Burdett/Wright (1989) or Göcke (2009) is
infrequent and rudimentary. In the following approach, a sustainable profound theoret-
ical framework is developed to promote a coherent comprehension of the effects of STC
as an instrument of labor market policy.
The featured model sheds light on a firms trade-off between the introduction of short-

time work and layoffs. A firm’s decision to hire or fire workers is seen as an investment.
Given uncertain demand for a homogenous product, evolving through continuous time,
the firm can realize profits under perfect competition, adapting its respective equilibrium
employment-working-hours allocation of factor input to the expected present value of
future production. The firm makes use of a simple production function with decreasing
returns to scale. Costs of labor include wages and fixed costs for firing or hiring workers.
Demand is seen as a stochastic process, taking the form of a Geometric Brownian Mo-
tion with an exponential drift, reflecting growth in demand, and normally distributed
increments, to account for uncertainty.3 The history of the exogenous demand curve
can be observed in the sense of a filtered probability space, but, given the process has
the Markov property4, the future development of the trajectory is solely defined by the
current state and the parameters of the underlying probability function. The firm will
adjust its labor input to meet variations in demand using stochastic control techniques,
resulting in a regulated stochastic process. 5 The economic agent regulates the labor
process with respect to costly labor turnover. Hirings and layoffs only take place, when
the expected shadow value of the forfeit production exceeds the turnover costs, hoarding
a certain amount of labor. The labor hoarding effect depends on the magnitude of the
fixed hiring and firing costs and on the remanence cost of reduced working hours. In this
model, the firm has to choose between keeping a worker, paying his wages and non-wage
labor cost, with the future prospect of recovering sales, or a layoff, meaning immediate
certain firing costs, if the option value of waiting exceeds the boundaries of inactivity,
defined by the transaction costs of labor adjustment.
The used techniques of stochastic control are closely related to Harrison (1985) with

2Germany is rated second right behind Japan.
3See Mikosch (2008), p. 139; Shreve (2004), p. 106.
4See Karatzas/Shreve (1988), p. 71–79.
5See Harrison (1985).
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respect to the more comprehensive revision in Stokey (2009) referring to economic applic-
ations to transaction costs. Yet the most influential mathematical foundation of this work
is based on the pioneering works of Bentolila/Bertola (1990) and Dixit/Pindyck (1994).
Applications from a finance point of view may be found in Pham (2009) and Sethi/
Thompson (2005). For a similar approach to labor market policies in general see Faia/
Lechthaler/Merkl (2011).

2 Dynamic demand
A firm is defined to produce a homogeneous good, using exclusively the input factor of
labor. The production function is defined as

Qt = At · Ltµ · htγ , where µ+ γ ≤ 1. (1)

Qt is the produced output at the present time t. Labor productivity is denoted by
At, and Lt is the present work force. Note that the partial output elasticities µ and
γ promote the assumption of decreasing returns to scale. µ and γ reflect the idea
of heterogeneous labor, where µ represents a labor market, where expanding business
activity necessitates the utilization of continuously less productive and successively lower
qualified work force, whereas γ means a reduction in productivity, the more workers are
exhausted by increasing working hours. The factor input of labor, i.e. the volume of
labor, is not necessarily utilized entirely for production. Nonetheless the factor costs for
the currently available volume of labor as a product of work force L and an hours of
work factor h, are to be paid in full by the firm. In this model h = 1 is the standard
measure of full-time work, whereas smaller values represent short-time work of varying
extent. As stock keeping is not considered within the given framework, the firm can
only produce output at a maximum of the current sales. Furthermore the firm is a price
taker under perfect competition, thus incapable of controlling the market conditions. It
therefore can only adapt its level of production to the continuously fluctuating price Pt of
the produced good. Note that {Pt} is a stochastic process, modeling random variations
in demand. The process itself is defined by the stochastic differential equation

dPt = Ptϑpdt+ PtσpdBt, (2)

which means that {Pt} takes the form of a Geometric Brownian Motion, solely depending
on the parameters of the underlying distribution and the history of the process:

Pt = Pt−s + Pt−sϑpdt+ Pt−sσpdBt. (3)

Since time is regarded as continuous, the equation can be broken down recursively 6

Pt = P0e

((
ϑp−

σ2
p

2

)
t+σpBt

)
. (4)

6See Mikosch (2008), p. 139; Shreve (2004), p. 106. In this equation the exponential effect of the
geometrical drift on the stochastic increments of the infinitesimal time interval [t; τ ] is considered to
be negligible. The drift and the underlying Wiener process are not interacting.
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The stochastic component of these functions is defined by {Bt}, an "ordinary" Brownian
motion, also called a Wiener process, embedded into the Geometric Brownian Motion.7
The expected value of price with respect to time is8

Et (Pτ ) = Pte
(ϑp− 1

2σp
2)(τ−t). (5)

3 The optimization calculus
The firm will optimize its profits, the difference of its turnover and its labor cost, by
variation of labor input. Such a variation may be gained by adjusting the overall hours
of work ht within the restrictions of any labor agreement or else, if that is impossible or
would be inefficient, by a transfer of work force dXt. The latter will result in additional
transaction cost. Within an instantaneous cycle of production Xt equals the present
work force Lt. However a formal distinction is required comparing different points in
time, as the firm experiences a continuous attrition of labor, caused by retirement and
worker initiated migration. So costly turnover dXt may be necessary to compensate for
the attrition rate δ:

dLt = dXt − δLtdt. (6)

The firm operates in perfect competition, so under given prices, revenue R is

Rt (Lt, ht) = Pt ·AtLtµhtγ . (7)

To realize this level of production, labor costs need to be paid in the amount of the
product of work force Lt and wages W . According to the expression

Ct (Lt, ht) = W (ht)Lt = (wh (1 + s) + w(1− ht)s(1− k) + f)Lt (8)

labor costs contain fixed costs f and variable costs.9 Variable costs further consist of
the given wage rate w and a surcharge s, which represents non-wage labor costs related
to the actual working hours per worker. The fixed costs parameter f contains payments
like a vacation bonus. It may also be interpreted as operating expenses affiliated with
each single worker. These may be any kind of equipment and asset that is required for

7The term Wiener process is henceforth used synonymously for the regular standard Brownian Motion,
in order to support the demarcation between the regular and the geometric Brownian Motion. A
Wiener process, the continuous equivalent to a random walk by Pearson, is defined by stationary and
normally distributed increments: dBt = ε

√
∆t, where ε 7→ N (0; 1). The variance of the increments is

constant for uniform time intervals t−s and increases proportional to the length of the time interval.
The standardized increments are modified by the variance σp. Besides its stochastic property the
process is determined by a drift of growth rate ϑp.

8See Wiersema (2008), p. 105-108; Etheridge/Baxter (2002), p. 88; Ross (2007), p. 631. Deviant of the
suggestion in eq. (3), the process in this form is not expressed recursive via its past realizations but
as a prognosis from the present state of time t into the indefinite future τ .

9In Crimmann/Wießner/Bellmann (2010) short-time work is modeled complementary to regular work-
ing hours. To account for any possible variation in working time, the more flexible adaption by a
time factor was chosen.
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production and independent of the amount of working hours.10 Remanence costs are
reduced by the factor k, to account for subsidies implemented into a public short-time
work program.11

This profit maximization constraint is extended by an indicator function, to incorpor-
ate costly labor turnover. If dXt > 0, the firm has to pay the fixed one-time hiring costs
H to employ a new worker. These hiring costs contain expenses for recruitment and
qualification of the new employee and may be further affiliated with means of produc-
tion. If a slope in demand necessitates a layoff (dXt < 0), the one-time firing costs F
will be applied. If no transfer takes place, both indicator functions are removed.13 The
now modified revenue function takes the form

Vt ≡ max
{xt},{ht}

Et


∞∫
t

e−r(τ−t) [(PτAτLτ µhτ γ −WLτ ) dτ−

−
(
1[dXτ>0]H − 1[dXτ<0]F

)
dXτ

]}
. (9)

Note that the realizations of this revenue function are reiterated through continuous
time, thus future realizations are discounted to present value. The discount factor r
can be seen as the rate of interest of an alternative risk-free investment. Following the
principle of continuous pricing as a geometric Brownian Motion with drift, the model
makes use of an exponential discount rate.
dXt depends on dLt. The work force nevertheless is dependent on the progress of

prices dPt, once transfers of labor are the dominant strategy or, after working time ar-
rangements are exhausted, become the last resort. As dPt is adapted to the stochastic
{Pt}-process, so then are dLt and dXt as well as dht. So {Xt} and {ht} are likewise adap-
ted to the filtration of {Pt}, and therefore are Markov processes as well, only dependent
on the present information.14 Other than the given information, {Lt} is restricted to
nonnegative values.15

3.1 Adjustment strategies with respect to the restrictions
The transaction costs for adjustments of work force H and F can be interpreted as
barriers of labor turnover. The economically efficient firm will change its work force, once
10Within the present framework, no formal distinction is made, whether these fixed costs are beneficial

to the employees or just upkeep costs of a work station.
11Note that k ∈ [0; 1], where k = 1 represents the case of full absorption of additional non-wage labor

cost12, as they depend on the full-time equivalent wages. The presented wage structure depicts
the most complex case. It can easily be shown that given full absorption of non-wage labor cost
differentials, full-time work or the absence of fixed labor costs, the wage composition is gradually
simplified to the basic product of working time and the wage rate.

13The work force then still decreases by the attrition rate δ.
14This information is the past development, leading to the present state Pt and the properties of the

underlying distribution function determinant of its potential trajectories. See Seppelfricke (1996),
p. 181.

15Given a sufficiently negative progress of {Pt}, even a negative amount of labor might be a mathem-
atically optimal reaction. Under a realistic choice of the set of parameters however production will
almost never reach zero level and is then defined to be suspended.
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the marginal revenue product of its factors of production deviates from their marginal
costs. The marginal revenue product of work force (MRPW) is henceforth denoted by
ητ . It is derived as the partial derivative of the revenue function (7) with respect to the
work force L:

∂Rt
∂Lt

= µPtAtL
µ−1
t ht

γ = ηt. (10)

Changes in working hours ht on the other hand affect ϕ, the marginal revenue product
of hours of work (MRPH):

∂Rt
∂ht

= γPtAtL
µ
t ht

γ−1 = ϕt. (11)

A variation of work force affects the marginal costs of production16

∂Ct (Lt, ht)
∂Lt

= Wt(ht) = wh (1 + s) + w(1− ht)s(1− k) + f, (12)

equivalent to the total labor costs of each single employee.17 If the firm readjusts its
hours of work instead, production costs vary according to

∂Ct (Lt, ht)
∂ht

= (w (1 + sk))Lt. (13)

If the marginal revenue exceeds the marginal costs of labor, an increase in the volume
of labor is remunerative, if it is lower, employees are being laid off or hours of work
are being reduced. If such transactions are costless waiting is irrational. The firm will
immediately react to any changes. That is the case, if the strategy of working hour
adjustments is chosen or if transfers are free of costs in terms of H = 0 and F = 0.

3.1.1 Absence of transaction cost

To simplify matters the special case of no transaction cost will be analyzed first, so for
this brief section it shall be assumed that H = 0 as well as F = 0.18 Given the preceding
definition the optimal ht∗hours of work, according to section 6.2 are

h∗t = (γ − µ) (ws (1− k) + f)
µ (w (1 + sk)) . (14)

As they are solely dependent on the wage rate w, the fixed costs f , the surcharges
s, which are all defined as constants, and the likewise unvarying economies of scale,
equilibrium hours of work must be constant as well. A trade-off between a change of

16For explicit comments to this statement see section 6.1.
17The term "‘compensation of employees"’ should be avoided here, as no statement has been made about

the benefit of the fixed costs of labor f to the employee.
18This case does not necessarily represent a laissez faire policy as transaction cost also contains cost of

recruitment and qualification, which are primarily determined by the present state of the underlying
labor market.
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working hours or work force then does not exist and the equilibrium amount of labor
force Lt∗ is according to19

Lt
∗(Pt, At) =

[
µγ−1 (w (1 + sk))2−γ

γPtAt [(γ − µ) (ws (1− k) + f)]γ−1

] 1
µ−1

(15)

determined by the price Pt and the current level of productivity At. As no working
time adjustment takes place and the labor input is independent of the constant working
hours, it can already be shown that short-time work does not have any retarding effect
on layoffs.

3.1.2 hiring and firing effects

If on the contrary transaction costs become due when hiring or firing takes place, results
may differ considerably. If the MRPW falls below the marginal costs, causing negative
marginal profits, the firm may still hold on to the work force at risk. This stand-by
state is practiced as long as the expected present value of future losses exceeds the
critical shadow value – the firing costs F . On the other side a firm will delay recruiting
new staff even if it experiences positive marginal profits, if the costs of hiring h are
yet unreasonably high. The thus spanned window of inactivity widens, the higher the
barriers of the transaction costs are in relation to the alternative operating costs of
production. Formally it can be stated that20

dXt < 0 if Et

{∫ ∞
t

(ητ −W ) e−(r+δ)(τ−t)dτ

}
= −F, (16)

dXt = 0 if −F < Et

{∫ ∞
t

(ητ −W ) e−(r+δ)(τ−t)dτ

}
< H (17)

and

dXt > 0 if Et

{∫ ∞
t

(ητ −W ) e−(r+δ)(τ−t)dτ

}
= H. (18)

So the firm is evaluating expectations for any future point in time τ in the present instant
of time t and optimizes its cumulative present values of future profits by instantaneous
regulation of labor input. In the presence of hiring costs H and firing costs F , the
firm will adjust its factor input, once the opportunity costs – the present values of the
unrealized marginal profits or the tolerated marginal losses – pass the barriers determined
by H and F . As shown in section 6.4, the equations (16) and (18) can be rewritten to

dXt < 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
= W

(r + δ) − F

and

dXt > 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
= W

(r + δ) +H.

19See section 6.2 for an explicit derivation of this function.
20See section 6.4.
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3.1.3 The option of short-time work

If in conformity with a potential labor agreement short-time work is an option, its
introduction can be beneficial to the firm. The basic acceptance of short-time work by
the employee representation in times of economic crisis is assumed within the model
framework.21 Working time is then regulated, to keep marginal profits at the break even
level, which is accomplished by maintaining the strategy22

ht
∗(Pt, At, Lt) =

[
w (1 + sk)
γPtAtLt

µ−1

] 1
γ−1

. (19)

If this adaption is costless, an immediate response to any fluctuation in pricing is possible.
This strategy will be chosen, if transfers of work force are impossible or, in the presence
of high transaction costs would result in disproportionate losses. If, as henceforth will
be assumed, both strategies – hiring and firing as well as short-time work – are possible,
the firm will follow a more sophisticated regulation.

3.1.4 Dominant strategies

Which of both strategies is chosen depends on the specific costs of adaption. As in
times of crisis layoffs and reduction of working hours are predominant, the focus of the
following treatment will be on cutbacks, as shown in case (16).23 A downward change
of operational hours of work is equivalent to a cost reduction in the amount of

∂Ct(Lt,ht)
∂ht

r + δ
= (w (1 + sk))Lt

r + δ
.

The above expression is the cumulative variable part of wages per instant of time, paid
for each employee over an infinite time of operation. The perpetuity r+δ again supports
the continuous nature of the framework, giving present values of all future wages. This
difference in working hours is saved by the firm at all times in the future, its value
however is discounted by the risk-free interest rate r and the exogenous deterministic
labor attrition rate δ, which stands for the cumulative relative frequency that wages are
saved anyway, because the marginal work force at risk has already quit or has retired.
If on the other hand a layoff is considered, then the cumulative wages

∂Ct(Lt,ht)
∂Lt

r + δ
− F = wh (1 + s) + w(1− ht)s(1− k) + f

r + δ
− F

are saved. Comparing these savings to the ones obtained through short-time work, the
benefit of layoffs is that the fixed part of labor costs f as well as the additional non-wage

21A corresponding optimization calculus for the employee’s decision-making process is neglected, to
maintain simplicity.

22See appendix 6.3.
23A quite similar application to expanding business activity, resulting in recruitment and even overtime

work, can be done, but will not be considered in this model, to support comprehensibility.
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labor costs of canceled hours of work can be avoided. The however disadvantageous
aspect of firing is, that the one-time firing cost F is applied. So initially the trade-off is
in preference to short-time work, if cost reduction of a working time adjustment exceeds
the difference of cumulative total labor costs of a single employee and the firing costs.
In the simple case of full absorption of additional non-wage labor cost through a state
STC program (i.e. k = 1), short-time work is preferred, as long as

(w (1 + s))Lt∆ht
r + δ

≥ w (1 + s)h∆Lt + f

r + δ
− F,

resp.
(w (1 + s))Lt∆ht ≥ w (1 + s)h∆Lt + f − F (r + δ). (20)

Given the feasible supposition, that either way of adjustment is related to the same
amount of a total volume of labor, or, to put it differently, that Lt∆ht = h∆Lt, it can
already be checked, that short-time work is advantageous, as long as F > f

r+δ , then the
sum of future fixed labor costs is less than the immediate firing costs. Short-time work
then again is unremunerative, if costs of dismissal are rather small or nonexistent or if
the fixed upkeep costs of a work station or fixed benefits of a labor agreement are quite
extensive.
This brief examination however is an initial oversimplification of matters, as it does not

consider the way the expected cumulative MRPW (henceforth abbreviated to ecMRPW),
that is to say the option value of the otherwise forfeit future production, is shifted by the
presence and conditions of the window of inactivity. As shown in (10), the correlation
between the MRPW and the operational labor force is negative. While the ecMRPW can
easily be forecast using the drift rate of prices and the constants r and δ in the absence
of transaction costs, this is no longer coherent, if transfers are costly. This is particularly
relevant, if transaction costs are asymmetrical. If the barrier of inactivity in one direction
of adjustment is significantly closer to the present allocation of work force and working
hours, in relation to the other barrier, the probability is higher that this first barrier is
overrun more frequently as time progresses than the barrier in the opposite direction.
Overrunning a barrier however will cause transactions, thus resetting the ecMRPW.
This more probable incidence causes a bias in the expected value. Furthermore, MRPW
levels beyond this barrier will not be realized and their corresponding trajectories are
no longer elements of the filtration of the underlying MRPW process. The probability
distribution of the process is affected by the presence of these barriers.24 Keeping in
mind this intuitive idea, the difference of the ecMRPW of both strategies of adjustment
must be incorporated into the framework. Thus in the following section, a modified
ecMRPW in terms of a regulated stochastic process will be derived.

24To promote comprehensibility, a brief example shall be illustrated: In the case of very high hiring costs
and low firing costs, the MRPW trajectory, following the characteristics of a Geometric Brownian
Motion with drift, will most likely underrun the firing barrier more frequently than it overruns the
hiring barrier. As the underrunning process is reflected at the boundary at an early stage, even lower
levels of the MRPW are never being realized, thus the ecMRPW is positively biased compared to a
state of no regulation.
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3.2 Formal solution
If hiring and firing are costly, the firm will no longer react to minor price changes and
consequently changes in revenues. In the absence of transaction costs, {X} is a direct
mapping of {P} solely defined by the constant µ and the variables W and At. As {P} is
a stochastic process, so is its mapping {X}. In the presence of transaction costs {X} will
react buffered as predefined environmental conditions occur, i.e. in this specific model as
a certain amount of opportunity cost has accumulated. The instant time of transaction
is following the principle of a stopping time.25 The resulting process can be interpreted
as a regulated stochastic process, generated from {P} utilizing techniques of stochastic
control theory. For that purpose a regulated process is defined as a function of the
underlying unregulated stochastic process and a regulator. In the present framework the
regulated stochastic process of the ecMRPW, which is controlled by labor adjustments,
shall exclusively become active when the present MRPW, determined by the unregulated
process of pricing, is about to underrun or overrun the window of inactivity, that is when
dDt or dUt takes place. Then dDt and dUt quantify the extent of the underrun or overrun
within the instant of time.26 Dependent on dDt and dUt, which are accumulated to Dt

and Ut in terms of the filtered progression through time, lower and upper barrier values d
and u respectively evolve for each present MRPW. In order to determine these barriers
in general and their specific values, a generic regulator needs to be defined. In the
case of a Geometric Brownian Motion with drift, following Bentolila/Bertola (1990), the
regulator takes the form

ξt = ζt
Dt

Ut
. (21)

The thereby defined regulated process shall meet the following properties:

1. {ζt} is a stochastic process in terms of a Geometric Brownian Motion. It equals
dζt = ζtϑdt + ζtσdBt, where ϑ and σ are constant drift and variance parameters
and dBt are the increments of a standard Wiener process. For the initial value of
the regulated process ξ0 the condition d ≤ ξ0 ≤ u holds true,

2. {Ut} and {Dt} are increasing and continuous processes with initial values D0 =
U0 = 1,

3. {Dt} increases exclusively and yet always, when ξt = d. Likewise {Ut} increases
exclusively and yet always, when ξt = u. Furthermore d and u meet the condition
d, u ∈ R+,

4. d ≤ ξt ≤ u ∀ t ≥ 0.

25See Koralov/Sinaj (2007), p. 187 for an illustrative approach to stopping times. A more formal
definition of a stopping time with respect to a filtered probability space, can be found in Athreya/
Lahiri (2006), p. 405-406 and Shorack (2000), p. 305.

26In continuous time the quantification must be seen as a mathematical formality, as regulation takes
place at an infinitesimal level.
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Taking the logarithm, the regulated process can be reformed to a differential, where,
following Harrison (1985), p. 22, {Dt} and {Ut} are uniquely defined. According to the
product rule of Itô processes,27 eq. (21) can be expressed as the differential

dξt = Dt

Ut
dζt + ζt

Ut
dDt −

ζtDt

U2
t

dUt. (22)

Higher-order derivatives are ignored here.28

Applying the Itô formula in Harrison (1985), p. 74, to dg (ξt) yields the generic form:

dg (ξt) = g′ (ξt) dξt + 1
2 g′′ (ξt) (dξt)2

=
[
ϑg′ (ξt) ξt + σ2

2 g′′ (ξt) ξ2
t

]
dt+

+ σg′ (ξt) ξtdBt + g′ (ξt)
ζt
Ut
dDt − g′ (ξt)

ζtDt

U2
t

dUt. (23)

According to eq. (21) the term ζt can be expressed by ξt as well. As Dt only increases,
when the sample path reaches the lower barrier, i.e. ξt = d, and Dt only increases, when
ξt = u, in the last two summands ξt can be substituted for d and u:29

dg (ξt) =
[
ϑg′ (ξt) ξt + σ2

2 g′′ (ξt) ξ2
t

]
dt+

+ σg′ (ξt) ξtdBt + dg′ (d) dDt

Dt
− ug′ (u) dU t

Ut
. (24)

Integration by parts leads to30

e−λtg (ξt) = g (ξ0) +
∫ t

0
e−λν

[
ϑg′ (ξν) ξν +

(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν)
]
dν+

+
∫ t

0
e−λνσg′ (ξν) ξνdBt + dg′(d)

∫ t

0
e−λν

(
dDt

Dt

)
−

− ug′(u)
∫ t

0
e−λν

(
dUt
Ut

)
. (25)

Given λ > 0, dg′ (d) = 0 and ug′ (u) = 0, for t→∞

0 = g (ξ0) + E0

{∫ ∞
0

e−λν
[
ϑg′ (ξν) ξν +

(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν)
]
dν+

}

−g (ξ0) = E0

{∫ ∞
0

e−λν
[
ϑg′ (ξν) ξν +

(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν)
]
dν+

}
(26)

27See Wiersema (2008), p. 78; Harrison (1985), p. 72; Deck (2006), p. 96.
28Wiersema (2008), p. 76 states, that the higher-order derivatives at an infinitesimal level are minor

compared to the first-order derivatives and therefore considered negligible to promote simplicity.
29See section 6.5.
30See section 6.6. For an explicit elaboration see Harrison (1985), p. 73.
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holds true.
This is equivalent to the differential equation

−ξν = ϑg′ (ξν) ξν +
(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν) , (27)

to which the general solution is31

E0

{∫ ∞
0

ξte
−λtdt; ξ0, u, d

}
= 1
λ− ϑ

(
ξ0 + ξ0

α1 (uα2d− udα2)
α1 (uα1dα2 − uα2dα1) + ξ0

α2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
≡ g (ξ0;u, d, ϑ, σ, λ) . (28)

In the framework of this model, the MRPW denotes the current observation of the
regulated process, i.e. the present MRPW, so that ξ = η. The continuous discount rate
λ stands for the sum of risk-free interest rate r and labor attrition rate δ, thus λ = r+δ.
The rate of growth ϑη of the η process and its standard deviation ση are gained through
their causal parameters:32

ϑη = ϑa + ϑp + δ(1− µ) (29)
resp.

ση = σp. (30)

Replacing the generic parameters with the ones previously specified, will yield the
regulated ecMRPW process as a mapping of the current MRPW and the lower and
upper barrier values d and u, determined by the transfer costs. These are the critical
parameter values of the MRPW, the values that, if observed at any time, will result
in an instantaneous transfer action, which then is the optimal reaction, given future
expectations.

Et

{∫ ∞
t

ητ · e−(r+δ)(τ−t)dτ ; ηt, u, d
}

= 1
r + δ − ϑη

(
ηt + ηt

α1 (uα2d− udα2)
α1 (uα1dα2 − uα2dα1) + ηt

α2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
. (31)

To solve this equation, at least two specific values of the MRPW, that are feasible under
the given set of parameters, must be known. For lack of specific information about each

31See section 6.7.
32See section 6.8.
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potential process, these are the general values ηt = u and ηt = d. Thus

Et

{∫ ∞
t

u · e−(r+δ)(τ−t)dτ ;u, u, d
}

= 1
r + δ − ϑη

(
u+ uα1 (uα2d− udα2)

α1 (uα1dα2 − uα2dα1) + uα2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
(32)

resp. Et

{∫ ∞
t

d · e−(r+δ)(τ−t)dτ ; d, u, d
}

= 1
r + δ − ϑη

(
d+ dα1 (uα2d− udα2)

α1 (uα1dα2 − uα2dα1) + dα2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
. (33)

Furthermore to both cases specific values for the dependent variable, that is the present
value of the ecMRPW, need to be assigned. The value of the modified marginal profit
function G∗t (u) at both designated allocations equals zero, as, at the infinitesimal state
of indifference between transaction and waiting, the marginal revenue equals marginal
costs, that is the entity of future wages plus the transaction costs, as referred to in
eq. (57). So

G∗t (u) = Et

{∫ ∞
t

u · e−(r+δ)(τ−t)dτ ;u, u, d
}
− Wt(ht)

(r + δ) −H = 0.

Likewise G∗t (d) depicts the case of the ecMRPW specified in eq. (56), which, if underrun,
would mean unreasonable factor costs of labor. This would result in a deficit exceeding
the firing costs. An immediate layoff of a worker is initiated:

G∗t (d) = Et

{∫ ∞
t

d · e−(r+δ)(τ−t)dτ ; d, u, d
}
− Wt(ht)

(r + δ) + F = 0.

Inside the perimeter of inaction the firm can buffer fluctuation of prices utilizing work-
ing time adjustment. The positive correlation of the MRPW and the time factor h is
already shown in eq. (10). As by definition u ≥ d, consequently ht(u) ≥ ht(d) and, due
to the positive correlation of hours of work and the total labor costs of an employee,
following eq. (12), Wt(ht(u)) ≥ Wt(ht(d)) must hold true. The more voluminous the
time adjustment strategy is applied in the window of inaction, the more the window will
be spread. As shown in section 6.9, the total labor costs of an employee at the barrier
value are equivalent to

Wt(d) = γ

µ
· d+ ws(1− k) + f (34)

and

Wt(u) = γ

µ
· u+ ws(1− k) + f. (35)

Insertion of both conditions into the marginal profit functions, given constant paramet-
ers, the regulator is reduced to the yet unknown values d and u.
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G∗t (u) = 1
r + δ − ϑη

(
u+ uα1 (uα2d− udα2)

α1 (uα1dα2 − uα2dα1) + uα2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
−

−
γ
µ · u+ ws(1− k) + f

(r + δ) −H = 0 (36)

resp.

G∗t (d) = 1
r + δ − ϑη

(
d+ dα1 (uα2d− udα2)

α1 (uα1dα2 − uα2dα1) + dα2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
−

−
γ
µ · d+ ws(1− k) + f

(r + δ) + F = 0. (37)

The simultaneous equations now are ready to be solved numerically. With the para-
meter specific values of d and u the conditions for a transfer of labor force are known.
As both boundaries are solely defined by constant parameters, d and u are unvarying
as well under each given set of parameters at any point in time and for every trajectory
as an elementary event of the underlying probability space. Once these boundaries of
inaction are determined, the optimal allocation of work force and hours of work can be
assigned to every possible market development, i.e. every change in prices.

3.3 work force-working-time-allocations within the boundaries of inactivity
The optimal operational working time with respect to a given present MRPW may take
values ht(ηt) ∈ [ht(d);ht(u)]. As shown in section 6.9, it is nonetheless defined by

ht
∗(ηt) = γ

µ

ηt
w (1 + sk) ,

as a function of ηt. As the boundaries d and u are constant, the factor of working
time too can vary between the steady constant values ht∗(d) and ht∗(u), following the
equations (70) and (71). So for any ht a corresponding optimal work force exists, in
terms of eq. (10), which, according to the mapping ηt 7→ ht

∗(ηt) can be expressed via

Lt
∗ (Pt, ηt) = (PtAt)

1
1−µ ·

(
µ

ηt

) 1−γ
1−µ
·
(

γ

w (1 + sk)

) γ
1−µ

(38)

as a dependence of Lt on the MRPW.33 Utilizing the critical values of inactivity ηt = d
as well as ηt = u then yields the critical amount of work force

Lt,F
∗ (Pt, d) = (PtAt)

1
1−µ ·

(
µ

d

) 1−γ
1−µ
·
(

γ

w (1 + sk)

) γ
1−µ

(39)

and

Lt,H
∗ (Pt, u) = (PtAt)

1
1−µ ·

(
µ

u

) 1−γ
1−µ
·
(

γ

w (1 + sk)

) γ
1−µ

, (40)

33See section 6.10.
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where Lt,F ∗ represents the tolerated maximum of work force at a specific currently ob-
served price level, which, if theoretically exceeded, would cause immediate layoffs to
the resetting allocation Lt,F

∗. A firm on the contrary, that experiences an underrun
of critical low employment Lt,H∗, will instantaneous start recruiting new staff, unhesit-
antly paying hiring costs h, until employment is back up to level Lt,H∗, where further
hirings are suspended for the moment.34 The distance between Lt,H∗ and Lt,F ∗ can be
interpreted as the range of inaction.
Finally, a brief perspective approach to the individual firm seems called for. The

previous comprehension allows for a statement considering the extrema of employment
at given price level in an average firm within a homogeneous branch. Nonetheless the
position of a single firm is one of an initial work force. This work force is then adapted to
changes in revenues of the firm, as time progresses. Given its staff, the firm can buffer a
certain range of fluctuation in demand, sitting out smaller setbacks utilizing short-time
work, until a severe slump may still necessitate firing. The price range that can be
hibernated with present personnel can be shown, once the equations (39) and (40) are
reformed:35

Pt,F
∗ (Lt, d) = Lt

1−µAt
−1 ·

(
d

µ

)1−γ
·
(
w (1 + sk)

γ

)γ
(41)

resp.

Pt,H
∗ (Lt, u) = Lt

1−µAt
−1 ·

(
u

µ

)1−γ
·
(
w (1 + sk)

γ

)γ
. (42)

4 Results
Using static parameter sets, representing feasible market scenarios, the strategic behavior
of a firm can be analyzed numerically. The firm here will adapt its course of action to
the design characteristics of a state STC program, utilizing the previously described
techniques of stochastic control.
The baseline scenario is associated with a very restrictive design of a STC program that

leaves the whole additional non-wage labor cost to be paid by the firm. The alternative
scenario in comparison will introduce a short-time work policy that is more benevolent
and grants full absorption of additional non-wage labor cost by a state authority. Both
scenarios are further split into two cases. Case A describes a market environment of still
moderate uncertainty of future price development, whereas case B, doubling standard
deviation of the price process, puts future revenues under substantial risk. So case B can
be interpreted as a phase of severe economic recession, implying increasing uncertainty of

34This scenario does not necessarily mean an increase in market prices, but can also be a consequence of
the deterministic attrition δ, which may cause the operational labor force to drop below the tolerated
minimum.

35See section 6.10. To avoid misunderstanding it has to be stressed that the resulting prices Pt,H∗ (Lt, u)
and Pt,F ∗ (Lt, d) do not suggest a dependence of the prices on the level of production, but instead
mark the critical prices, that if their incidence is observed, will force activity in terms of hiring or
firing.
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Table 1: The examined market scenarios.
Parameters Parameter values

Scenario A1 Scenario A2 Scenario B1 Scenario B2
ϑp 0.01 0.01 0.01 0.01
ϑa 0.01 0.01 0.01 0.01
σp 0.1 0.1 0.2 0.2
µ 0.65 0.65 0.65 0.65
γ 0.35 0.35 0.35 0.35
δ 0.05 0.05 0.05 0.05
r 0.05 0.05 0.05 0.05
f 0.8 0.8 0.8 0.8
F 1 1 1 1
H 0.166 0.166 0.166 0.166
w 1 1 1 1
s 0.2 0.2 0.2 0.2
k 0 1 0 1

expectations of future production level. The set of parameter values is shown in table 1.
36

If a firm is taking into consideration the option of short-time work, the presence and
extent of remanence cost is a crucial factor in decision making. In the baseline scenario
A1 the firm at any ratio of short-time work still has to pay the full-time equivalent of
non-wage labor costs. As these in this case are completely independent of the hours
of work factor, they take the property of fixed cost, increasing in weight in relation
to the wage rate per hour the more the operational hours of work are reduced. As a
consequence the increasing unit labor cost does at a relative high level of working hours,
i.e. a very moderate use of short-time work, not allow for a further decrease in working
hours, resulting in layoffs at an early stage of recession.
The dependence of tolerated levels of work force on the market price of the produced

good is illustrated in figure 1. The range between the graphs may be interpreted as the

36For better understanding concerning the choice of parameter values the following shall be stated: Early
simulations have shown, that the variance of the Geometric Brownian Motion should not be weighted
too disproportionate in relation to the drift, as then forecasts become unreliable. Hence the drift of
the {P}-process and the deterministic growth rates are aimed to keep the drift of the {η}-process
at a value of ϑη = 0.038 and thus slightly underweight compared to the standard deviation. The
parameters µ and γ are chosen to account for decreasing returns to scale, as otherwise exogenous
prices would result in unbounded cumulative profits, rendering any transaction cost barrier useless.
F equals one year of wages (F = w) and H with H = 1/6 · w equals two months of wages. This
value is doubled compared to the original one in Bentolila/Bertola (1990), as by definition it contains
additional cost of qualification. The non-wage labor costs are estimated to be 20 Prozent of the
wages, a value very close to the actual rate in Germany. The parameter value of fixed labor cost f
can not be specified, as it greatly differs among different branches. Thus it has been chosen for means
of calibration to adjust the hiring barrier in scenario A2 to an approximate full-time equivalent.

16



0 1 2 3

1

2

3

4

LH Pt 
LF Pt 

Pt

Figure 1: The barriers of inactivity at a given price level in Scenario A1.
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Figure 2: The barriers of inactivity at a given price level in Scenario A2.

corridor of inactivity, giving the set of all possible allocations of work force and hours of
work. If the price increases or the attrition rate δ causes the labor force to drop below
the LH -curve, the firm will immediately increase employment by starting to hire. On
a very abstract level the curves could also be interpreted as short-run reaction paths.37

The LF -curve then maps the allocations that are successively passed if, at a critically
high state of employment, prices keep falling.
In comparison to figure 2 the full absorption of additional non-wage labor cost by

the state increases the firing barrier and promotes labor hoarding. Under the given
parameter values this effect is rather minor, as the fixed cost here is relatively high.
Nonetheless the critical work force in scenario A2 is approximately 10 percent above

37The term "short-run" literally means an instant of time, as for any sufficiently long time interval the
productivity At progresses. So any of the showcase pairs of boundary only applies to the given price
for an infinitesimal period of time.
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Parameters Parameter values
Scenario A1 Scenario A2 Scenario B1 Scenario B2

ht(u) 1.524 1.02 2.838 1.9
ht(d) 0.461 0.296 0.346 0.223
ELHP 3.03% 2.899% 3.846% 3.077%
ELFP 2.889% 2.864% 2.888% 2.867%

Table 2: The variation of the optimal hours of work factor and of the price elasticities.

scenario A1 at given price levels. These 10 percent of workers are consequently laid off
if, as in scenario A1, the difference in non-wage labor cost is added to the remanence
cost.
The window of inactivity, i.e. the range between minimal and maximal tolerated work

force in case A is already quite substantial given the yet moderate amount of uncertainty
σp = 0.1.
Both scenarios differ even more in the amount of tolerated maximal labor. As can

be extracted from table 2, the critical hours of work factor in both cases of uncertainty
lies above the baseline scenario. In case A2 even a reduction of up to 70 percent of
working hours may still be efficient compared to costly firing, hence the slope may
still be hibernated with the complete initial staff. The utilization of work force must
however be more than 50 percent higher in A1. If the sufficient factor of working hours
drops below 46.1 percent, short-time work has lost its benefit, resulting in subsequent
alternation to the firing strategy.
The hoarding of labor, promoted by transaction costs and a generous STC program is

significantly intensified, if future pricing is increasingly stochastic and forecasts get even
more undependable. As in case B the variance of the nondeterministic part of the incre-
ments of the price process is four times higher than in case A, the option value of waiting
is so predominant, that even if the firm has to carry the whole additional non-wage labor
cost, it still will hang on to short-time work up to a reduction of nearly two thirds of
operational time. Thus a full-time equivalent of 34.6 percent can be realized until finally
the certain and immediate payment of the firing cost is seen as advantageous. Evid-
ently the highest extent of short-time work can be gained if under extreme uncertainty
of future market conditions still another economic incentive is offered in terms of the
STC program designed in Scenario B. Then the highest extent of short-time of all four
showcases is given at a labor volume of but 22.3 percent.
The price elasticities of work force ELHP and ELFP shown in table 2 are not sufficient

to back a significant influence of the remanence cost on the progression of dismissals,
once the strategy of short-time work is abandoned during the downward economic slope.
If a given STC program promotes the utilization of short-time work, layoffs are indeed
slowed down, yet this effect is too small too allow for a strong statement. The even
smoother elasticity concerning recruitment is due to the relatively high maximum of
tolerated work force at low price levels and its convergence with rising prices.

18



5 Conclusion
Within the framework of the devised model the basic effectiveness of a subsidy on short-
time work has been substantiated. Provided the compliance with a labor agreement, the
window of inactivity may be widened considerably. Thus the stabilizing effect of positive
long-term expectations that may be assumed for a competitive product and socially ab-
sorbable layoffs through retirement and job migration can be promoted. Severe business
cycles can be hibernated with even massive cuts in working time, if then increasing fixed
costs of labor are absorbed by a state program and hence the present value of uncertain
future fixed costs is exceeded by certain immediate firing cost. Furthermore, layoffs can
be retarded to a more severe state of recession.
The better future revenues can be forecast, the less inaction and a supposedly tempor-

ary reduction of labor time will be necessary. Yet if more weight is put on uncertainty
as a key characteristic of times of crisis, an extended utilization of a STC program can
be emphasized on a theoretical level.
The fact that increased uncertainty in the context of this approach has shown an

employment stabilizing effect should not be seen indisputable. Yet it is obvious, that
given the positive drift rate of the defined price process, long-term optimism still is an
implication of this model, which per se delays transfers of costly labor, as the present
value of the future prospect of production is sufficiently high.

6 Appendix
6.1 Marginal costs of labor
Consider the function (8):

Ct (Lt, ht) = W (ht)Lt = (wh (1 + s) + w(1− ht)s(1− k) + f)Lt.

The marginal costs of work force then are

∂Ct (Lt, ht)
∂Lt

= W = wh (1 + s) + w(1− ht)s(1− k) + f. (43)

If eq. (8) on the other hand is partially differentiated with respect to working time, the
marginal costs of hours of work then are

∂Ct (Lt, ht)
∂ht

= (w (1 + s)− ws(1− k))Lt

= (w + wsk)Lt
∂Ct (Lt, ht)

∂ht
= (w (1 + sk))Lt. (44)
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6.2 Optimal allocation of work force and working time in the absence of
transaction costs

It shall be assumed that H = F = 0, i.e. that hirings as well as firings are costless. In
this special case the maximization calculus is reduced to

Vt ≡ max
{xt},{ht}

Et


∞∫
t

e−r(τ−t) [(PτAτLτ µhτ γ −WLτ ) dτ ]

 .
In every instant of time then profits G (Lt, ht) = PtAtLt

µht
γ −WLt are realized. As

long as workers can be hired or fired free of cost, waiting is unreasonable. The firm
will immediately optimize its work force-working-time-allocation. In perfect competi-
tion optimal factor input is given, if the price of the last unit of production equals its
production cost. The marginal profit then equals zero:

∂R (Lt, ht)
∂Lt

= ∂C (Lt, ht)
∂Lt

µPtAtL
µ−1
t ht

γ = wh (1 + s) + w(1− ht)s(1− k) + f

Lµ−1
t = h (w (1 + s)− ws (1− k)) + ws (1− k) + f

µPtAtht
γ

Lt =
[
h (w (1 + s)− ws (1− k)) + ws (1− k) + f

µPtAtht
γ

] 1
µ−1

. (45)

In perfect competition the same principle holds true for changes in hours of work:

∂R (Lt, ht)
∂ht

= ∂C (Lt, ht)
∂ht

γPtAtL
µ
t ht

γ−1 = (w (1 + sk))Lt
γPtAtL

µ−1
t ht

γ−1 = (w (1 + sk))

Lµ−1
t = w (1 + sk)

γPtAtht
γ−1

Lt =
[
w (1 + sk)
γPtAtht

γ−1

] 1
µ−1

. (46)

In an equilibrium both constraints must be met. Equalizing the equations (45) and (46)
yields the optimal full-time factor:
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[
w (1 + sk)
γPtAtht

γ−1

] 1
µ−1

=
[
h (w (1 + s)− ws (1− k)) + ws (1− k) + f

µPtAtht
γ

] 1
µ−1

w (1 + sk)
γht

γ−1 = h (w (1 + s)− ws (1− k)) + ws (1− k) + f

µht
γ

w (1 + sk)
γht

γ−1 = (w (1 + s)− ws (1− k))
µht

γ−1 + ws (1− k) + f

µht
γ

1
γ
· w (1 + sk) = 1

µ
· (w (1 + s)− ws (1− k)) + ws (1− k) + f

µht
ws (1− k) + f

µht
= 1
γ
· w (1 + sk)− 1

µ
· (w (1 + s)− ws (1− k))

µht
ws (1− k) + f

= γ

w (1 + sk) −
µ

(w (1 + s)− ws (1− k))
µht

ws (1− k) + f
= γ

w (1 + sk) −
µ

w (1 + sk)

h∗t = (γ − µ) (ws (1− k) + f)
µ (w (1 + sk)) . (47)

Recycling of this expression into eq. (46) shows the optimal amount of work force:

Lt =

 w (1 + sk)

γPtAt
(

(γ−µ)(ws(1−k)+f)
µ(w(1+sk))

)γ−1


1

µ−1

Lt
∗ =

[
µγ−1 (w (1 + sk))2−γ

γPtAt [(γ − µ) (ws (1− k) + f)]γ−1

] 1
µ−1

. (48)

6.3 Optimum of working hours
The optimal full-time factor ht∗ with respect to the labor force present Lt and the present
price Pt is set, if the marginal profit of hours of work is zero, i.e.

∂R (Lt, ht)
∂ht

= ∂C (Lt, ht)
∂ht

.

Equation (46) can be converted to:

ht
∗(Pt, At, Lt) =

[
w (1 + sk)
γPtAtLt

µ−1

] 1
γ−1

. (49)

6.4 Optimal transaction calculus with respect to hiring and firing costs
The equations (16) and (18),
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dXt < 0 if Et

{∫ ∞
t

(ητ −W ) e−(r+δ)(τ−t)dτ

}
= −F (50)

and

dXt > 0 if Et

{∫ ∞
t

(ητ −W ) e−(r+δ)(τ−t)dτ

}
= H (51)

can be rewritten to

dXt < 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
− Et

{∫ ∞
t

We−(r+δ)(τ−t)dτ

}
= −F (52)

and

dXt > 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
− Et

{∫ ∞
t

We−(r+δ)(τ−t)dτ

}
= H. (53)

The probability of total wagesW being paid at future instants of time decays at a rate δ,
which can be interpreted as the periodic probability of an employee quitting or retiring.
Future expected value need to be further discounted by the inflation rate r. The present
value of all future wages is then a perpetuity, thus both equations are

dXt < 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
− W

(r + δ) = −F (54)

and

dXt > 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
− W

(r + δ) = H, (55)

resp., after rewriting,

dXt < 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
= W

(r + δ) − F (56)

and

dXt > 0 if Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
= W

(r + δ) +H. (57)

So the present value of the expected cumulative marginal revenue product of work force
at the state of hiring equals the costs of this new worker, which are the perpetuity of
wages and the hiring cost. To simplify interpretation eq. (56) may also be rewritten to

dXt < 0 if W

(r + δ) = Et

{∫ ∞
t

ητe
−(r+δ)(τ−t)dτ

}
+ F,

separating the benefits of the transaction to the left side and its cost to the right side of
the equation, as done in eq. (57). In the incidence of a dismissal the saved future wages
are then compared to the cumulative loss of production and the firing cost.
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6.5 Modification of the barriers by an underrun or overrun
According to eq. (23) influence of the lower and upper boundary on the regulated process
is

+g′ (ξt)
ζt
Ut
dDt − g′ (ξt)

ζtDt

U2
t

dUt.

Eq. (21) is equivalent to
ζt = ξt

Ut
Dt
.

Insertion into the barrier terms yields

+g′ (ξt)
ξtUt
UtDt

dDt − g′ (ξt)
ξtDtUt
U2
t Dt

dUt.

The process {Dt} increases only if and yet every time the regulated process reaches the
lower boundary. {Ut} increases likewise, if ξt reaches the upper boundary. So if ξt = d,
then dDt 6= 0 and if ξt = u, then dUt 6= 0. Substitution of ξt with d and u gives rise to

+dg′ (d) dDt

Dt
− ug′ (u) dU t

Ut

and leads to eq. (24). The case, that ξt 6= d or ξt 6= u does not need to be considered, as
the corresponding terms are multiplied to zero, if dDt = 0 or dUt = 0.

6.6 Integration by parts
For a generic stochastic process ξt = ζt

Dt
Ut
, following the product rule of Itô processes,

the differential
dξt = Dt

Ut
dζt + ζt

Ut
dDt −

ζtDt

U2
t

dUt

applies, where ζt (Bt), Dt (Bt) and Ut (Bt) are stochastic processes in terms of respective
mappings of a mutual Wiener process Bt. Integration by parts gives the expression in
terms of integrals:

ξt = ξ0 +
∫ t

0

Dt

Ut
dζt +

∫ t

0

ζt
Ut
dDt −

∫ t

0

ζtDt

U2
t

dUt.

Similarly for the product e−λtξt the differential equation

d
(
e−λtξt

)
= e−λtdξt − λe−λtξt,

resp. the integral form38

e−λtξt =
∫ t

0
e−λtdξt − λ

∫ t

0
e−λtξt

38See Harrison (1985), p. 73.

23



holds true. Integration by parts of
{
g (ξt) e−λt

}
modifies eq. (24) to

e−λtg (ξt) = g (ξ0) +
∫ t

0
e−λν

[
ϑg′ (ξν) ξν +

(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν)
]
dν+

+
∫ t

0
e−λνσg′ (ξν) ξνdBt + dg′(d)

∫ t

0
e−λν

(
dDt

Dt

)
−

− ug′(u)
∫ t

0
e−λν

(
dUt
Ut

)
.

Under the conditions

λ > 0,
−∞ < g (ξt) <∞,
−∞ < g′ (ξt) ξt <∞,

dg′ (d) = 0
and ug′ (u) = 0

the result for t→∞ is
→0︷︸︸︷
e−λt

6=|∞|︷ ︸︸ ︷
g (ξt) = g (ξ0) +

∫ t

0
e−λν

[
ϑg′ (ξν) ξν +

(
σ2

2

)
g′′ (ξν) ξ2

ν − λg (ξν)
]
dν+

+
∫ t

0
e−λνσ

6=|∞|︷ ︸︸ ︷
g′ (ξν) ξν dBt +

=0︷ ︸︸ ︷
dg′(d)

∫ t

0
e−λν

(
dDt

Dt

)
−

−
=0︷ ︸︸ ︷

ug′(u)
∫ t

0
e−λν

(
dUt
Ut

)
.

6.7 Solution of the differential equation
The expected cumulative marginal revenue product of work force is given for {ξt} = {ηt}
according to the generic regulator

g(ξ) = ξ

λ− ϑ
+ ξα1 (uα2d− udα2)

(λ− ϑ)α1 (uα1dα2 − uα2dα1) + ξα2 (udα1 − uα1d)
(λ− ϑ)α2 (uα1dα2 − uα2dα1)

as a mapping of the {ξ} process and the lower and upper boundaries d and u to the
regulated process g (ξ). It is given by the generic solution

g(ξ) = 1
λ− ϑ

(ξ +B1ξ
α1 +B2ξ

α2) ,

of the differential equation (25), to which the final form is determined by the constants
of integration B1 and B2, being
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B1 = uα2d− udα2

α1 (uα1dα2 − uα2dα1) , (58)

B2 = udα1 − uα1d

α2 (uα1dα2 − uα2dα1) , (59)

and the general solutions α1 and α2 to the second degree polynomial equation(
σ2

2

)
α2 +

(
ϑ−

(
σ2

2

))
α− λ = 0.

The solutions α1 and α2 are determined by the parameters of the distribution of the
generic regulated process ξ and equal

α1 ≡
( 1
σ2

)((σ2

2

)
− ϑ

)
+

√(
ϑ−

(
σ2

2

))2
+ 2σ2λ

 (60)

resp.

α2 ≡
( 1
σ2

)((σ2

2

)
− ϑ

)
−

√(
ϑ−

(
σ2

2

))2
+ 2σ2λ

 . (61)

In this specific model these parameters are the parameters of the {η} process, i.e. the
MRPW:

α1 ≡
(

1
σ2
η

)((σ2
η

2

)
− ϑη

)
+

√√√√(ϑη −
(
σ2
η

2

))2

+ 2σ2
η (r + δ)

 (62)

resp.

α2 ≡
(

1
σ2
η

)((σ2
η

2

)
− ϑη

)
−

√√√√(ϑη −
(
σ2
η

2

))2

+ 2σ2
η (r + δ)

 . (63)

In this case the substitution with the specific parameters shows the regulator

Et

{∫ ∞
t

ητ · e−(r+δ)(τ−t)dτ ; ηt, u, d
}

= 1
r + δ − ϑη

(
ηt + ηt

α1 (uα2d− udα2)
α1 (uα1dα2 − uα2dα1) + ηt

α2 (udα1 − uα1d)
α2 (uα1dα2 − uα2dα1)

)
.

6.8 The parameters of the distribution of the MRPW
The MRPW is a function of the stochastic {Pt} process, hence {ηt} too is a stochastic
process. Its distribution parameters are defined by the determinant deterministic and
stochastic variables. Following eq. (10) the MRPW is equal to

ηt = µPtAtL
µ−1
t ht

γ .
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The standard deviation of ηt is simply given by

ση = σp (64)

based on its direct proportionality. For the expected value of future instants of time τ
the equivalent equations39

Et (ητ ) = ηte
(τ−t)(ϑη− 1

2ση
2) (65)

Et (ητ ) = µ · Et(Aτ ) · Et(Pτ ) · Et(Lτ )µ−1 · Et(hτ )γ (66)

hold true. The deterministically evolving labor productivity Aτ has the growth rate ϑa,
thus in continuous time Aτ = Ate

ϑa(τ−t). The hours of work have no independent trend:
Et (hτ ) = ht. The labor force is subject to a deterministic decay through retirement,
extraordinary dismissal and job migration initiated by the employee. All these phenom-
ena are combined to the attrition rate δ. The expected value is Et(Lτ ) = Lte

−δ(τ−t).
Eq. (66) can be expressed as

Et (ητ ) = µ ·
(
Ate

ϑa(τ−t)
)
·
(
Pte

(ϑp− 1
2σp

2)(τ−t)
)
·
(
Lte
−δ(τ−t)

)µ−1
· htγ

=
(
µ ·AtPt · Lµ−1

t · htγ
)
· eϑa(τ−t) · e(ϑp−

1
2σp

2)(τ−t) · e−δ(τ−t)(µ−1).

The term in brackets is equal to the MRPW according to eq. (10), so that

Et (ητ ) = ηt · eϑa(τ−t)+(ϑp− 1
2σp

2)(τ−t)+δ(τ−t)(1+µ)

= ηt · e(τ−t)·(ϑa+ϑp− 1
2σp

2+δ(1−µ)).

Inserting Et (ητ ) from eq. (65) yields

ηte
(τ−t)(ϑη− 1

2ση
2) = ηt · e(τ−t)·(ϑa+ϑp− 1

2σp
2+δ(1−µ)),

and, after further simplification and logarithmic calculus

ϑη −
1
2ση

2 = ϑa + ϑp −
1
2σp

2 + δ(1− µ).

Substitution of the standard deviation in eq. (64) eliminates the standard deviation
terms in

ϑη −
1
2σp

2 = ϑa + ϑp −
1
2σp

2 + δ(1− µ),

finally resulting in the drift of the MRPW

ϑη = ϑa + ϑp + δ(1− µ). (67)

39For the explicit solutions familiarize with Ross (2007), p. 631-632 and Wiersema (2008), p. 105-108.
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6.9 Variation of total costs of work force in the window of inactivity
If working time adjustments are a locally dominant strategy the amount of work force
and the hours of work factor, following eq. (46), are interdependent:

Lt(ht) =
[
w (1 + sk)
γPtAtht

γ−1

] 1
µ−1

.

The MRPW in eq. (10) may alternatively be expressed independent of Lt, solely as a
function of ht:

ηt(Lt, ht) = µPtAtL
µ−1
t ht

γ

ηt(ht) = µPtAt

[ w (1 + sk)
γPtAtht

γ−1

] 1
µ−1

µ−1

ht
γ

ηt(ht) = µ

γ
w (1 + sk)ht.

(68)

Rewriting yields the hours of work factor, that is the respective optimum for any indi-
vidual allocation in the window of inaction

ht
∗(ηt) = γ

µ

ηt
w (1 + sk) , (69)

which is now solely expressed in terms of the MRPW ηt. For the critical MRPW values
d and u, marking the boundaries of inactivity, the corresponding hours of work factors
are defined by

ht
∗(d) = γ

µ

d

w (1 + sk) (70)

and

ht
∗(u) = γ

µ

u

w (1 + sk) . (71)

Now eq. (69) is applied, to reform the total cost of employment

Wt(ht) = wht (1 + s) + w(1− ht)s(1− k) + f,

which in eq. (12) depends on ht, to a function solely defined by the MRPW:

Wt(ηt) = w

[
γ

µ
· ηt
w (1 + sk)

]
(1 + s) + w

(
1−

[
γ

µ
· ηt
w (1 + sk)

])
s · (1− k) + f

= γ

µ
· ηt ·

(1 + s)
(1 + sk) + ws(1− k)− γ

µ
· ηt ·

s(1− k)
(1 + sk) + f

= γ

µ
· ηt ·

1 + s− s+ sk)
(1 + sk) + ws(1− k) + f

Wt(ηt) = γ

µ
· ηt + ws(1− k) + f. (72)
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When again ηt is being substituted by the boundary values d and u, the critical total
costs or to put it differently the marginal costs of the work force at the allocations of
firing and hiring are found:

Wt(d) = γ

µ
· d+ ws(1− k) + f (73)

and

Wt(u) = γ

µ
· u+ ws(1− k) + f. (74)

6.10 Range of prices and employment within the boundaries of strategic
optimality

Insertion of the optimal hours of work factor with respect to the MRPW40

ht
∗(ηt) = γ

µ

ηt
w (1 + sk)

into eq. (10) yields the function of the optimal amount of labor force at any given MRPW:

ηt = µPtAtL
µ−1
t

[
γ

µ

ηt
w (1 + sk)

]γ
L1−µ
t = µ1−γPtAtηt

γ−1
(

γ

w (1 + sk)

)γ
L1−µ
t =

(
µ

ηt

)1−γ
PtAt

(
γ

w (1 + sk)

)γ
Lt
∗ (Pt, ηt) = (PtAt)

1
1−µ

(
µ

ηt

) 1−γ
1−µ

(
γ

w (1 + sk)

) γ
1−µ

. (75)

Expressing the same statement in terms of Pt and replacing the generic variable ηt with
the boundary specific values d and u finally shows the lower and upper barriers of prices

Pt,F
∗ (Lt, d) = Lt

1−µAt
−1 ·

(
d

µ

)1−γ
·
(
w (1 + sk)

γ

)γ
and

Pt,H
∗ (Lt, u) = Lt

1−µAt
−1 ·

(
u

µ

)1−γ
·
(
w (1 + sk)

γ

)γ
that, given initial labor force, will be realized without hiring or operational dismissals.

6.11 Expected effect on employment
To account for the effects of STW on

40See section 6.9, eq. (69).

28



Um Aussagen über die durchschnittliche Beschäftigung bzw. Beschäftigung eines
durchschnittlichen Unternehmens innerhalb der durch die gegebenen Parameter skiz-
zierten Branche treffen zu können, muss ein Personalniveau herangezogen werden, dass
dem arithmetischen Mittel innerhalb der Barrieren entspricht. Der regulierte stochas-
tische Prozess des Faktoreinsatzes Lt muss also mit Wahrscheinlichkeit 0, 5 über bzw.
unter dem interessierenden Niveau L̄ liegen:41

P
(
L̄ ≤ LF

)
= P

(
LH ≤ L̄

)
=
∫ LH

L̄
fL(L;P,A)dL = 0, 5.

Bentolila/Bertola (1990), p. 289 f. folgend, ist die Dichtefunktion einer regulierten
Geometrischen Brownschen Bewegung {ξ}

f(ξ) = (ϕ− 1)ξϕ−2

uϕ−1 − dϕ−1 1[d≤ξ≤u], (76)

wobei allgemein ϕ ≡ 2ϑ
σ2 bzw. in diesem Fall ϕ = 2ϑη

ση2 . Die bedingte Dichte von L ist
weiterhin

fL(L;P,A) = fη [η(L;P,A)] ∂η(L;P,A)
∂L

fL(L;P,A) = fη [η(L;P,A)] · (µ− 1)µPAhγLµ−2,

unter Verwendung der partiellen Ableitung von eq. (10). Die Anwendung der Dichte-
funktion (76) für ξ ≡ η und anschließende Substitution von η gemäß eq. (10) ergibt:42

41Nachfolgende Bezeichnungen f und F stehen innerhalb dieses Abschnittes für Dichte- bzw. Ver-
teilungsfunktion, nicht für die Modellparameter. Weiterhin muss gesondert darauf hingewiesen wer-
den, dass sich die Verteilung von L, anders als üblich, vom oberen Wert LF zum unteren LH ku-
muliert, was darin begründet liegt, dass von η abgebildet wird, womit niedrige Werte von η auf hohe
Werte von L abgebildet werden.

42Der Übersichtlichkeit halber wird nun auf den Gebrauch der Indikatorfunktion verzichtet, da die Mög-
lichkeit, Werte jenseits der Barrieren zu erreichen ohnehin aufgrund der Regulierung ausgeschlossen
werden kann.
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fL(L;P,A) = fη [η(L;P,A)] · (µ− 1)µPAhγLµ−2,

= (ϕ− 1)ηϕ−2

uϕ−1 − dϕ−1 · (µ− 1)µPAhγLµ−2

=
(ϕ− 1)

(
µPtAtL

µ−1
t ht (u)γ

)ϕ−2

uϕ−1 − dϕ−1 · (µ− 1)µPAhγLµ−2

=
(ϕ− 1)

(
µPtAtL

µ−1
t ht (u)γ

)ϕ−2

uϕ−1 − dϕ−1 · (µ− 1)
(
µPtAtL

µ−1
t ht

∗ (u)γ
)
L−1

=
(ϕ− 1)

(
µPtAtL

µ−1
t ht (u)γ

)ϕ−1

uϕ−1 − dϕ−1 · (µ− 1)L−1

= (ϕ− 1)(µPtAtht (u)γ)ϕ−1L(µ−1)(ϕ−1)

uϕ−1 − dϕ−1 · (µ− 1)L−1

= (µ− 1)(ϕ− 1)(µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 L(µ−1)(ϕ−1)−1

Wie eingangs erwähnt wurde, gilt für P
(
LH ≤ L̄

)
= 0, 5. Dann gilt weiterhin

Et(L) =
∫ LH

LF

Lf(L)dL

=
∫ LH

LF

L
(µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 (µ− 1)(ϕ− 1)L(µ−1)(ϕ−1)−1dL

=
[

(µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 · (µ− 1)(ϕ− 1)
(µ− 1)(ϕ− 1) + 1 · L

(µ−1)(ϕ−1)+1
]LH
LF

= (µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 · (µ− 1)(ϕ− 1)
(µ− 1)(ϕ− 1) + 1 ·

[
L(µ−1)(ϕ−1)+1

]LH
LF

=
[

(µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 · (µ− 1)(ϕ− 1)
(µ− 1)(ϕ− 1) + 1

]
·
(
LH

(µ−1)(ϕ−1)+1 − L(µ−1)(ϕ−1)+1
F

)
.

The expression of the second fraction (µ−1)(ϕ−1)
(µ−1)(ϕ−1)+1
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= [. . .] ·
(

(PtAt)
1

1−µ ·
(
µ

u

) 1−γ
1−µ
·
(

γ

w (1 + sk)

) γ
1−µ
−
)(µ−1)(ϕ−1)+1

−
((

(PtAt)
1

1−µ ·
(
µ

d

) 1−γ
1−µ
·
(

γ

w (1 + sk)

) γ
1−µ
))(µ−1)(ϕ−1)+1

= [. . .] ·
((

(PtAt)
1

1−µ µ
1−γ
1−µ ·

(
γ

w (1 + sk)

) γ
1−µ
)(

u
γ−1
1−µ − d

γ−1
1−µ

))(µ−1)(ϕ−1)+1

= (µPtAtht (u)γ)ϕ−1

uϕ−1 − dϕ−1 · (µ− 1)(ϕ− 1)
(µ− 1)(ϕ− 1) + (µ−1)

(µ−1)

· (LH − LF )(µ−1)(ϕ−1)+1

(77)
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