Prediction Errors: Re-employment Expectations and Realizations

Sonja C. Kassenboehmer * Sonja G. Schatz^{\dagger}

University of Melbourne, IZA University of Duisburg-Essen

30 October 2013 PRELIMINARY DRAFT - PLEASE DO NOT CITE

Abstract

We use longitudinal data to investigate several misconceptions of people with respect to their re-employment probability which alter their labor market behavior in a sub-optimal way. People with unemployment experience of more than 3 years significantly underestimate their actual re-employment probabilities. Information about the previous unemployment experience of individuals is the minimum amount of information needed to make more acurate predictions than the individuals themselves. Underestimation is also found to be related to subsequent behavioral changes. People who underestimate their re-employment probability accept a lower wage, work fewer hours, are less likely to work full-time, are more likely to drop out of the labor force and less likely to actively search for a job. This information can be used in job agencies for example to inform clients and prevent adverse behaviour.

JEL classification: J6, J64, J01, D8, D84.

Keywords: Job Insecurity, Re-employment Expectations, Prediction Errors.

^{*}Address corresponding author: Melbourne Institute, University of Melbourne, Level 5, FBE Building, 111 Barry Street, Victoria 3010, Australia, sonja.kassenboehmer@unimelb.edu.au

[†]We would like to thank participants of the 26th Conference of the European Society for Population Economics, participants of the Melbourne Institute Brown Bag Series, Richard V. Burkhauser and John Haisken-DeNew for very helpful comments on this paper.

1 Introduction

Drawing conclusions about decision processes from revealed preference data may be difficult if the decision maker is not rational and may only have partial information about all possible outcomes. In that case, data on self-reported expectations may be useful to understand revealed choices and to validate assumptions about expectations (Manski, 2004).

One of the main goals of labor economics is to understand and predict individual choices, for example with respect to labor force participation, occupation, consumption, saving and education. Choices in the labor market are often intertemporal and usually made under uncertainty so that analysing subjective expectations is crucial in understanding the heterogeneity in revealed preferences that is otherwise unexplained. Therefore incorporating expectations into empirical economic models is likely to help us understand otherwise unexplained observed behaviour.

One of the main uncertainties in the labor market context is job security and employability and it is the expectation about these that influences labor market choices. Perception of job security is usually defined in the literature as the expected probability of an employee to loose a job whereas perceptions of employability refer to the subjective probability of obtaining employment within a certain time frame once unemployed. Interestingly, the research in this area is rather scarce although the psychological literature suggests that the observed rise in perceived job insecurity in recent years is associated with lower health (physical and mental) and job satisfaction (Sverke et al. 2002; Cheng and Chan 2008). Most previous papers in this research area have analysed how an employee forms unemployment expectations: what information the expectation is based on. Some have investigated whether the unemployment expectations convey useful information by analyszing whether they are actually related to unemployment experiences. Few have connected unemployment expectations with other labor market outcomes aside from the realization of the expectation itself.

Only a handful of studies have looked at the re-employment expectations for the unemployed, although several studies have shown that unemployment is one of the life events that is associated the strongest with decreases in well-being as measured by subjective self-evaluated life satisfaction questions in surveys. Very little is known about the formation of re-employment probabilities and the divergence in subjective and objective reemployment probabilities for the unemployed. Any discrepancy in these two would likely have significant implications for the well-being of the unemployed, their search behaviour, their reservation wages and might alter these in a sub-optimal way. Misconceptions, i.e. overconfidence, concerning re-employment probabilities might result in insufficient job search effort or unrealistic reservation wages.

To our knowledge, there is no comparable study that explicitly looks at re-employment expectations such as ours. Using data from the German Socio-Economic Panel (SOEP), this paper closes this research gap by investigating whether the unemployed are able to predict their re-employment probabilities accurately or whether there is a divergence between subjective and objective re-employment probabilities. More specifically, this paper investigates the following research questions: (1) How are re-employment expectations formed?, (2) What informational content is in subjective re-employment expectations?, (3) What are the determinants of prediction errors? Who are the people that make prediction errors and how large are the prediction errors?; (4) What critical information about the individuals is needed so that they can make better predictions; (5) Do these prediction errors lead to adverse behavioral changes?

We find that people with unemployment experience of more than 3 years significantly underestimate their actual re-employment probabilities. In fact, our model performs better on average at predicting re-employment than the individuals themselves. The only information needed about the individuals to make a significantly better prediction on average is their previous unemployment experience. Underestimation is also found to be related to subsequent behavioral changes. People who underestimate their re-employment probability seem to accept a lower wage, work fewer hours, are less likely to work full-time, are more likely to drop out of the labor force and less likely to actively search for a job. This information can be used in job agencies for example to inform clients and prevent adverse behaviour.

2 Background

Since the early 1990's questions regarding respondents expectations about certain life events have been added to surveys. (Manski, 2004). Using these new variables, economic research has, for example, analyzed the divergence between subjective life expectancy and actual mortality such as in Hurd and McGarry (2002) or Smith et al. (2001).

In past labour economics research, subjective expectations and their divergence from actual realizations have mainly been analyzed in the context of income expectations such as the studies by Jappelli and Pistaferri (2010), Dominitz and Manski (1997b), Kaufmann and Pistaferri (2009) or Jappelli and Pistaferri (2000).

Another strand of the literature has investigated the subjective perceptions of job insecurity where job insecurity is measured by questions for the employed regarding the subjective job loss expectations and sometimes also by questions on expectations of reemployment in case of a lay-off. Most of these papers have analysed whether unemployment expectations for the employed are related to certain observable characteristics of the individual or job characteristics or whether they largely convey unobserved information.

Previous research found that job insecurity (as measured by unemployment expectations questions and sometimes additional re-employment expectations of the employed) is related to past unemployment experience (also Campbell et al., 2007; Green et al., 2001) and type of employment contract (Green, 2003; Green et al., 2001). Campbell et al. (2007) also finds that unemployment experience of a close friend and other objective indicators of insecure jobs are related to perceived job insecurity. Also unemployment in the external labor market was found to influence individual's unemployment expectations (Green et al., 2000; Linz and Semykina, 2008). Perceptions of job security were found to be higher for women (Green, 2009; Linz and Semykina, 2008; Manski and Straub, 2000), higher supervisory responsibilities (Linz and Semykina, 2008), more tenure (Bender and Sloane, 1999) and older individuals (Green, 2009; Linz and Semykina, 2008).

There are significantly fewer papers that have actually compared unemployment expectations with actual realization to assess whether subjective unemployment expectations convey useful information. All of these papers found that subjective unemployment expectations are strong predictors of unemployment experiences in the near future even when other job and individual characteristics are accounted for, such as Green (2011), Green et al. (2001), Stephens (2004), Campbell et al. (2007) and Dominitz and Manski (1997a).

Only a handful of studies have analysed perceived employability of the unemployed. Dickerson and Green (2012) mainly look at unemployment expectations but also at reemployment expectations, although in lesser detail. They show that the re-employment expectations are related to finding a job, both for Germany (using the GSOEP) and Australia (using the HILDA). Green (2011) analysed how subjective re-employment probabilities for the unemployed modify the impacts of unemployment on life satisfaction and health for example.

Apart from these findings, little is known about the formation and validity of reemployment expectations. This paper will build on the analysis by Dickerson and Green (2012) in several ways. First, contrary to Dickerson and Green (2012) we use a variable in the GSOEP that specifically asks the unemployed and not the employed about their re-employment expectation. Dickerson and Green (2012) use a variable that asks the employed about their concern of re-employment in the hypothetical event of a lay-off. They then restrict the sample to individuals who indeed lost their jobs. Hence they have to restrict their sample to individuals with a short time in unemployment and who could be observed in employment prior to the unemployment spell. Furthermore, this variable they use for the analysis with the German data only has categorical outcomes (easy, difficult, almost impossible), although they show using the Australian data that numeric cardinal scales perform better at predicting subsequent re-employment probabilities in more detail.

Second, this paper investigates how re-employment expectations are formed and third who makes prediction errors. This will allow us to draw some important policy conclusions about which people need to be informed about their potential misconception in order to prevent those individuals from basing their labour market decisions and behaviour on these misconceptions. Another important contribution of this paper will be to investigate the extent to which researchers can make better predictions than the individuals themselves based on objective information readily available about the individuals.

To our knowledge, there is no other comparable study that would explicitly look at reemployment expectations in this manner.

3 Data

The analysis is based on the German Socio-Economic Panel (SOEP). This is a longitudinal representative panel dataset of private households in Germany starting in 1984. The SOEP re-interviews the same private households annually and thereby approximately 11,000 households and 20,000 people are sampled every year. Data from the SOEP is used as it is ideal for analyzing objective and subjective re-employment probabilities because there is information on both. The SOEP collects information on objective characteristics such as education, health or labour force status as well as subjective information like opinions on several domains or life satisfaction.

The focus in this project is on the question concerning subjective expectation about reemployment of the unemployed: How likely is it that you start paid work within the next two years? The responses range on an 11-point scale from 0 percent to 100 percent. The years 1999, 2001, 2003, 2005, 2007 and 2009 are used since the subjective reemployment probability is only asked every two years. The two subsequent years will be used to estimate the objective probability that someone will be employed within the next two years after his initial unemployment status. This analysis only focuses on individuals who are observed to be unemployed and between 16 and 64 years of age. Of these 6248 observations, we loose 30 percent of the observations because we do not observe the employment status of the person in time t+1 and t+2. Of the remaining observations, another 33 percent are dropped because they exit the labor market in t+1 or t+2. We apply this restriction because the estimates should not be biased due to anticipated behavioural changes. Looking at subsequent behavioural changes is a topic for future research. Another 33 percent were dropped because the they were defined as not actively looking for work (they reported that they would not be able to immediately take up a

suitable position or did not actively seek work within the last 4 weeks). Another 126 observations were dropped because they had previously been self-employed. Of the remaining 2084 observations, we loose 20 percent due to missings in the control variables. This leaves us with 1669 observations.

3.1 Controls

We account for a number of factors that have been found to be important determinants of subjective and objective re-employment prospects. More specifically, we control for similar variables as in Dickerson and Green (2012): (1) socio-demographic characteristics such as gender, age (and its squared) and education; (2) previous unemployment experience (total length of unemployment in years over the respondent's career); and (3) characteristics of the last job such as whether the person was previously working in the private sector, whether the person was temporary employed and information on the size of the company (indicator for 20 or more persons at the previous workplace).

We additionally account for other characteristics of the previous job that are likely to influence subjective and objective re-employment prospects such as last labor income, socio-economic status of the previous job¹.

We additionally account for the total number of years of work experience of the respondent (full-time and part-time seperately) as well as the local unemployment rate. We also control for a range of other demographic characteristics that are likely to influence subjective and objective re-employment prospects such as marital status, home ownership and whether the respondent has children.

Finally, we also control for individuals' Big 5 personality traits and locus of control which should capture some of the otherwise unobserved heterogeneity in subjective and objective re-employment prospects. It has been shown for example that personality traits related to neuroticism are predictive of labor market outcomes (Almlund et al., 2011). People with an internal locus of control or with higher self-esteeem for example are found to search more for a job (Caliendo et al., 2010). Similarly, conscientiousness, is found to be related to performance and wages (Almlund et al., 2011).

¹The Standard International Socio Economic Index of Occupational Status (ISEI) measures the socioeconomic status of a person. It was developed based on information about income, education, and occupation (7 categories of profession based on the ISCO88 code) by Ganzeboom et al. (1992).

The 2005 and 2009 wave contain questions on the respondent's personality based on the Five Factor Model developed by Costa and McCrae (1992); McCrae and Costa (1985). The five factor model measures five basic psychological dimensions: openness to experience, conscientiousness, extraversion, agreeableness, and neuroticism. A short 15 item version is implemented in the SOEP based on the 25 item measure by John et al. (1991) (Gerlitz and Schupp, 2005). Each of the five components of the five factor model is represented by three items. Gerlitz and Schupp (2005) show the internal consistency and validity of the short version. We confirm the five component structure by conducting a principal component analysis for the years 2005 and 2009, restricting the principal component analysis to finding 5 components.² Each of the components indeed represents one of the five personality factors with the three relevant items loading highly on the relevant factor. We follow Gerlitz and Schupp (2005) and predict the first five components for the years 2005 and 2009. We then average over 2005 and 2009 if information in both waves is available to reduce measurement error. The final variables are standardized over 2005 and 2009 to have mean 0 and standard deviation 1.

Locus of control is a psychological concept capturing individuals beliefs about the extent to which future outcomes are determined by his or her own actions as opposed to external factors. Those with an external locus of control generally believe that what happens to them in life is due to external factors (e.g. fate, luck, other people, etc.) while those with an internal locus of control believe that their own actions determine to a large extent what happens to them in life (Rotter, 1966). Questions on locus of control were asked in 1994-1996, 1999, 2005 and 2010. However, the locus of control items are not consistent over time. We therefore use the 2005 and 2010 locus of control questions only that fall into the analysis period and which are consistent over time. After rescaling the variables so that they are increasing in internal control tendencies, principal component analysis is conducted for the years 2005 and 2010. We then average over 2005 and 2010 if information in both waves is available to reduce measurement error. The final variables are standardized over 2005 and 2010 to have mean 0 and standard deviation 1.

 $^{^{2}}$ We reverse the scores of the 7-point Likert scale for some items as in Heineck and Anger (2010) so that a higher score corresponds to the relevant personlity type

4 Expectation Formation

4.1 Estimation Strategy

In a first step, the analysis examines how expectations are formed:

$$SubProb_{it} = \alpha + X'_{it}\beta + \varepsilon_{it}$$

$$\varepsilon_{it} = \mu_i + \nu_{it}$$
(1)

where the dependent variable is the subjective self-reported re-employment probability for the unemployed, X'_{it} represents a vector of control variables (consisting of sociodemographic characteristics, labor market history, external labor market characteristics, previous job characteristics and personality traits as explained in the previous section), ε_{it} is a composite error term that consists of an individual-specific random effect μ_i and an idiosyncratic error ν_{it} . Standard logit models are estimated as well as correlated random effects models, in which μ_i is allowed to be correlated with the explanatory variables of the form $\mu_i = \overline{x_i}\eta + \vartheta_{it}$ (Mundlak, 1978) in order to control for unobserved heterogeneity. This first step provides information on what objective information individuals form their re-employment expectation.

4.2 Results

We estimate 3 specifications as shown in Table 1: (1) an OLS model, (2) an OLS model with random effects and (3) a correlated random effects model. Several socio-demographic variables are found to be related to a perceived higher re-employment probability if unemployed. The strongest relationship is found for gender: Men on average expect a 6 percentage points (p.p.) higher probability of re-employment than women. This relationship holds even if we control for fixed unobserved heterogeneity in column (3). A positive relationship of similar size is also found for years in education. The positive association between home ownership and the perceived re-employment probability disappears once we move to the random effects model. Similarly, the negative association between marriage and the perceived re-employment probability disappears once we control for the individual-specific averages of the control variables, suggesting that these variables are correlated with some fixed unobserved characteristic. We also find a significant relationship between age and the perceived re-employment probability which is inversely u-shaped (maximum of approximately 30 and negative effects starting at around age 55).

[Insert Table 1 here]

The labor market history variable that is associated the strongest with the perceived re-employment probability is the previous unemployment experience. People with an unemployment experience accumulated over their life time of about 5 or more years expect a 10 pp. lower re-employment probability than individuals without previous unemployment experience (column 3). Full-time and part-time work experience are positively related to the re-employment probability, although only weakly (and insignificant in the correlated random effects specification as stanard errors are high). Having 10 or more years of tenure is associated with lower expected re-employment probabilities of around 7.7 pp. (significant, column 1) to 0.5 pp. (insignificant, column 3).

Although a higher unemployment rate in general is found to be associated with lower reemployment expectations, this result seems to be driven by unobservables as the coefficient becomes small and insignificant in the correlated random effects specification.

Interestingly, many of the characteristics of the previous workplace do not seem to influence the expected re-employment probability. Agricultural/craft workers (machine operators) are significantly more optimistic than those in elementary occupations as they have a 8 pp. (17 pp.) higher re-employment expectation.

Personality traits are strongly and significantly correlated with re-employment expectations. A 1 standard deviation increase in openess to experiences is associated with a 2 pp. higher re-employment expectations; a 1 standard deviation increase in agreeability with a 1.7 pp. lower re-employment probability and a 1 standard deviation increase in locus of control with a 1.7 pp. higher re-employment probability.

5 Expectations and Realizations

5.1 Estimation Strategy

In a second step, we will investigate whether an individuals' subjective re-employment expectation is related to the actual realization. Therefore the following logit model is estimated where the dependent variable is a binary indicator that equals 1 if the individual is observed to be employed in t + 1 and/or t + 2:

$$Pr(employed_{t+1,t+2} = 1|X) = \Delta(\alpha_1 + W'_{it}\delta + X'_{it}\beta + \varepsilon_{it})$$
(2)

where W'_{it} represents a vector of five dummy variables for the subjective re-employment probability (10-20%, 30-40%, 50-60%, 70-80%, 90-100%). Including control variables X'_{it} allows one to make statements about whether the subjective re-employment probabilities reported by the respondents offer any additional information over and above the observed characteristics of the individual. In other words, one can answer the question whether individuals know more about their re-employment than what researchers can observe.

In a further step, the analysis will investigate whether individuals on average are better at predicting their re-employment or whether we as researchers can make better predictions based on the observables (excluding the self-reported subjective re-employment probabilities). We will therefore compare prediction-realization tables for the subjective predicted self-reported information and for the model based predicted probabilities (prediction of the dependent variable in equation (2)). Prediction-realization tables compare the prediction from a model with the actual realization.

As the percentage of total predictions can be misleading if one of the outcomes is particularly likely (Veall and Zimmermann, 1992), we will adopt a method suggested by Veall and Zimmermann (1992) who show that to measure performance, McFaddens σ_n (McFadden et al., 1977), performs best:

$$\sigma = p_{11} + p_{22} - p_{.1}^2 - p_{.2}^2 \tag{3}$$

$$\sigma_n = \sigma / (1 - p_{.1}^2 - p_{.2}^2) \tag{4}$$

where p_{ij} are the entries of the prediction-realization table with expectation j and realization i. The number p_{i} represents the fraction of times alternative i is predicted. As the realization is binary (employed/unemployed), we employ several alternative cut-off values to transform the subjective re-employment probability and the model based predicted probability from equation (2) into a binary variable and calculate σ_n for all alternative prediction-realization tables.

We then determine the minimum amount of information that is needed about an individual to be able to make a more accurate prediction about the individuals future prospects than the individual is able to make himself. This will be done by calculating σ_n for all possible combinations of control variables and finding the combination that produces a σ_n that is (significantly) larger than the σ_n for the prediction-realization table based on the selfreported expectation.

5.2 Results

Table 2 shows the results of the labor force status model where the dependent variable is a binary variable that equals 1 if the respondent is employed in t+1 and/or t+2 and 0 otherwise.

The first column just controls for the self-reported re-employment expectations. The higher the expectation, the higher the actual re-employment probability. People with an expectation of 70 to 80% for example, have a 23 pp. higher re-employment probability than people who do not expect to be re-employed in the near future.

Column (2) controls for the same or very similar variables as in Dickerson and Green (2012). This reduces the size of the effects and only an expected re-employment probability of 90 to 100% (compared to a re-employment expectation of 0%) remains to be significantly associated with actual re-employment in the future.

We move to column (3) where we control for a more extensive set of information about the individual's characteristics as described in section 3.1. This furthermore reduces the size of the coefficient for a 90 to 100% re-employment expectation, although not significantly. Controlling for random effects in specification (4) reduces the size of the coefficient even more. The coefficient becomes very small and insignificant in column (5) when we estimate

the correlated random effects model where the individual specific means of the control variables are included to reduce unobserved heterogeneity in the estimates.

[Insert Table 2 here]

These results indicate that the additional information the subjective perceptions hold are fairly limited. Once a basic set of controls is added, there is only additional information in statements about a 90 to 100% re-employment expectation. This effect seems to be correlated with some unobserved fixed characteristics correlated with some of the control variables.

The measures of fit statistics at the end of the table also indicate that the model fit could be increased due to the inclusion of further controls as well as random effects and correlated random effects (McKelvey and Zavoina's R2 increases from 0.146 to 0.530 for example).

Figure 1 graphs the actual re-employment probability (on the vertical axis) against the ordinal response categories of the self-reported probability (blue line), and the predictions of specifications (2) to (5) of the labor force status model (excluding the self-reported expectations in the prediction). The dashed line is the 45 degree line and denotes perfect prediction. The black line is our preferred prediction from the correlated random effects model and it can be seen that is is very close to the 45 degree line. The prediction from the other specifications seem to perform reasonably well for re-employment probabilities of 30% and above, but are less acurate at the lower end of the distribution. Especially moving from specification (3) to specification (4) where we also control for personality traits, improves the fit at the low end of the distribution.

[Insert Figure 1 here]

The blue line lies above the 45 degree line for self-reported probabilities of 50% and below indicating that there are some people who consistently seem to underestimate their reemployment probability. The bottom part of Figure 1 shows the self-reported probability and the prediction from specification (5) from the top part of the graphic but including confidence intervals. This shows that at the bottom of the distribution our prediction is often significantly better than the perception of the individuals themselves (where the confidence intervals do not overlap). In any case, the 45 degree line lies within the confidence interval of our prediction based on specification (5) from Table 2, suggesting that our model on average is able to make better predictions than individuals themselves.

We test this formally as presented in Table 3 by comparing prediction-realization tables for subjective self-reported expectations with the different predictions of our specifications in Table 2. This allows calculating McFaddens σ_n (McFadden et al., 1977) which indicates the performance of the prediction. In order to do so, the ordered response categories of the self-reported expectations as well as the predictions from our labor force model (excluding the self-reported expectations as regressors) have to be recoded to a binary 0/1-variable to compare the prediction with the actual realization in t+1 and t+2 which is also a binary variable (employed vs. unemployed). We choose a cutoff value of 60% to do so, so that values of 60 and above are assumed to be expectations for future employment whereas values below 60 are assumed to be expectations of unemployment.

[Insert Table 3 here]

Sensitivity tests around this cutoff value were conducted where σ_n for all possible prediction-realization tables for all different cutoff values for the predictions were calculated as shown in Appendix Table A2 (for the self-reported probability) and A3 (for the prediction based on the correlated random effects model). Appendix Table A4 and A5 report an adjusted σ_n , where σ_n is multiplied by n^2/N^2 – the squared proportion of used observations in the prediction-realization-table compared to the total number of observations – in order to adjust for the fact that dependent on the cutoff value not all observations are used. The tables show that adjusted σ_n is maximized at our chosen cutoff value of 60.

The numbers in the first two rows in Table 3 show the fraction of correct predictions for each combination of realization i (0=unemployed, 1=employed) and expectation j(0=unemployed, 1=employed). The row below that shows the performance measure σ_n with the 95% confidence interval in square brackets.

Table 3 shows that even σ_n for the predictions from the baseline model is higher – although not significantly higher – than σ_n for the self-reported expectations. Once we include personality traits in the model for the prediction as in specification (4) of Table 2, the performance measure is significantly higher indicating that our model on average can predict the individuals' future labor market outcomes better than the individual's themselves. McFaddens's σ_n is especially high for the preediction from the correlated random effects model of specification (5) in table 2 (5.57 compared to 0.30).

The conclusions remain the same when we consider another performance measure as a sensitivity check in the last two rows, δ_n , which was shown to perform second to McFaddens σ_n (Veall and Zimmermann, 1992).³

We rerun the correlated random effects labor force model with every possible combination of control variables and calculate σ_n for all estimation results to find the minimum amount of information needed about the individual to make a better prediction on average than the individuals themselves. The top part of Table 4 shows that there is one variable needed to make a significantly better prediction than the individuals themselves and that is the previous unemployment experience (Panel A). Panel B shows all combinatons of two variables to achieve a significantly better prediction. A significantly better prediction cannot be achieved with two variables without the unemployment experience. Panel 3 shows that a minimum of three variables are needed if one wants to achieve a better prediction than the individuals' perception without using the unemployment experience as a control variable. Although the absolute value of σ_n (0.313) is higher than the value of σ_n for the subjective perceptions (0.304), the difference is not significant.

[Insert Table 4 here]

We have established that some individuals underestimate their re-employment probabilities and that on average we are able to make more acurate prediction about their re-emloyment if we simply knew the individuals' past unemployment experience. In order to draw some policy recommendations from this exercise and to assist individuals in making better predictions, one has to identify the people who are more susceptible to making these errors than others.

 $\overline{\delta}^{3} \delta = (p_{11}p_{22} - p_{12}p_{21})/[(p_{11} + p_{12})(p_{21} + p_{22})]$ as in Veall and Zimmermann (1992).

6 Determinants of Prediction Errors

6.1 Estimation Strategy

We estimate an ordered logit model where the dependent variable y_j has 3 categories (i=underestimation, exact estimation and over estimation) and X_{it} is a set of control variables as described in Section 3.1:

$$Pr(y_j = i) = Pr(\kappa_{i-1} < \alpha_1 + X'_{it}\beta + \varepsilon_{it} \le \kappa_i)$$
(5)

This will provide insight about the group of people that potentially need to be informed about their re-employment prospects to counteract adverse effects of this misconception on their behaviour.

Underestimation means that someone did not think he would be re-employed within the next two years (expectation of 50% or below), but was actually re-employed within the next two years; overerestimation means that the person thought he would be re-employed (expectation of 60% or above) whereas he actually was not and exact estimation occurs if someone thought he would get a job and did get a job or did not expect to get a job and indeed was still unemployed two years later.

As the previous analysis could not tell us anything about the actual size of the prediction error, we next move on to investigate who is susceptible to making especially big errors. This is done by calculating the difference between the subjective self-reported re-employment expectation and the objective re-employment expectation based on the prediction of the labor force model specification (5) (excluding the subjective expectations). As was shown in Graph 1 and the previous analysis, this prediction performs very well in predicting re-employment. Hence we assume that this prediction is equal to the underlying true re-employment probability.

We investigate the determinants of the prediction error along the entire prediction error distribution as we suspect there could be differential effects dependent on whether you are at the top of the distribution and overestimated the re-employment probability or at the bottom and underestimated re-employment chances. We apply the unconditional quantile regression method recently developed by Firpo et al. (2009) in order to estimate marginal effects at various quantiles of the overall prediction error distribution. This allows us to interpret the marginal effects with respect to the prediction error distribution $F(prediction \ error)$ and not the the distribution of prediction errors conditional on prediction error determinants X as in the classic conditional quantile regression developed by Koenker and Bassett (1978) : $F(prediction \ error|X) = F(\epsilon)$.⁴

The method by Firpo et al. (2009) uses a "recentered influence function" to essentially reweight the dependent variable so that the mean of the reweighted variable corresponds to the quantile of interest. This then allows OLS to be applied directly to the reweighted dependent variable.⁵

The recentered influence function (IF) at each quantile τ of the distribution of Y is defined as:

$$\operatorname{IF}(Y;q_{\tau}) = (\tau - \mathbf{1}\{Y \le q_{\tau}\})/f_Y(q_{\tau}), \tag{6}$$

where q_{τ} is the value of the cummulative distribution of Y at the τ th quantile and $f_Y(\cdot)$ is the marginal density function of Y. The recentered influence function simply recenters the influence function so that its mean corresponds the distribution value at the percentile of interest. Specifically,

$$RIF(Y;q_{\tau}) = q_{\tau} + IF(Y;q_{\tau}).$$
(7)

Unconditional quantile regression involves estimating the expectation of the recentered influence function conditional on a set of covariates X, i.e. $E[\operatorname{RIF}(Y;q_{\tau})|X])$. For simplicity, a linear relationship between the two is typically assumed so that we can estimate the following unconditional quantile regression:

$$E[\operatorname{RIF}(\operatorname{prediction} \operatorname{error}_{it}; q_{\tau})|X_{it}] = X_{it}^{\prime}\beta^{\tau} + \epsilon_{it}^{\tau}.$$
(8)

⁴This distinction is important as someone's conditional prediction error quantile may change as covariates change (Froehlich and Melly, 2010). Furthermore, someone who is in the 50th percentile of the prediction error distribution conditional on their IQ and other characteristics might be in the 75th percentile of the overall prediction error distribution distribution (Borah and Basu, 2013).

⁵All estimation is done using the RIF-Regression STATA ado file from Firpo, Fortin and Lemieux (2009), which can be downloaded at http://faculty.arts.ubc.ca/nfortin/datahead.html.

6.2 Results

The results of an ordered logit model where the dependent variable y_j has 3 categories (i=underestimation, exact estimation and over estimation) are presented in Table 5. Six variables can be identified that are related to making prediction errors. The first one is gender. It was shown in Section 4 that men were very positive with respect to their re-employment chances. Table 5 now shows that they seemed to be overly optimistic as being male is related to a 2.8 pp. higher probability of overestimating the re-employment probability compared to women.

Married people have a 8.7 pp. and home owners a 3.7 pp. higher probability of underestimating their re-employment probability. Interestingly, people with an unemployment experience of 3 to 5 years have a 9 pp. higher probability of underestimating compared to people with no unemployment experience. Also people who were previously temporary employed (4.7 pp.) are more likely to underestimate their re-employment probability as well as managers/professionals (19.8 pp.) and technicians and associated professions (12.0 pp.) compared to people in elementary occupations.

People who are more agreeable are also more likely to underestimate their re-employment probability (a 1 std. dev. increase in agreeability increases the probability to underestimate by 2.2 pp.).

[Insert Table 5 here]

Table 6 provides more information on the determinants of the size of the prediction error at various points of the prediction error distribution. The prediction error was callulated by subtracting the subjective re-employment expectation from the model based predicted re-employment probability (from Table 2 specification (5), excluding the subjective expectations as predictors). Hence, the higher the prediction error, the more the person underestimated the re-employment probability. The more negative the prediction error, the more the person overestimated the re-employment probability.

Being married contributes to underestimating the re-employment probability along the entire prediction error distribution. Having children contributes to an overestimation of the re-employment probability, especially among those at the 25th quantile (those who severely overestimate their re-employment probability). Similarly, home ownership contributes to an overestimation at the 25th quantile.

Big contributors to underestimation along the entire distribution are having previously worked as a manager/professional, technichian or associate profession or as a clerk (14 pp. to 55 pp. increase in prediction error).

Neuroticism reduces where agreeability increases underestimation. Locus of control contributes to overestimation among those who severely overestimated.

[Insert Table 6 here]

Interestingly, having unemployment experience of 3 to 5 years increases the size of the prediction error by 29 pp. among those who severely underestimate their re-employment probability. However, having lots of unemployment experience (5 years or more) also increases the probability of overestimating the re-employment probability among those who severely overestimated their re-employment probability.

Therefore there seem to be two types of people onto which the unemployemnt experience has two contrary effects: One seems to be a subjective scarring effect of past unemployment, the other effect is not so clear: either people are too ashamed to admit their low re-employment expectations (to themselves or only to the interviewer is not clear), or they are indeed not informed about their actual low re-employment expectations given their unemployment experience.

Similarly, their are two types of people where for one type, a higher unemployment rate contributes to an underestimation and for the other type, the unemployment rate contributes to an overestimation.

7 Behavioral Response to Prediction Errors

7.1 Estimation Strategy

Having established that prediction errors exist and having identified the types of people who make prediction errors, the remaining question is whether these prediction errors have any behavioral consequences. If so, it might be important to inform people about their prediction errors in order to prevent them from making possibly damaging behavioral changes.

We investigate three types of behavioral responses that might occur among those who regain employment in t+1 or t+2. The first one is income (gross labor income per month). It could be that people who unrealistically fear that they have a low re-employment probability accept work at a lower income than those whoh have more realistic re-employment expectations. Similarly they might work less hours and have a lower probability to work full-time. These are the other two outcomes we look at.

The other two behavioral responses that are investigated are dropping out of the labor force in t+1 or t+2 and job search effort in t. People who underestimate their re-employment probability might be more likely to drop out of the labor force and might not actively search for work if they think they have no chance to get re-employed to begin with.

We estimate the following equation

$$BehavioralResponse_{it} = \alpha + \delta w_{it} + X'_{it}\beta + \varepsilon_{it}$$

$$\varepsilon_{it} = \mu_i + \nu_{it}$$
(9)

where the dependent variable is one of the five behavioral response variables, X'_{it} represents a vector of control variables (consisting of socio-demographic characteristics, labor market history, external labor market characteristics, previous job characteristics and personality traits as explained in the previous section), ε_{it} is a composite error term that consists of an individual-specific random effect μ_i and an idiosyncratic error ν_{it} . Correlated random effects models are estimated in which μ_i is allowed to be correlated with the explanatory variables of the form $\mu_i = \overline{x_i}\eta + \vartheta_{it}$ (Mundlak, 1978) in order to control for unobserved heterogeneity.

We estimate several versions of this model where the variable w_{it} is either the subjective re-employment probability (on a scale from 0 to 100%) or a dummy variable for underestimation or the prediction error itself. This will first inform us whether the subjective expectations are related to future behavioral responses, but also whether a prediction error increases the likelihood of a behavioral response. In the case of the income and work hours variable, equation (9) is estimated by OLS, otherwise by logit regression. As we are now investigating behavioral responses, we also include the people in the analysis that will later drop out of the labor force in t+1 and t+2. These people had been excluded in the previous analysis because the results for the objective re-employment probability should not have been biased due to behavioral responses. This increases the sampel size to 2691 observations. For the behavioral responses that relate to being re-employed in t+1 and t+2, we restrict the sample to those individuals who are re-employed in t+1 or t+2. This leaves us with 1189 observations.

7.2 Results

Panel A of Table 7 shows the relationship between the subjective re-employment probability and the 5 behavioral responses (the same set of control variables are included as in Table 6). We see that the subjective re-employment probability is indeed related to all behavioral responses. If the subjective re-employment probability increases from 40% to 60% for example (by 20 pp.), this is related to a higher income of 65 Euro per month, a 3 pp. (almost 5 percent) higher probability of being full-time employed and 0.6 more work hours per week among those who regain employment in t+1 or t+2. A 20 pp. higher subjective re-employment probability is also related to a 1.6 pp. (=7%) lower probability of dropping out of the labor force and a 1.2 pp. (=1.5%) higher probability of actively looking for a job.

[Insert Table 7 here]

Panel B shows the relationship between an underestimation of the re-employment probability and the 5 behavioral responses. Among those who regain employment, having underestimated the re-employment probability is related to a monthly income that is 121 Euro smaller, a 8 pp. (=12.6%) lower probability of being full-time employed and work hours that are on average 1.7 hours lower per week. Underestimation is also associated with a 5 pp. (=20%) higher probability to drop out of the labor force and negatively related to job search effort, although not significantly.

Panel C puts the size of the prediction error (positive prediction error=underestimation; negative prediction error=overestimation) in relation to the behavioral responses. If the

prediction error is 20 pp. compared to 0 pp., this is associated among those who regain employment with an income that is 78 Euro smaller, a decreased likelihood of full-time employment that is 3.2 pp. (=5%) smaller and around half an hour of less work hours a week. This would also increase the likelihood of dropping out of the labor force by 2.2 pp. (=9.8%) and the probability of actively looking for a job by 1.2 pp. (=0.02%).

8 Conclusion

This paper shows that some people consistently under-estimate their re-employment probability once unemployed and that, contrary to what previous reserach has concluded, the informational content of subjective re-employment expectations is quite limited. In fact, our model performs better on average at predicting re-employment than the individuals themselves. The only information needed about the individuals to make a significantly better prediction on average is their previous unemployment experience.

We find a scarring effect of past unemployment as high unemployment experience is found to increase underestimation.

Underestimation is also found to be related to subsequent behavioral changes. People who underestimate their re-employment probability accept a lower wage, work fewer hours, are less likely to work full-time, are more likely to drop out of the labor force and less likely to actively search for a job.

This analysis lends itself to some important policy conclusions as it can inform policy makers which group of people is at risk of making prediction errors. People with high previous unemployment experience should be informed about their actual re-employment chances to prevent them from adverse behavior such as dropping out of the labor force.

	(1)	(2)	(2)
	(1)	(2)	(3)
	OLS	OLS RE	CRE
Socio-demographics			
Male	5.8448^{***}	5.5255^{***}	6.5849^{***}
	(1.5996)	(1.7314)	(1.8120)
Age	1.5209^{***}	1.5798^{***}	0.6206
	(0.4863)	(0.5022)	(1.3039)
Age squared/1000	-35.7361^{***}	-37.3082***	-29.3686**
	(5.9097)	(6.1430)	(14.3762)
Yrs in Education	2.2239^{***}	2.1531^{***}	3.7370^{*}
	(0.3828)	(0.4082)	(2.1162)
Is Married	-3.2268**	-2.9813*	-2.7096
	(1.5124)	(1.6314)	(4.3793)
Children	-0.3982	-1.1420	-2.7590
	(1.4447)	(1.4957)	(2.8472)
Home Owner	2.4065^{*}	2.4567	2.2782
	(1.4239)	(1.5222)	(4.8079)
Labor Market History			
Part Time Exp	0.4702^{*}	0.5585^{**}	1.9562
	(0.2671)	(0.2829)	(1.7957)
Full Time Exp	0.4428^{***}	0.4898^{***}	0.7047
	(0.1666)	(0.1771)	(0.9085)
Unempl. Exp. 0.1-1.0yrs	-2.7230	-2.3614	-5.7652
	(2.6723)	(2.6160)	(3.9390)
Unempl. Exp. 1.1-3.0yrs	-4.4189*	-4.7993^{*}	-6.1782
	(2.6546)	(2.6054)	(4.0679)
Unempl. Exp. 3.1-5.0yrs	-11.0784^{***}	-10.4895^{***}	-7.7320*
	(2.8892)	(2.8396)	(4.5638)
Unempl. Exp. 5+yrs	-17.5220^{***}	-16.0915^{***}	-10.1142^{*}
	(3.0496)	(3.0594)	(5.3825)
Tenure last Job 3-9 Years?	-1.9024	-1.7993	-1.6005
	(1.9404)	(2.0069)	(3.9168)
Tenure last Job 10 or more Years?	-7.7139***	-7.7571***	-0.5395
	(2.4918)	(2.6128)	(5.8391)
External Labor Market	·	·	
Unempl Rate	-0.9942***	-0.9896***	-0.1926
	(0.1509)	(0.1598)	(0.5851)

 Table 1: Model Based Subjective Reemployment Probability

Note: Year dummies are also included. $^{\ast}p < 0.10,^{\ast\ast}p < 0.05,^{\ast\ast\ast}p < 0.01.$

	(1)	(2)	(3)
	OLS	OLS RE	CRE
Previous Job Characteristics			
Was working in the Privat Sector	3.8546^{*}	3.0921	2.4510
	(1.9999)	(2.0938)	(3.7152)
Was temporary employed	-1.4460	-1.4541	1.6142
	(1.6054)	(1.6399)	(2.7491)
More than 20 at last workplace	-0.5408	0.3510	2.9447
	(1.4614)	(1.4983)	(2.6617)
Log Last Income (Gross)	1.3130	1.3429	0.6436
	(0.9240)	(0.9189)	(1.2482)
Last ISEI Status	-0.0932	-0.1214	-0.0641
	(0.1207)	(0.1241)	(0.2506)
Managers/Professionals	0.3325	2.6589	-1.2659
	(6.3176)	(6.4599)	(12.5105)
Techn./Assoc. Profess.	2.0623	2.9565	-5.4063
	(4.3923)	(4.5500)	(9.4414)
Clerks	4.8523	6.3825	2.2491
	(3.8972)	(4.0513)	(7.9836)
Service/Shop Workers	4.5703	4.7296	5.3390
	(3.4047)	(3.5214)	(6.8317)
Agricult. Workers/Craft Workers	2.3530	3.8924	8.0913^{*}
	(2.5194)	(2.6480)	(4.6778)
Machine Operators	5.2165^{*}	6.5926^{**}	16.9839^{***}
	(3.0769)	(3.2510)	(6.4807)
Personality Traits			
Extraversion	-0.3977	-0.4269	-0.5368
	(0.7304)	(0.7902)	(0.7939)
Consienciousness	0.6822	0.7494	0.6763
	(0.7876)	(0.8626)	(0.8670)
Neuroticism	0.6613	0.6652	0.7236
	(0.7075)	(0.7645)	(0.7689)
Openess	2.2603^{***}	2.0088^{**}	1.9855^{**}
	(0.7797)	(0.8438)	(0.8511)
Agreeability	-1.8968^{***}	-1.7860^{**}	-1.7396^{**}
	(0.7342)	(0.8002)	(0.8089)
LOC	2.2934^{***}	2.0709^{***}	1.7166^{**}
	(0.7094)	(0.7695)	(0.7846)
R2	0.367	0.366	0.378
Number of Observations	1669	1669	1669

Table 1 (continued): Model Based Subjective Reemployment Probability

Note: Year dummies are also included. *p < 0.10,** p < 0.05,*** p < 0.01.

	(1)	orce Statu (2)	(3)	(4)	(5)
	Logit	Logit	Logit	Logit	Logit CRE
	Logit	Logit	10810	Logit	Logic Citi
Expectations	0.01.04	0.0500	0.0571	0.0501	0 1100
Subjective Probability 10 - 20%	-0.0164	-0.0598	-0.0571	-0.0591	-0.1100
	(0.0600)	(0.0582)	(0.0580)	(0.0584)	(0.0750)
Subjective Probability 30 - 40%	0.0529	-0.0180	-0.0246	-0.0283	-0.0206
	(0.0562)	(0.0581)	(0.0578)	(0.0587)	(0.0748)
Subjective Probability 50 - 60%	0.1125^{**}	0.0005	-0.0049	-0.0156	-0.0198
	(0.0470)	(0.0509)	(0.0513)	(0.0519)	(0.0699)
Subjective Probability 70 - 80%	0.2287***	0.0845	0.0611	0.0519	0.0218
	(0.0418)	(0.0528)	(0.0543)	(0.0556)	(0.0781)
Subjective Probability 90 - 100%	0.3699***	0.1830***	0.1573^{***}	0.1444**	0.0277
	(0.0398)	(0.0540)	(0.0558)	(0.0571)	(0.0809)
Variables as in Dickersen and	Green (20	/			
Male		-0.0258	0.0005	0.0091	0.0028
		(0.0227)	(0.0273)	(0.0290)	(0.0278)
Age		0.0008	0.0060	0.0071	0.0485**
		(0.0075)	(0.0082)	(0.0083)	(0.0202)
Age squared/1000		-0.0681	-0.1651^{*}	-0.1800^{*}	0.0594
		(0.0929)	(0.0995)	(0.1008)	(0.2283)
Yrs in Education		0.0183^{***}	0.0159^{**}	0.0132^{**}	-0.0063
		(0.0060)	(0.0067)	(0.0066)	(0.0340)
Was working in the Privat Sector		0.0362	0.0641^{*}	0.0623^{*}	0.0961
		(0.0353)	(0.0354)	(0.0348)	(0.0638)
Was temporary employed		0.0299	0.0398	0.0429	-0.0854^{*}
		(0.0264)	(0.0276)	(0.0277)	(0.0446)
More than 20 at last workplace		-0.0116	-0.0043	0.0034	0.0792^{*}
-		(0.0249)	(0.0248)	(0.0249)	(0.0443)
nerver obs. in empl.		-0.0669	0.0342	0.0003	0.1589
-		(0.0485)	(0.1319)	(0.1359)	(0.1383)
Unemployment Experience		-0.0276***	()	()	
		(0.0041)			
Other Socio-demographics		()			
Is Married			0.0638^{**}	0.0592^{**}	-0.0103
			(0.0268)	(0.0271)	(0.0737)
Children			-0.0553**	-0.0604**	0.0002
			(0.0258)	(0.0257)	(0.0463)
Home Owner			0.0822***	0.0828***	0.0752
			(0.0252)	(0.0252)	(0.0792)
Other Labor Market History			(0.0202)	(0.0202)	(0.0101)
Part Time Exp			0.0011	0.0003	-0.1054***
reare rune rap			(0.0047)	(0.0045)	(0.0281)
Full Time Exp			0.0003	(0.0043) 0.0003	-0.0897***
run runo DAP			(0.0030)	(0.0003)	(0.0151)
Unempl. Exp. 0.1-1.0yrs			(0.0030) 0.0021	(0.0029) -0.0004	(0.0131) 0.0634
Onompi. Exp. 0.1-1.0915			(0.0502)	(0.0496)	(0.0634)
			(0.0502) -0.0795^*	(0.0490) -0.0752	(0.0085) 0.1749^{***}
Unompl Evp 1120pr			-0.0790	-0.0702	0.1149
Unempl. Exp. 1.1-3.0yrs					
Unempl. Exp. 1.1-3.0yrs Unempl. Exp. 3.1-5.0yrs			$(0.0476) \\ -0.0944^*$	(0.0467) - 0.0852	(0.0648) 0.2561^{***}

Note: Marginal Effects. Year dummies are also included. *p < 0.10, ** p < 0.05, *** p < 0.01.

Table 2 (continued): Labor Force Status Model						
	(1) Logit	(2) Logit	(3) Logit	(4) Logit	(5) Logit CRE	
Unempl. Exp. 5+yrs			-0.2487***	-0.2306***	0.1751***	
			(0.0606)	(0.0604)	(0.0560)	
Tenure last Job 3-9 Years?			$0.0334 \\ (0.0353)$	$0.0329 \\ (0.0354)$	0.1197^{*} (0.0619)	
Tenure last Job 10 or more Years?			(0.0355) -0.0715	(0.0354) -0.0581	(0.0019) 0.2281^{***}	
			(0.0485)	(0.0468)	(0.0613)	
External Labor Market			()			
Unempl Rate			-0.0063**	-0.0074^{***}	-0.0266***	
			(0.0027)	(0.0027)	(0.0097)	
Previous Job Characteristics			0.0100	0.01.10	0.0100	
Log Last Income (Gross)			0.0190	0.0142	0.0132	
I and ICEI Chatan			(0.0169)	(0.0168)	(0.0193)	
Last ISEI Status			-0.0056^{**}	-0.0057^{***}	-0.0137^{***} (0.0040)	
Managers/Professionals			$(0.0022) \\ 0.2697^{***}$	(0.0022) 0.2753^{***}	(0.0040) 0.3515^{***}	
Managers/ F Tolessionals			(0.2697) (0.0619)	(0.2755) (0.0602)	(0.0585)	
Techn./Assoc. Profess.			(0.0019) 0.1921^{***}	(0.0002) 0.1870^{***}	(0.0000) 0.3401^{***}	
reemi.//15500. 1 101055.			(0.0600)	(0.0599)	(0.0631)	
Clerks			0.2376***	0.2245^{***}	0.3201^{***}	
			(0.0526)	(0.0550)	(0.0636)	
Service/Shop Workers			0.1171^{**}	0.1145^{**}	0.0990	
/			(0.0473)	(0.0473)	(0.1033)	
Agricult. Workers/Craft Workers			0.0586	0.0583	0.1469^{**}	
			(0.0409)	(0.0405)	(0.0670)	
Machine Operators			0.0273	0.0138	0.1372	
			(0.0498)	(0.0509)	(0.0867)	
Personality				0.0050	0.0000	
Extraversion				0.0052	0.0090	
Consienciousness				$(0.0122) \\ 0.0076$	$(0.0118) \\ 0.0047$	
Consienciousness				(0.0076)	(0.0047) (0.0130)	
Neuroticism				(0.0120) -0.0058	-0.0168	
				(0.0118)	(0.0100)	
Openess				0.0054	-0.0052	
o poness				(0.0134)	(0.0126)	
Agreeability				0.0124	0.0119	
				(0.0127)	(0.0120)	
LOC				0.0424***	0.0228^{*}	
				(0.0121)	(0.0117)	
McKelvey and Zavoina's R2	0.146	0.232	0.278	0.297	0.530	
McFadden's R2	0.088	0.140	0.167	0.178		
McFadden's Adj R2	0.078	0.122	0.132	0.137	1695 169	
AIC BIC	$2047.309 \\ 2101.509$	$\frac{1948.876}{2051.855}$	$\begin{array}{c} 1926.199 \\ 2132.159 \end{array}$	$\frac{1914.996}{2153.476}$	$\frac{1635.168}{2047.087}$	
Log likelihood	-1013.654	-955.4378	-925.0997	-913.4982	2047.087 -741.5841	
Number of Observations	-1013.054 1669	-955.4578 1669	-925.0997 1669	-915.4982 1669	-741.5841 1669	
Number of Cluster	1184	1184	1003	1184	1005	
	1104	1104	1104	1104		

Table 2 (continued): Labor Force Status Model

Note: Marginal Effects. Year dummies are also included. *p < 0.10,** p < 0.05,*** p < 0.01.

Figure 1: Perceived, Prediced and Actual Re-employment Probability

					Predictions	ions				
	(2) Mode	(2) Model Based Obj. (3) DG		Model Based Obj. (4) Model Based Obj. (5) Model Based Obj. w/o Pers. (Mundlak)	(4) Mode	l Based Obj.	(5) Mode (Mι	lodel Based Obj. (Mundlak)	Self-Rep.	Rep.
	0	1	0	1	0	1	0		0	1
Realization	0 0.2271	0.1564	0.2499	0.1336	0.2564	0.1270	0.2930	0.0905	0.2642 0.1192	0.1192
Treatization	1 0.1624	0.4542	0.1690	0.4476	0.1660	0.4506	0.1186	0.4979	0.2283 0.3883	0.3883
Sigma	0.	0.3297	0.	0.3785	0.	0.3996	0.	0.5683	0.3048)48
	[0.288]	[0.2887, 0.3707]	[0.335	$\left[0.3355, 0.4214 ight]$	[0.357]	[0.3574, 0.4417]	[0.524]	[0.5245, 0.6121]	[0.2632, 0.3464]	0.3464]
Delta	0.	0.3288	0.	0.3775	0.	0.3996	0.	0.5716	0.3188	188
	[0.284]	[0.2845, 0.3732]	[0.328]	[0.3286, 0.4264]	[0.357]	[0.3579, 0.4412]	[0.528]	[0.5288, 0.6145]	[0.2690, 0.3686]	0.3686]

Table 3: Prediction-Realization Tables

Variables	Sigma	Std. Err.	Conf. Int. down	Conf. Int. up
(A) One Variable				
Unemployment Experience	.454001	.01907	.4166238	.4913781
(B) Two Variables				
Unempl. Exp., Temporary Employed	.4743572	.0214413	.4323324	.5163822
Unempl. Exp., Tenure	.4712647	.0209796	.4301446	.5123847
Unempl. Exp., ISEI Status	.4676614	.0219664	.4246072	.5107155
Unempl. Exp., Unemployment Rate	.4667763	.0212445	.4251371	.5084155
Unempl. Exp., Education	.4640192	.0237268	.4175146	.5105238
Unempl. Exp., Locus of Control	.4614452	.0193044	.4236086	.4992817
Unempl. Exp., Size of Company	.4609703	.019404	.4229385	.499002
Unempl. Exp., Part Time Experience	.4595207	.0230482	.4143462	.5046952
Unempl. Exp., Full-Time Experience	.4589088	.0214041	.4169567	.5008609
Unempl. Exp., ISCO Occ. Code	.4583637	.0221282	.4149923	.50173
Unempl. Exp., Age	.4570537	.018546	.4207034	.493403
Unempl. Exp., Income	.4559716	.0225504	.4117729	$.500170^{4}$
Unempl. Exp., Private Sector	.4554956	.0208011	.4147254	.496265
Unempl. Exp., Married	.4552005	.0251085	.4059878	.5044132
Unempl. Exp., Sex	.454001	.0228066	.4093001	.4987019
Unempl. Exp., Conscientiousness	.453588	.0234651	.4075965	.499579
Unempl. Exp., Extraversion	.4527492	.024255	.4052094	.5002889
Unempl. Exp., Openness	.452568	.0200508	.4132684	.4918675
Unempl. Exp., Home Owner	.4501131	.0206337	.4096712	.4905552
Unempl. Exp., Children in HH	.4423237	.0181768	.4066971	.4779502
Unempl. Exp., Neuroticism	.4420112	.0230253	.3968816	.487140'
(C) Without Unemployment Expe	rience			
Age, Unempl. Rate, ISCO Occ. Code	.3125879	.0228761	.2677507	.3574251
Age, Full-Time Exp., ISCO Occ. Code	.3054112	.0239261	.258516	.3523064

Table 4: Minimum Information needed

	Coef.	M	arginal Effects (ME	2)
	(1) ordered logit	(2) underestimation	(3) exact estimation	(4) overestimation
Socio-demographics				
Male	0.2801^{**}	-0.0474**	0.0194^{*}	0.0281^{**}
	(0.1417)	(0.0241)	(0.0102)	(0.0143)
Age	0.0202	-0.0034	0.0013	0.0020
	(0.0399)	(0.0067)	(0.0027)	(0.0041)
Age squared/1000	-0.5141	0.0865	-0.0343	-0.0522
	(0.4841)	(0.0816)	(0.0326)	(0.0493)
Yrs in Education	0.0431	-0.0072	0.0029	0.0044
	(0.0339)	(0.0057)	(0.0023)	(0.0034)
Is Married	-0.3979***	0.0668***	-0.0263***	-0.0404***
	(0.1378)	(0.0229)	(0.0095)	(0.0142)
Children	0.0892	-0.0150	0.0059	0.0091
	(0.1300)	(0.0217)	(0.0083)	(0.0134)
Home Owner	-0.2136*	0.0367^{*}	-0.0156	-0.0210*
	(0.1225)	(0.0214)	(0.0098)	(0.0118)
Labor Market History				
Part Time Exp	-0.0037	0.0006	-0.0002	-0.0004
	(0.0243)	(0.0041)	(0.0016)	(0.0025)
Full Time Exp	0.0095	-0.0016	0.0006	0.0010
	(0.0147)	(0.0025)	(0.0010)	(0.0015)
Unempl. Exp. 0.1-1.0yrs	-0.2360	0.0409	-0.0180	-0.0230
	(0.1747)	(0.0313)	(0.0151)	(0.0163)
Unempl. Exp. 1.1-3.0yrs	-0.2238	0.0385	-0.0165	-0.0220
	(0.1896)	(0.0335)	(0.0157)	(0.0179)
Unempl. Exp. 3.1-5.0yrs	-0.4878**	0.0883^{**}	-0.0441*	-0.0442**
	(0.2167)	(0.0420)	(0.0251)	(0.0174)
Unempl. Exp. 5+yrs	-0.1146	0.0196	-0.0081	-0.0114
	(0.2375)	(0.0411)	(0.0180)	(0.0231)
Tenure last Job 3-9 Years?	-0.2360	0.0413	-0.0188	-0.0226
	(0.1688)	(0.0307)	(0.0157)	(0.0151)
Tenure last Job 10 or more Years?	-0.0771	0.0132	-0.0055	-0.0077
	(0.2290)	(0.0398)	(0.0176)	(0.0222)
External Labor Market	、 ,	× /		× /
Unempl Rate	-0.0185	0.0031	-0.0012	-0.0019
*	(0.0123)	(0.0021)	(0.0009)	(0.0012)

 Table 5: Under-, Exact and Overestimation

Note: Year dummies are also included. $^{\ast}p < 0.10,^{\ast\ast}p < 0.05,^{\ast\ast\ast}p < 0.01.$

	Coef.	Ma	arginal Effects (ME	2)
	(1)	(2)	(3)	(4)
	ordered logit	underestimation	exact estimation	overestimation
Previous Job Characteristics				
Was working in the Privat Sector	-0.0457	0.0077	-0.0030	-0.0047
	(0.1518)	(0.0253)	(0.0098)	(0.0156)
Was temporary employed	-0.2754**	0.0473**	-0.0201*	-0.0272**
	(0.1320)	(0.0231)	(0.0106)	(0.0128)
More than 20 at last workplace	-0.0298	0.0050	-0.0020	-0.0030
-	(0.1253)	(0.0211)	(0.0084)	(0.0127)
Log Last Income (Gross)	-0.0167	0.0028	-0.0011	-0.0017
S ()	(0.0696)	(0.0117)	(0.0046)	(0.0071)
Last ISEI Status	0.0150	-0.0025	0.0010	0.0015
	(0.0094)	(0.0016)	(0.0006)	(0.0010)
Managers/Professionals	-0.9954**	0.1982^{*}	-0.1235	-0.0748***
6 /	(0.4971)	(0.1101)	(0.0835)	(0.0272)
Techn./Assoc. Profess.	-0.6423*	0.1198^{*}	-0.0646	-0.0552**
,	(0.3508)	(0.0709)	(0.0459)	(0.0255)
Clerks	-0.5118	0.0947	-0.0501	-0.0446*
	(0.3312)	(0.0663)	(0.0419)	(0.0246)
1.Service/Shop Workers	-0.3646	0.0658	-0.0327	-0.0331
	(0.2758)	(0.0530)	(0.0309)	(0.0223)
Agricult. Workers/Craft Workers	-0.1791	0.0308	-0.0132	-0.0176
0 /	(0.2138)	(0.0376)	(0.0172)	(0.0204)
Machine Operators	0.1581	-0.0257	0.0089	0.0168
1	(0.2593)	(0.0408)	(0.0121)	(0.0288)
Personality Traits	()	()		()
Extraversion	-0.0429	0.0072	-0.0029	-0.0044
	(0.0564)	(0.0095)	(0.0038)	(0.0057)
Consienciousness	-0.0165	0.0028	-0.0011	-0.0017
	(0.0636)	(0.0107)	(0.0042)	(0.0065)
Neuroticism	0.0726	-0.0122	0.0048	0.0074
	(0.0564)	(0.0095)	(0.0038)	(0.0057)
Openess	0.0379	-0.0064	0.0025	0.0038
-	(0.0689)	(0.0116)	(0.0046)	(0.0070)
Agreeability	-0.1332**	0.0224**	-0.0089**	-0.0135**
	(0.0643)	(0.0108)	(0.0045)	(0.0065)
LOC	-0.0541	0.0091	-0.0036	-0.0055
	(0.0624)	(0.0105)	(0.0042)	(0.0064)
McKelvey and Zavoina's R2	0.079	0.079	0.079	0.079
Number of Observations	1669	1669	1669	1669
Number of Cluster	1184	1184	1184	1184

 Table 5 (continued): Under-, Exact and Overestimation

Note: Year dummies are also included. $^*p < 0.10,^{**} \, p < 0.05,^{***} \, p < 0.01.$

	OLS	Q25	Q50	Q75
Socio-demographics				
Male	-3.7105	-3.4007	0.8301	-9.8713^{*}
	(3.2159)	(6.5134)	(2.3337)	(5.0844)
Age	-0.5161	-2.3493	0.2333	-0.6724
	(0.9033)	(1.9559)	(0.6947)	(1.5213)
Age squared/1000	9.8929	15.4614	-12.4693	22.4058
	(11.1136)	(23.7226)	(8.6208)	(18.5876)
Yrs in Education	-0.4954	0.5350	1.2677**	-1.0045
	(0.7280)	(1.5652)	(0.5521)	(1.2490)
Is Married	8.6391***	15.5821**	4.5083^{*}	14.3490***
	(3.1392)	(6.6863)	(2.3189)	(4.8181)
Children	-5.9780**	-19.4009***	-6.3798***	0.3983
	(2.8719)	(6.1360)	(2.1407)	(4.6262)
Home Owner	6.4417**	11.1388^{*}	6.2952***	5.2583
	(2.7918)	(5.6900)	(2.0522)	(4.6010)
Labor Market History	· · · ·	× ,	× ,	· · · ·
Part Time Exp	-0.3680	-0.6955	-0.0573	0.1439
	(0.5530)	(1.1820)	(0.4103)	(0.9400)
Full Time Exp	-0.3291	0.3525	0.1020	-0.6761
	(0.3442)	(0.7455)	(0.2644)	(0.5380)
Unempl. Exp. 0.1-1.0yrs	2.1836	-3.1034	0.4630	16.8421**
	(4.2651)	(9.1742)	(3.3651)	(7.3058)
Unempl. Exp. 1.1-3.0yrs	-2.8513	-15.7914	-5.1449	16.1400**
	(4.5199)	(9.7526)	(3.5060)	(7.2928)
Unempl. Exp. 3.1-5.0yrs	0.2488	-16.9499	-8.2068**	28.9125***
	(5.0710)	(11.1630)	(4.0073)	(8.4344)
Unempl. Exp. 5+yrs	-9.6461*	-24.7677**	-18.1277***	7.8667
	(5.5243)	(12.4393)	(4.3825)	(8.8361)
Tenure last Job 3-9 Years?	4.5189	9.6036	1.7309	3.0645
	(3.6565)	(7.7378)	(2.7934)	(6.3011)
Tenure last Job 10 or more Years?	-0.3737	-1.5968	-5.4063	4.8694
	(5.1611)	(10.2836)	(3.6945)	(8.1281)
External Labor Market		· · ·	· · ·	
Unempl Rate	0.0462	-1.4541^{**}	-0.7538***	1.6000^{***}
-	(0.2790)	(0.6229)	(0.2180)	(0.4565)

 Table 6: Determinants of Size of Prediction Error

Note: OLS and Unconditional Quantile Regressions. Marginal Effects. Year dummies are also included. *p < 0.10,*** p < 0.05,*** p < 0.01.

	OLS	Q25	Q50	Q75
Previous Job Characteristics				
Was working in the Privat Sector	3.1515	0.6714	4.7893	7.5372
	(3.7189)	(7.9949)	(2.9386)	(6.2795)
Was temporary employed	5.2283^{*}	6.5924	2.2836	4.9247
	(2.8965)	(6.3415)	(2.2388)	(4.8536)
More than 20 at last workplace	0.8791	2.9347	1.1135	-2.5901
	(2.8340)	(6.0409)	(2.1264)	(4.7184)
Log Last Income (Gross)	0.6396	2.0507	1.3547^{*}	0.1015
_ 、 ,	(0.8925)	(2.0393)	(0.7181)	(1.4891)
Last ISEI Status	-0.4698**	-0.7767*	-0.4444***	-0.6722*
	(0.2097)	(0.4354)	(0.1592)	(0.3600)
Managers/Professionals	31.7801***	55.3741**	25.2195***	39.5607**
	(11.2137)	(22.8666)	(8.4850)	(19.7814)
Techn./Assoc. Profess.	17.6561**	30.9636*	14.4050**	29.3610**
,	(8.0651)	(16.7742)	(6.0246)	(14.0050)
Clerks	20.5711***	40.0677***	20.2476***	20.3329*
	(7.7463)	(15.4304)	(5.3670)	(12.1464)
Service/Shop Workers	8.2792	15.2301	8.6643*	12.0621
, 1	(6.2191)	(13.8542)	(4.8840)	(11.1222)
Agricult. Workers/Craft Workers	4.7048	13.4486	5.5034	13.1127*
	(4.8212)	(11.1118)	(3.8633)	(7.9658)
Machine Operators	-2.0064	4.3221	3.3652	-3.6681
1	(6.0171)	(13.6294)	(4.7441)	(9.2784)
Personality Traits	()		()	()
Extraversion	0.6563	-0.6870	0.5246	1.7721
	(1.3118)	(2.9791)	(1.0654)	(2.3081)
Consienciousness	0.5816	1.0001	1.4046	-0.3150
	(1.4030)	(3.2954)	(1.1786)	(2.5690)
Neuroticism	-1.0141	0.9967	0.2998	-4.6124**
	(1.2782)	(2.9977)	(1.0506)	(2.2011)
Openess	-1.0661	1.7370	0.9207	-4.1417
	(1.5011)	(3.2053)	(1.1532)	(2.6012)
Agreeability	2.5460^{*}	-0.1552	0.5622	5.9760**
5 v	(1.4248)	(3.0890)	(1.0891)	(2.3895)
LOC	2.3416^*	8.0376***	3.7814***	-0.4830
	(1.3800)	(2.9956)	(1.0560)	(2.3393)
R2	0.055	0.056	0.153	0.069
-	0.000	0.000	0.200	0.000

Table 6 (continued): Determinants of Size of Prediction Error

Note: OLS and Unconditional Quantile Regressions. Marginal Effects. Year dummies are also included. *p < 0.10,*** p < 0.05,*** p < 0.01.

	UE in [•]	t, Empl in t-	+1/t+2	UE in t (incl. fu	ture dropouts)
	(1)	(2)	(3)	(4)	(5)
	Income	FT Empl.	Work Hours	Dropping OLF	Job Search
Panel A					
Subj Re-Empl Prob	3.2565^{***}	0.0015^{***}	0.0311^{***}	-0.0008***	0.0006^{*}
	(0.8918)	(0.0005)	(0.0113)	(0.0003)	(0.0003)
R2	0.380		0.303		
McKelvey and Zavoina's R2		0.457		0.154	0.175
Number of Observations	1189	1189	1189	2691	2691
Panel B					
Underestimation	-121.4894***	-0.0798***	-1.7080^{***}	0.0505^{***}	-0.0192
	(45.0849)	(0.0281)	(0.5725)	(0.0181)	(0.0184)
R2	0.377		0.304		
McKelvey and Zavoina's R2		0.453		0.155	0.173
Number of Observations	1189	1189	1189	2691	2691
Panel C					
Prediction Error	-3.9237***	-0.0016***	-0.0256^{**}	0.0011^{***}	-0.0006*
	(0.9776)	(0.0006)	(0.0127)	(0.0003)	(0.0003)
R2	0.382		0.301		
McKelvey and Zavoina's R2		0.455		0.155	0.175
Number of Observations	1189	1189	1189	2691	2691

Note: Marginal Effects. Same control variables as in Table 6. Year dummies are also included. *p < 0.10,** p < 0.05,*** p < 0.01.

References

- Almlund, M., Duckworth, A. L., Heckman, J. J., and Kautz, T. D. (2011). Personality Psychology and Economics. Working Paper 16822, National Bureau of Economic Research.
- Bender, K. A. and Sloane, P. J. (1999). Trade Union Membership, Tenure and the Level of Job Insecurity. Applied Economics, 31(1):123–135.
- Borah, B. J. and Basu, A. (2013). Highlighting differences between conditional and unconditional quantile regression approaches through an application to assess medication adherence. *Health Economics*, 22:1052–1070.
- Caliendo, M., Cobb-Clark, D. A., and Uhlendorff, A. (2010). Locus of Control and Job Search Strategies. SSRN Scholarly Paper ID 1617246, Social Science Research Network, Rochester, NY.
- Campbell, D., Carruth, A., Dickerson, A., and Green, F. (2007). Job Insecurity and Wages. *The Economic Journal*, 117(518):544566.
- Cheng, G. H.-L. and Chan, D. K.-S. (2008). Who Suffers More from Job Insecurity? A Meta-Analytic Review. Applied Psychology, 57(2):272303.
- Costa, P. T. and McCrae, R. R. (1992). Normal Personality Assessment in Clinical Practice: The NEO Personality Inventory. *Psychological Assessment*, 4(1):5–13.
- Dickerson, A. and Green, F. (2012). Fears and Realisations of Employment Insecurity. Labour Economics, 19(2):198–210.
- Dominitz, J. and Manski, C. F. (1997a). Perceptions of Economic Insecurity: Evidence from the Survey of Economic Expectations. *Public Opinion Quarterly*, 61(2):261–287.
- Dominitz, J. and Manski, C. F. (1997b). Using Expectations Data To Study Subjective Income Expectations. *Journal of the American Statistical Association*, 92(439):855–867.
- Firpo, S., Fortin, N. M., and Lemieux, T. (2009). Unconditional quantile regressions. *Econometrica*, 77:953–973.

- Froehlich, M. and Melly, B. (2010). Estimation of quantile treatment effects with stata. *Economics Letters*, 10:423–457.
- Ganzeboom, H. B., De Graaf, P. M., and Treiman, D. J. (1992). A Standard International Socio-Economic Index of Occupational Status. Social Science Research, 21(1):1–56.
- Gerlitz, J.-Y. and Schupp, J. (2005). Zur Erhebung der Big-Five-basierten persoenlichkeitsmerkmale im SOEP. *DIW Research Notes*, 4:2005.
- Green, F. (2003). The Rise and Decline of Job Insecurity. Studies in Economics 0305, Department of Economics, University of Kent.
- Green, F. (2009). Subjective Employment Insecurity Around the World. Cambridge Journal of Regions, Economy and Society, 2(3):343–363.
- Green, F. (2011). Unpacking the Misery Multiplier: How Employability Modifies the Impacts of Unemployment and Job Insecurity on Life Satisfaction and Mental Health. *Journal of Health Economics*, 30(2):265–276.
- Green, F., Dickerson, A. P., Carruth, A. A., and Campbell, D. (2001). An Analysis of Subjective Views of Job Insecurity. Studies in economics, Department of Economics, University of Kent.
- Green, F., Felstead, A., and Burchell, B. (2000). Job Insecurity and the Difficulty of Regaining Employment: An Empirical Study of Unemployment Expectations. Oxford Bulletin of Economics and Statistics, 62:855883.
- Heineck, G. and Anger, S. (2010). The Returns to Cognitive Abilities and Personality Traits in Germany. *Labour Economics*, 17(3):535–546.
- Hurd, M. D. and McGarry, K. (2002). The Predictive Validity of Subjective Probabilities of Survival. *The Economic Journal*, 112(482):966985.
- Jappelli, T. and Pistaferri, L. (2000). Using Subjective Income Expectations to Test for Excess Sensitivity of Consumption to Predicted Income Growth. *European Economic Review*, 44(2):337–358.
- Jappelli, T. and Pistaferri, L. (2010). The Consumption Response to Income Changes. Working Paper 15739, National Bureau of Economic Research.

- John, O. P., Donahue, E. M., and Kentle, R. L. (1991). The Big Five Inventory Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research.
- Kaufmann, K. and Pistaferri, L. (2009). Disentangling Insurance and Information in Intertemporal Consumption Choices. American Economic Review, 99(2):387–92.
- Koenker, R. and Bassett, G. (1978). Regression quantiles. *Econometrica*, 46:33–50.
- Linz, S. J. and Semykina, A. (2008). How do Workers Fare During Transition? Perceptions of Job Insecurity among Russian Workers, 19952004. *Labour Economics*, 15(3):442–458.
- Manski, C. F. (2004). Measuring Expectations. *Econometrica*, 72(5):13291376.
- Manski, C. F. and Straub, J. D. (2000). Worker Perceptions of Job Insecurity in the Mid-1990s: Evidence from the Survey of Economic Expectations. *The Journal of Human Resources*, 35(3):447–479.
- McCrae, R. R. and Costa, P. T. J. (1985). The NEO Personality Inventory Manual. Psychological Assessment Resources, Odessa.
- McFadden, D., Puig, C., and Kirschner, D. (1977). Determinants of the Long-Run Demand for Electricity. *Proceedings of the American Statistical Association*, pages 109– 117.
- Mundlak, Y. (1978). On the Pooling of Time Series and Cross Section Data. *Econometrica*, 46(1):69–85.
- Rotter, J. B. (1966). Generalized Expectancies for Internal versus External Control of Reinforcement. Psychological Monographs: General and Applied, 80(1):1–28.
- Smith, V. K., Taylor, D. H., and Sloan, F. A. (2001). Longevity Expectations and Death: Can People Predict Their Own Demise? *The American Economic Review*, 91(4):1126– 1134.
- Stephens, M. (2004). Job Loss Expectations, Realizations, and Household Consumption Behavior. *Review of Economics and Statistics*, 86(1):253–269.

- Sverke, M., Hellgren, J., and Nswall, K. (2002). No Security: A Meta-Analysis and Review of Job Insecurity and its Consequences. *Journal of Occupational Health Psychology*, 7(3):242–264.
- Veall, M. R. and Zimmermann, K. F. (1992). Performance Measures from Prediction-Realization Tables. *Economics Letters*, 39(2):129–134.

9 Appendix

Variable	Mean	Std. Dev.	Min.	Max.
Employed in t+1 or t+2	0.62	0.49	0	1
Male	0.53	0.5	0	1
Age	40.37	11.15	17	63
Age squared/ 1000	1.75	0.89	0.29	3.97
Yrs in Education	11.42	2.1	7	18
Is Married	0.53	0.5	0	1
Children	0.43	0.49	0	1
Home Owner	0.32	0.47	0	1
Part Time Exp	1.32	3.32	0	30.7
Full Time Exp	13.49	10.69	0	43.8
Unemployment Experience	3.5	3.33	0	21.5
Tenure last Job 3-9 Years?	0.14	0.35	0	1
Tenure last Job 10 or more Years?	0.09	0.28	0	1
Unempl Rate	13.28	4.77	4.8	20.5
Was working in the Privat Sector	0.67	0.47	0	1
Was temporary employed	0.36	0.48	0	1
More than 20 at last workplace	0.49	0.5	0	1
Log Last Income (Gross)	5.8	2.9	0	9.69
Last ISEI Status	29.87	19.15	0	90
Managers/Professionals	0.07	0.26	0	1
Techn./Assoc. Profess.	0.13	0.34	0	1
Clerks	0.09	0.28	0	1
Service/Shop Workers	0.08	0.27	0	1
Agricult. Workers/Craft Workers	0.24	0.42	0	1
Machine Operators	0.09	0.28	0	1
nerver obs. in empl.	0.19	0.39	0	1
Extraversion	-0.02	0.96	-3.58	2.43
Consienciousness	0.08	0.95	-3.59	1.8
Neuroticism	0.1	0.94	-2.58	2.9
Openess	-0.14	0.93	-4.12	3.09
Agreeability	-0.02	1	-4.21	2.31
LOC	-0.42	0.98	-3.1	2.48
N		1669		

Table 1: Summary Statistics

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Table 2:	Table 2: Realisation-Pred	m-Predicti	ion Sigma	by $0/1-C_0$	iction Sigma by 0/1-Coding Variation, Self-Reported Subjective Probability	tion, Self-	Reported S	bubjective	Probability	y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		>0	≥ 10	≥ 20	≥ 30	≥ 40				≥ 80	≥ 90	≥ 100
$ \begin{bmatrix} [97,001] \\ [77,1002] \\ [77,100] \\ [77,1$	$ \begin{bmatrix} 39, 601 \\ 27, 602 \\ -3, 023 \\ -3, 024 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 035 \\ -3, 025 \\ -3, 01 \\ -3, 05$	0 =	-3.953	-3.953	-3.576	-3.106	-2.535	-2.258	-0.846	-0.629	-0.388	-0.081	0.101
$ \begin{bmatrix} 27, 1002 \\ 27, 1002 \\ 37, 303 \\ 3, 373 \\ 3, 373 \\ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, $	$ \begin{bmatrix} 277, 1002 \\ 177, 1002 \\ 187, 1002 \\ 275, 2365 \\ 387, 401 \\ 277, 366 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 367 \\ 387, 401 \\ 277, 368 \\ 387, 401 \\ 277, 368 \\ 387, 401 \\ 277, 368 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 387 \\ 387, 411 \\ 277, 412 \\ 387, 411 \\ 381, 418 \\ 0.033 \\ 0.034 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.034 \\ 0.033 \\ 0.03 $		[30·601]	[30.601]	[30.559]	[30· 401]	$\begin{bmatrix} 30.417 \end{bmatrix}$	$\begin{bmatrix} 30.381 \end{bmatrix}$	[30· 100]	[30·171]	[30· 140]	[30· 100]	[30·76]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{bmatrix} 20, 001 \\ 27; 1002 \end{bmatrix}$	$\begin{bmatrix} 20, 001 \\ 27; 1002 \end{bmatrix}$	[27; 978]	$\begin{bmatrix} 23, \pm 31 \\ 27; 935 \end{bmatrix}$	$\begin{bmatrix} 20, \pm 1\\ 27; 875 \end{bmatrix}$	$\begin{bmatrix} 23, 501 \\ 27; 841 \end{bmatrix}$	$\begin{bmatrix} 20, \pm 30 \\ 27; 648 \end{bmatrix}$	$\begin{bmatrix} 23, \pm 1 \pm \\ 27; 596 \end{bmatrix}$	$\begin{bmatrix} 20, \pm 0\\ 27; 539 \end{bmatrix}$	$\begin{bmatrix} 20, 100 \\ 27; 435 \end{bmatrix}$	[27; 357]
	$ \begin{bmatrix} 30,6041 \\ 27;1002 \\ 27;1002 \\ 27;7587 \\ 27;875 \\ 27;875 \\ 27;875 \\ 27;810 \\ 27;751 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 27;1012 \\ 28;522 \\ 0.173 \\ 0.171 \\ 128;811 \\ 138;109 \\ 138;109 \\ 138;171 \\ 138;109 \\ 138;171 \\ 138;11 \\ 138;109 \\ 138;171 \\ 138;11 \\ 138;109 \\ 138;171 \\ 138;11 \\ 138;109 \\ 138;171 \\ 138;109 \\ 138;171 \\ 138;171 \\ 138;101 \\ 0.033 \\ 0.03$	< 10		-3.953	-3.576	-3.106	-2.535	-2.258	-0.846	-0.629	-0.388	-0.081	0.101
$ \begin{bmatrix} 35, 601 \\ 277, 002 \\ 277, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775, 785 \\ 775 \\ 785, 787 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 781 \\ 715, 715 \\ 7$	$\begin{bmatrix} 39, 601 \\ 277, 1002 \\ 277, 1002 \\ 1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -1.366 \\ -0.551 \\ -0.353 \\ -0.353 \\ -0.172 \\ -0.172 \\ -0.172 \\ -0.224 \\ -0.172 \\ -0.172 \\ -0.172 \\ -0.224 \\ -0.172 \\ -0.172 \\ -0.224 \\ -0.172 \\ -0.224 \\ -0.172 \\ -0.224 \\ -0$			(0.634)	(0.523)	(0.586)	(0.407)	(0.421)	(0.228)	(0.208)	(0.151)	(0.147)	(0.113)
$\begin{bmatrix} 277, 1002 \\ 1.27, 053 \\ 1.27, 053 \\ 1.3, 975 \\ 151, 915 \\ 151, 916 \\ 151, 916 \\ 151, 956 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 151, 952 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 150, 100 \\ 150, 100 \\ 150, 100 \\ 150, 100 \\ 150, 100 \\ 151, 956 \\ 150, 100 \\ 150,$	$\begin{bmatrix} 27; 1002 & 12; 958 & 12; 955 & 27; 875 & 27; 841 & 12; 168 & 12; 566 & 13, 956 \\ 0.214 & 0.178 & 0.186 & 0.147 & 0.117 & 0.079 & 0.076 & 0.076 \\ 151; 978 & 151; 935 & 151; 875 & 151; 841 & 151; 648 & 151; 566 & 151; 566 & 10, 0008 & 0.172 & 0.224 & 0.282 & 0.077 & 0.0077 & 0.0073 & 149; 199 & 149; 171 & 149; 417 & 149; 381 & 149; 491 & 149; 417 & 149; 381 & 149; 199 & 149; 171 & 149; 418 & 10033 & 0.364 & 0.033 & 0.364 & 0.033 & 0.364 & 0.033 & 0.364 & 0.033 & 0.364 & 0.033 & 0.364 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.030 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.304 & 0.033 & 0.0304 & 0.0033 & 0.0304 & 0.0033 & 0.0021 & 0.033 & 0.0304 & 0.0033 & 0.0304 & 0.0033 & 0.0304 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0002 & 0.0004 & 0.0033 & 0.0002 & 0.0004 & 0.0033 & 0.0002 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004 & 0.0033 & 0.0004$			[39;601]	[39; 552]	[39; 491]	[39; 417]	[39; 381]	[39;199]	[39; 171]	[39; 140]	[39;100]	[39; 76]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -1.360 & -1.130 & -0.037 & -0.037 \\ (0.174) & (0.178) & (0.178) & (0.173) & (0.079) & (0.076) \\ (0.178) & (0.178) & (0.171) & (0.171) & (0.079) & (0.076) \\ (0.108) & (0.080) & (0.070) & (0.048) & (0.041) \\ (0.079) & (0.080) & (0.070) & (0.048) & (0.041) \\ (0.079) & (0.080) & (0.072) & (0.012) & (0.041) & (0.041) \\ (0.142) & (0.022) & (0.022) & (0.023) & (0.023) \\ (0.033) & (0.033) & (0.033) & (0.023) & (0.023) \\ (0.033) & (0.033) & (0.033) & (0.023) & (0.023) \\ (0.033) & (0.033) & (0.033) & (0.023) & (0.023) \\ (0.033) & (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0.023) & (0.023) & (0.023) \\ (0.033) & (0.023) & (0$	00		$[\ 27;\ 1002\]$	[27; 978]	$\begin{bmatrix} 27; 935 \end{bmatrix}$	$\begin{bmatrix} 27, 875 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 27, 841 \end{bmatrix}$	$\begin{bmatrix} 27; 648 \end{bmatrix}$	$\begin{bmatrix} 27; 596 \end{bmatrix}$	$\begin{bmatrix} 27; 539 \end{bmatrix}$	$\begin{bmatrix} 27; 435 \\ 0.052 \end{bmatrix}$	$\begin{bmatrix} 27, 357 \end{bmatrix}$
$ \begin{bmatrix} 88, 532 \\ 51, 575 \\ 51, 515 \\ 525 \\ 525 \\ 510 \\ 5$		< 20			-1.366	-1.140	-0.865	-0.731	-0.047	0.057	0.172	0.316	0.397
$ \begin{bmatrix} 51; 575 \\ 51; 575 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.087 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.079 \\ 0.084 \\ 0.077 \\ 0.084 \\ 0.071 \\ 0.084 \\ 0.071 \\ 0.084 \\ 0.071 \\ 0.084 \\ 0.071 \\ 0.084 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.071 \\ 0.014 \\ 0.014 \\ 0.014 \\ 0.003 \\ 0.000$	$\begin{bmatrix} 51; 978 \\ 0.039 \\ 0.039 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.080 \\ 0.077 \\ 0.022 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.031 \\ 154; 811 \\ 154; 648 \\ 154; 648 \\ 0.364 \\ 0.037 \\ 0.032 \\ 0.036 \\ 0.0364 \\ 0.032 \\ 0.0364 \\ 0.032 \\ 0.037 \\ 0.023 \\ 0.031 \\ 154; 648 \\ 154; 648 \\ 0.304 \\ 0.031 \\ 185; 648 \\ 0.304 \\ 0.031 \\ 0.01 \\ 0.031$				[88: 552]	[88: 491]	[88: 417]	[88: 381]	[88: 199]	[88: 171]	[88: 140]	[88: 100]	[88: 76]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\begin{bmatrix} 51; 978 \end{bmatrix}$	[51; 935]	[51; 875]	$\begin{bmatrix} 51; 841 \end{bmatrix}$	[51; 648]	$\begin{bmatrix} 51; 596 \end{bmatrix}$	$\begin{bmatrix} 51; 539 \end{bmatrix}$	[51; 435]	[51; 357]
	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 30				-0.409	-0.249	-0.172	0.224	0.282	0.346	0.420	0.454
$ \begin{bmatrix} 1436, 401 \\ 1436, 401 \\ 0.022 \end{bmatrix} \begin{bmatrix} 1436, 403 \\ 94, 503 \\ 0.022 \end{bmatrix} \begin{bmatrix} 94, 533 \\ 94, 503 \\ 0.033 \end{bmatrix} \begin{bmatrix} 94, 563 \\ 0.033 \\ 0.033 \\ 0.003 \end{bmatrix} \begin{bmatrix} 94, 566 \\ 0.033 \\ 0.033 \\ 0.033 \end{bmatrix} \begin{bmatrix} 94, 566 \\ 0.033 \\ 0.033 \\ 0.035 \\ 0.033 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.035 \\ 0.032 \\ 0.022 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.031 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.002 \\$	$ \begin{bmatrix} 149; 401 \\ 149; 401 \\ 0.027 \end{bmatrix} \begin{bmatrix} 94; 831 \\ 94; 831 \\ 0.022 \end{bmatrix} \begin{bmatrix} 94; 648 \\ 94; 648 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.035 \\ 0.025 \\ 0.031 \\ 0.022 \\ 0.031 \\ 0.022 \\ 0.033 \\ 0.025 \\ 0.032 \\ 0.031 \\ 0.021 \\ 0.022 \\ 0.001 \\ 0.021 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.023 \\$					(0.079)	(0.080)	(0.070)	(0.048)	(0.047)	(0.045)	(0.034)	(0.038)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} 941, 950 \\ 0.037 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.072 \\ 0.034 \\ 0.034 \\ 0.033 \\ 0.034 \\ 0.033 \\ 0.034 \\ 0.033 \\ 0.036 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.032 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.022 \\ 0.021 \\ 0.022 \\$					$\begin{bmatrix} 149; 491 \end{bmatrix}$	$\begin{bmatrix} 149; 417 \end{bmatrix}$	$\begin{bmatrix} 149; 381 \\ 64 & 641 \end{bmatrix}$	$\begin{bmatrix} 149; 199 \end{bmatrix}$	$\begin{bmatrix} 149; 171 \end{bmatrix}$	$\begin{bmatrix} 149; 140 \end{bmatrix}$	$\begin{bmatrix} 149; 100 \end{bmatrix}$	$\begin{bmatrix} 149; 76 \\ 0, 0, 0, 0 \end{bmatrix}$
$ \begin{array}{c} (0.077) (0.042) (0.033) (0.033) (0.037) (0.035) \\ (154; 875) [154; 811] [154; 648] [154; 596] [154; 539] [154; 435] [0.027] (0.035) \\ (10.028) (0.025) (0.032) (0.027) (0.027) (0.028) \\ (10.038) (0.025) (0.032) (0.027) (0.028) \\ (10.038) (0.028) (0.027) (0.028) (0.028) \\ (10.038) (0.021) (0.021) (0.021) (0.021) \\ (10.021) (0.021) (0.022) (0.021) \\ (10.021) (0.022) (0.022) (0.021) \\ (10.021) (0.022) (0.022) (0.023) \\ (10.023) (0.021) (0.023) (0.023) (0.021) \\ (10.021) (0.021) (0.022) (0.023) \\ (10.021) (0.021) (0.022) (0.023) \\ (10.021) (0.021) (0.022) (0.023) \\ (10.021) (0.023) (0.023) (0.023) \\ (10.021) (0.023) (0.023) (0.024) \\ (10.021) (0.023) (0.026) (0.024) \\ (10.023) (0.026) (0.024) \\ (10.023) (0.026) (0.026) (0.024) \\ (10.031) (0.026) (0.026) (0.024) \\ (10.031) (0.026) (0.026) (0.026) (0.026) \\ (0.026) (0.026) (0.026) (0.026) (0.026) \\ (0.026) (0.026) (0.026) (0.026) (0.026) \\ (0.026) (0.026) (0.026) (0.026) (0.026) \\ (0.026) (0.026) (0.026) (0.026) (0.026) \\ (0.026) (0$	$ \left(\begin{array}{c} 0.037 \\ 0.037 \\ 0.037 \\ 0.038 \\ 0.038 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.138 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.130 \\ 0.131 \\ 0.131 \\ 0.130 \\ 0.130 \\ 0.131 \\ 0.1$	10				[94; 935]	[94; 875]	[94; 841] 0.070	[94; 048] 0 333	94; 590 0 267	[94; 539] 0 204	94; 435 0 496	[94; 357] 0 490
$\begin{bmatrix} 223, 417 \\ 154, 875 \end{bmatrix} \begin{bmatrix} 134, 541 \\ 154, 648 \end{bmatrix} \begin{bmatrix} 154, 566 \\ 154, 648 \end{bmatrix} \begin{bmatrix} 154, 566 \\ 154, 566 \end{bmatrix} \begin{bmatrix} 134, 539 \\ 154, 566 \end{bmatrix} \begin{bmatrix} 154, 435 \\ 158, 510 \end{bmatrix} \begin{bmatrix} 0.0323 \\ 0.0323 \end{bmatrix} \begin{bmatrix} 0.0323 \\ 0.303 \end{bmatrix} \begin{bmatrix} 0.0323 \\ 0.303 \end{bmatrix} \begin{bmatrix} 0.0321 \\ 0.027 \end{bmatrix} \begin{bmatrix} 0.031 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.027 \\ 0.031 \end{bmatrix} \begin{bmatrix} 0.031 \\ 158, 435 \end{bmatrix} \begin{bmatrix} 0.031 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.027 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.027 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.027 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.026 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.026 \end{bmatrix} \begin{bmatrix} 0.028 \\ 141, 100 \end{bmatrix} \begin{bmatrix} 469, 177 \\ 469, 177 \end{bmatrix} \begin{bmatrix} 469, 160 \\ 469, 100 \end{bmatrix} \begin{bmatrix} 900, 140 \\ 1690, 100 \end{bmatrix} \begin{bmatrix} 900, 140 \\ 1690, 140 \end{bmatrix} \begin{bmatrix} 900, 140 \\ 1691, 160 \end{bmatrix} \begin{bmatrix} 90, 160 \\ 1691, 160 \end{bmatrix} \begin{bmatrix} 90, 160 \\ 1691, 160 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 90, 160 \\ 160, 160 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$	$\begin{bmatrix} 223, 417 \\ 154, 875 \\ 154, 871 \\ 154, 871 \\ 154, 841 \\ 154, 648 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.025 \\ 0.025 \\ 0.002 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.031 \\ 0.031 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.001 \\ $	140					0.022	0.042)	0.323	(0.033)	(0.027)	0.420	0.429
$\begin{bmatrix} 154; 875 \\ 0.131 \\ 0.131 \\ 0.038 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.0305 \\ 0.033 \\ 0.0304 \\ 0.033 \\ 0.0305 \\ 0.0304 \\ 0.0305 \\ 0.0304 \\ 0.0305 \\ 0.0304 \\ 0.030 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.031 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.022 \\ 0.022 \\ 0.028 \\$	$\begin{bmatrix} 154; 875 \\ 0.131 \\ 0.131 \\ 0.133 \\ 0.239 \\ 0.233 \\ 0.025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0021 \\ 0.0023 \\ 0.001 \\ 0.0021 \\ 0.0023 \\ 0.0021 \\ 0.0023 \\ 0.00$						[223: 417]	[223; 381]	[223; 199]	[223; 171]	[223; 140]	[223: 100]	[223: 76]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$\begin{bmatrix} 154; 875 \end{bmatrix}$	$\begin{bmatrix} 154; 841 \end{bmatrix}$	$\begin{bmatrix} 154; 648 \end{bmatrix}$	$\begin{bmatrix} 154; 596 \end{bmatrix}$	$\begin{bmatrix} 154; 539 \end{bmatrix}$	$\begin{bmatrix} 154; 435 \end{bmatrix}$	[154; 357]
$ \begin{bmatrix} 0.038\\ 0.025\\ 188; 531\\ 188; 532\\ 188; 532\\ 188; 532\\ 0.304\\ 0.023\\ 0.023\\ 0.023\\ 0.023\\ 0.021\\ 188; 539\\ 0.021\\ 188; 539\\ 0.031\\ 188; 539\\ 0.031\\ 188; 539\\ 0.031\\ 188; 539\\ 0.031\\ 188; 435\\ 0.031\\ 141; 140\\ 141; 140\\ 141; 140\\ 141; 140\\ 141; 140\\ 141; 140\\ 141; 140\\ 141; 100\\ 141; 100\\ 1028\\ 0.038\\ 0.026\\ 0.028\\ 0.034\\ 0.045\\ 0.044\\ 0.034\\ 0.034\\ 0.044\\ 0.034\\ 0.044\\ 0.034\\ 0.034\\ 0.044\\ 0.03$	$ \begin{bmatrix} 0.038 \\ 0.025 \\ 0.025 \\ 0.028 \end{bmatrix} \begin{bmatrix} 0.032 \\ 0.032 \\ 0.305 \\ 0.305 \\ 0.305 \\ 0.307 \\ 0.021 \end{bmatrix} \begin{bmatrix} 299 \\ 188 \\ 648 \\ 0.023 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.023 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.027 \\ 0.023 \\ 0.027 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.027 \\ 0.021 \\ 0.0$	< 50						0.131	0.339	0.364	0.392	0.409	0.400
$ \begin{bmatrix} 256, 381 \\ 256, 190 \\ 188, 648 \\ 188, 648 \\ 188, 648 \\ 0.303 \\ 0.304 \\ 0.230 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.026 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.021 \\ 0.028 \\ 0.021 \\ 0.028 \\ 0.021 \\ 0.024 \\ 0.034 \\ 0.$	$\begin{bmatrix} 259, 381 \\ 188, 841 \end{bmatrix} \begin{bmatrix} 259, 199 \\ 381, 648 \end{bmatrix} \begin{bmatrix} 298, 596 \\ 381, 596 \end{bmatrix} \begin{bmatrix} 0.305 \\ 0.305 \\ 0.371 \end{bmatrix} \begin{bmatrix} 441, 171 \\ 441, 199 \end{bmatrix} \begin{bmatrix} 441, 171 \\ 0.271 \\ 0.271 \end{bmatrix} \begin{bmatrix} 499, 177 \\ 133, 596 \end{bmatrix} \begin{bmatrix} 499, 177 \\ 133, 597$							(0.038)	(0.025)	(0.032)	(0.027)	(0.028)	(0.032)
$\begin{bmatrix} 1385, 544 \\ 0.305 \\ 0.305 \\ 0.301 \\ 0.027 \\ 0.027 \\ 0.027 \\ 0.027 \\ 0.021 \\ 0.027 \\ 0.027 \\ 0.021 \\ 0.027 \\ 0.021 \\ 0.027 \\ 0.021 \\ 0.027 \\ 0.021 \\ 0.021 \\ 0.027 \\ 0.021 $	$\begin{bmatrix} 188; 841 \\ 0.305 \\ 0.304 \\ 0.023 \\ 0.021 \\ 0.0271 \\ 0.271 $							[259; 381]	[259; 199]	[259; 171]	[259; 140]	[259;100]	[259; 76]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0.023 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.023 \\ 0.021 \\ 0.023 \\ 0.$	0.9 1						[188; 841]	[188; 648]	[188; 596]	[188; 539]	[188; 435]	[188; 357]
$ \begin{array}{c} (0.022) \\ (441; 199) \\ (441; 171) \\ (441; 140) \\ (441; 140) \\ (441; 140) \\ (441; 140) \\ (441; 140) \\ (441; 140) \\ (462; 171) \\ (463; 171) \\ (463; 171) \\ (463; 171) \\ (463; 171) \\ (433; 556) \\ (433; 556) \\ (433; 556) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (433; 539) \\ (0.024) \\ (0.024) \\ (0.034) \\ (504; 140) \\ (504; 140) \\ (504; 140) \\ (504; 140) \\ (504; 100) \\ (504; 100) \\ (504; 100) \\ (594; 435) \\ (594; 435) \\ (594; 435) \\ (100) \\ (1$	(1002) (441; 199) [441; 171] [381; 648] [381; 556] [0.271 (0.023) [469; 171] [[469; 171] [[469; 171] [[433; 5596] [[00 >								0.304	0.057	0.258	0.194
$\begin{bmatrix} 381, 548 \\ 0.271 \\ 0.266 \\ 0.023 \\ 0.026 \\ 0.026 \\ 0.026 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.028 \\ 0.034 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.004 \\ 0.000 \\ 0.004 \\ 0.000 \\$									(070.0) [441.199]	[171 · 171]	(0.027) [441 - 140]	[100.1]	(000.0) [441-76]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									$\begin{bmatrix} 381; 648 \end{bmatrix}$	$\begin{bmatrix} 381; 596 \end{bmatrix}$	$\begin{bmatrix} 381; 539 \end{bmatrix}$	$\begin{bmatrix} 381; 435 \end{bmatrix}$	[381: 357]
$ \begin{bmatrix} (0.023) & (0.026) & (0.028) \\ [469; 171] & [469; 140] & [469; 100] \\ [453; 5596] & [433; 5599] & [433; 435] & [0.034] \\ [433; 5596] & [0.034] & [0.034] \\ [500; 140] & [500; 100] \\ [500; 140] & [500; 100] \\ [500; 100] & [500; 100] \\ [500; 100] & [500; 100] \\ [501; 100] & [501; 100] \\ [501; 100] & [1$	(0.023) [469; 171] [433; 596] [433; 596]	< 70								0.271	0.260	0.206	0.130
$\begin{bmatrix} 469; 171 \\ 469; 171 \end{bmatrix} \begin{bmatrix} 469; 140 \\ 433; 539 \end{bmatrix} \begin{bmatrix} 433; 435 \\ 433; 539 \end{bmatrix} \begin{bmatrix} 433; 435 \\ 433; 435 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.034 \\ 490; 435 \end{bmatrix} \begin{bmatrix} 0.034 \\ 490; 435 \end{bmatrix} \begin{bmatrix} 490; 435 \\ 0.045 \end{bmatrix} \begin{bmatrix} 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.034 \\ 540; 100 \end{bmatrix} \begin{bmatrix} 540; 100 \\ 540; 100 \end{bmatrix}$										(0.023)	(0.026)	(0.028)	(0.036)
$\begin{bmatrix} 433; 539 \\ 0.151 \\ 0.218 \\ 0.151 \\ 0.034 \end{bmatrix} \begin{bmatrix} 433; 435 \\ 0.151 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.034 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 100 \\ 120; 539 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 190; 435 \\ 190; 435 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.034 \\ 190; 435 \\ 0.045 \\ 0.034 \end{bmatrix}$										$\begin{bmatrix} 469; 171 \end{bmatrix}$	$\begin{bmatrix} 469; 140 \end{bmatrix}$	[469;100]	$\begin{bmatrix} 469; 76 \end{bmatrix}$
$ \begin{bmatrix} 0.026 \\ 0.034 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.034 \\ 500; 140 \\ 500; 100 \\ 1490; 539 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 490; 539 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 490; 539 \\ 0.045 \\ 0.034 \end{bmatrix} \begin{bmatrix} 0.034 \\ 540; 100 \\ 594; 435 \\ 100 \end{bmatrix} \begin{bmatrix} 594; 435 \\ 594; 435 \\ 100 \end{bmatrix} $		~ 80 80								[4 33; 390]	[433; 339] 0.218	[433; 433] 0 151	[433; 397] 0 061
$\begin{bmatrix} 500; 140 \\ 500; 100 \end{bmatrix} \begin{bmatrix} 500; 100 \\ 490; 539 \end{bmatrix} \begin{bmatrix} 490; 435 \\ 0.045 \end{bmatrix} \begin{bmatrix} 0.034 \\ 544; 100 \end{bmatrix} \begin{bmatrix} 544; 100 \\ 594; 435 \end{bmatrix} \begin{bmatrix} 594; 435 \\ 594; 435 \end{bmatrix} \begin{bmatrix} 594; 594; 594 \\ 594; 594 \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594; 594 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594; 594 \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594; 594 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 594; 594 \\ 594 \end{bmatrix} \end{bmatrix} \end{bmatrix}$		2									(0.026)	(0.034)	(0.042)
[490; 539] [490; 539] [490; 435] [0.045 0.045 (0.034) [540; 100] [540; 100] [594; 435] [[500; 140]	[500; 100]	[500; 76]
0.045 0.034) [540; 100] [594; 435] [594; 435] [< 90 < 100										[490; 539]	[490; 435]	[490; 357]
(0.034) [540; 100] [594; 435] [594; 435] [[594; 435] [< 100	06 >										0.045	-0.069
	< 100											(0.034)	(0.049)
	< 100											[540;100]	[540; 76]
	< 100											[594; 435]	[594; 357]
(0.097) [564; 76] [672: 357]		< 100											
[304; 70] [679: 357]													(/00.0) [564: 76]
													[504; 70] [679: 357]

$ = 0 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×	>0	≥ 10	≥ 20	≥ 30	≥ 40	≥ 50	≥ 60	≥ 70	≥ 80	≥ 90	≥ 100
$ \begin{bmatrix} 94.883 & (78.735) & (59.951) & (33.142) & (36.921) & (34.069) & (20.550) \\ [1; 650] & [1; 632] & [1; 322] & [1; 322] & [1; 233] & [1; 231] & [1; 231] \\ [0; 1023] & -1.349 & -0.359 & (0.199) & (0.121) & (0.065) \\ (0.51) & (0.231) & (0.231) & (0.230) & (0.199) & (0.121) & (0.065) \\ [15; 001] & [15; 003] & [15; 003] & [15; 003] & [0.323] \\ [15; 1014] & [15; 033] & [15; 033] & [15; 033] & [15; 033] & [0.323] \\ [15; 1014] & [15; 033] & [15; 033] & [15; 033] & [0.323] & [0.323] \\ [15; 1014] & [15; 033] & [15; 033] & [15; 033] & [0.32] & [0.323] & [0.323] & [0.323] & [0.323] & [0.3$		-318.692	-276.177	-213.151	-170.131	-133.112	-104.596	-74.577	-46.056	-30.044	-9.522	1.000
$ \begin{bmatrix} 1; 639 \\ 0; 1023 \\ 0; 1014 \\ 0; 1014 \\ 0; 031 \\ 0; 032 \\ 0; 033 \\ 0; 0$		(94.888)	(78.735)	(59.951)	(53.142)	(36.921)	(34.069)	(20.559)	(13.348)	(8.457)	(3.898)	(0.000)
$ \begin{bmatrix} 0; 1029 \\ -1.034 \\ -1.0351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.351 \\ 0.208 \\ 0.094 \\ 0.094 \\ 0.094 \\ 0.094 \\ 0.094 \\ 0.008 \\ 0.094 \\ 0.008 \\ 0.093 \\ 0.094 \\ 0.008 \\ 0.093 \\ 0.003 \\ 0.001 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.00$		[1; 639]	[1; 554]	[1; 428]	[1; 342]	[1; 268]	[1; 211]	[1; 151]	[1; 94]	$\begin{bmatrix} 1; 62 \end{bmatrix}$	[1; 21]	[1;0]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 1029]	[0; 1014]	[0; 993]	[0; 967]	[0; 931]	[0; 892]	[0; 831]	[0; 738]	[0; 641]	[0; 452]	[0; 11]
	10		-1.998	-1.349	-0.904	-0.519	-0.221	0.094	0.395	0.564	0.784	0.244
$ \begin{bmatrix} 165, 1044 \\ 155, 1014 \\ 155, 1014 \\ 155, 1014 \\ 0.081 \\ 0.0031 \\ 0.0033 \\ 0.0033 \\ 0.0058 \\ 0.0058 \\ 0.0033 \\ 0.0058 \\ 0.0033 \\ 0.0033 \\ 0.0033 \\ 0.0033 \\ 0.0033 \\ 0.0033 \\ 0.0033 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0031 \\ 0.0039 \\ 0.0030 \\ 0.003 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0030 \\ 0.0039 \\ 0.0009 \\ 0.0000 \\ 0.0009 \\ 0.0000 \\ 0.0009 \\ 0.0000 \\ 0.0009 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0009 \\ 0.0000 \\ 0.000 $			(165.0)	(0.231)	(0.208)	(0.149)	(171.0)	(0.090)	(0.083)	(0.03)	(0.047)	(0.455 (0.455
$ \begin{array}{c} 1.3, 50.1 \\ 0.081 \\ 0.081 \\ 0.063 \\ 0.094 \\ 0.083 \\ 0.094 \\ 0.063 \\ 0.063 \\ 0.063 \\ 0.063 \\ 0.068 \\ 0.068 \\ 0.030 \\ 0.030 \\ 0.033 \\ 0.033 \\ 0.033 \\ 0.023 \\ 0.033 \\ 0.023 \\ 0.023 \\ 0.033 \\ 0.023 \\ 0.030 \\ 0.003 \\ 0.$			[86; 554] [15, 1014]	[86; 428] [15, 003]	[86; 342] [15, 067]	[86; 268]	[86; 211] [15, 809]	[86; 151] [15, 831]	[86; 94] [15, 739]	$\begin{bmatrix} 86; 62 \end{bmatrix}$	[86; 21] [15, 459]	[86; 0] [15, 11
$ \begin{array}{c} (0.03) & (0.053) & (0.053) & (0.032) \\ (0.045) & (0.053) & (0.033) & (0.032) & (0.032) \\ (0.045) & (0.033) & (0.029) & (0.029) & (0.029) \\ (0.045) & (0.033) & (0.029) & (0.029) & (0.029) & (0.029) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.026) & (0.022) &$	06		[10; 101 4]	[10; 990]	[10; 30/]	[10; 301]	[10; 092]	[10; 001]	[10; / 10]	[13; 041]	[10; 402] 0 205	
$\begin{bmatrix} 212; 428 \\ 36; 993 \end{bmatrix} \begin{bmatrix} 212; 283 \\ 0.285 \\ 0.045 \\ 0.035 \end{bmatrix} \begin{bmatrix} 36; 931 \\ 36; 932 \\ 0.285 \\ 0.035 \end{bmatrix} \begin{bmatrix} 36; 931 \\ 36; 832 \\ 0.296 \\ 0.039 \\ 0.039 \\ 0.030 \\ 0.00$	07				0.034	0.058)	0.018 0	0.020		(0.0.0	0.020	-0.697
$\begin{bmatrix} 36; 993 \end{bmatrix} \begin{bmatrix} 36; 967 \end{bmatrix} \begin{bmatrix} 36; 931 \end{bmatrix} \begin{bmatrix} 36; 892 \end{bmatrix} \begin{bmatrix} 36; 893 \end{bmatrix} \begin{bmatrix} 36; 831 \end{bmatrix} \\ 0.497 \end{bmatrix} \begin{bmatrix} 0.286 \\ 0.497 \end{bmatrix} \begin{bmatrix} 0.029 \\ 0.033 \end{bmatrix} \begin{bmatrix} 0.029 \\ 0.029 \end{bmatrix} \begin{bmatrix} 0.029 \\ 0.020 \end{bmatrix} \begin{bmatrix} 0.029 \\ 0.008 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.031 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.030 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.030 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \begin{bmatrix} 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \end{bmatrix} \\ \begin{bmatrix} 0.020 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ $				[212:428]	[212: 342]	[212: 268]	[212: 211]	[212: 151]	[212: 94]	$\begin{bmatrix} 2.021 \\ 2.12 \end{bmatrix}$	$\begin{bmatrix} 2.021 \\ 2.12 \end{bmatrix}$	212:0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{bmatrix} 36; 993 \end{bmatrix}$	[36; 967]	[36; 931]	[36; 892]	[36; 831]	[36; 738]	$\begin{bmatrix} -2-5 & 0-2 \\ 36; & 641 \end{bmatrix}$	$\begin{bmatrix} -2-, -2\\ 36; 452 \end{bmatrix}$	[36; 11]
$ \left[\begin{array}{c} 0.045 \\ 0.045 \\ 0.029 \\ 0.029 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.020 \\ 0.021 \\ 0.0$	30				0.285	0.404	0.497	0.596	0.690	0.740	0.797	-1.904
$\begin{bmatrix} 238; 342 \\ 62; 967 \\ 0.331 \\ 0.453 \\ 0.303 \\ 0.030$	_				(0.045)	(0.033)	(0.029)	(0.029)	(0.025)	(0.021)	(0.019)	(1.214)
$\begin{bmatrix} 62; 967 \end{bmatrix} \begin{bmatrix} 62; 931 \end{bmatrix} \begin{bmatrix} 62; 832 \end{bmatrix} \begin{bmatrix} 62; 831 \end{bmatrix} \begin{bmatrix} 0.668 \\ 0.030 \end{pmatrix} \begin{bmatrix} 0.030 \end{pmatrix} \begin{bmatrix} 0.026 \\ 0.030 \end{bmatrix} \begin{bmatrix} 0.026 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.259 \\ 0.259 \end{bmatrix} \begin{bmatrix} 0.259 \\ 0.259 \end{bmatrix} \begin{bmatrix} 0.259 \\ 0.021 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.021 \end{bmatrix} \begin{bmatrix} 137; 831 \\ 137; 892 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.599 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.019 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.593 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.593 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.593 \\ 0.593 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \\ 0.583 \end{bmatrix} \begin{bmatrix} 0.583 \\ 0.58$					[298; 342]	[298; 268]	[298; 211]	[298; 151]	[298; 94]	[298; 62]	[298; 21]	[298; 0]
$\begin{array}{c} 0.458 & 0.531 & 0.608 \\ (0.030) & (0.030) & (0.020) \\ (372; 268] & [372; 211] & [372; 151] \\ [372; 931] & [98; 931] & [98; 932] & [98; 931] \\ [98; 931] & [98; 931] & [9022) & (0.021) \\ (0.022) & (0.022) & (0.021) \\ [137; 892] & [137; 892] & [137; 893] \\ [137; 892] & [137; 893] & [0.568] \\ (0.019) & [0.568] & (0.019) \\ [199; 831] & [199; 831] & [199; 831] \\ [199; 831] & [199; 831] & [199; 831] \\ [100; 100] & [100; 100] \\ [100; 100] & [100; 1$					[62;967]	[62; 931]	[62; 892]	[62; 831]	[62; 738]	[62; 641]	[62; 452]	[62; 11]
	40					0.458	0.531	0.608	0.680	0.716	0.748	-3.559
$\begin{bmatrix} 372, 268 \\ 98, 931 \end{bmatrix} \begin{bmatrix} 372, 211 \\ 98, 831 \end{bmatrix} \begin{bmatrix} 372, 111 \\ 98, 831 \end{bmatrix} \begin{bmatrix} 372, 111 \\ 98, 831 \end{bmatrix} \begin{bmatrix} 372, 111 \\ 10, 235 \\ 0.029 \end{bmatrix} \begin{bmatrix} 0.029 \\ 0.0019 \end{bmatrix} \begin{bmatrix} 0.012 \\ 137, 892 \end{bmatrix} \begin{bmatrix} 0.021 \\ 137, 892 \end{bmatrix} \begin{bmatrix} 137, 831 \\ 0.019 \end{bmatrix} \begin{bmatrix} 0.019 \\ (0019 \end{bmatrix} \begin{bmatrix} 198, 831 \\ 198, 831 \end{bmatrix} \begin{bmatrix} 198, 831 \\ 198, 831$						(0.030)	(0.030)	(0.026)	(0.027)	(0.018)	(0.019)	(1.745)
$\begin{bmatrix} 98; 931 \\ 0.535 \\ 0.599 \\ 0.599 \\ 0.021 \\ 137; 892 \end{bmatrix} \begin{bmatrix} 98; 831 \\ 0.599 \\ 0.021 \\ 137; 831 \end{bmatrix} \begin{bmatrix} 0.021 \\ 129; 151 \\ 137; 892 \\ 0.019 \\ 189; 151 \end{bmatrix} \begin{bmatrix} 1237; 892 \\ 137; 892 \\ 0.019 \\ 198; 831 \end{bmatrix} \begin{bmatrix} 198; 831 \\ 198; 831 \\ 198; 831 \end{bmatrix} \begin{bmatrix} 198; 831 \\ 198; 831 \\ 198; 831 \end{bmatrix} \begin{bmatrix} 198; 831 \\ 198; 831 \\ 198; 831 \end{bmatrix}$						[372; 268]	[372; 211]	[372; 151]	[372;94]	[372; 62]	[372; 21]	[372; 0]
$\begin{array}{c} 0.535 & 0.599 \\ (0.022) & (0.021) \\ (137; 892) & [137; 831] \\ (019) & [137; 832] \\ 0.568 & (0019) \\ (0019) & [198; 831] \\ [198; 831] & [198; 831] \\ \end{array}$						[98; 931]	[98;892]	[98; 831]	[98; 738]	[98; 641]	[98; 452]	[98; 11]
$ \begin{bmatrix} 0.022 \\ 0.021 \\ 137; 892 \end{bmatrix} \begin{bmatrix} 0.021 \\ 137; 831 \\ 0.568 \\ 0.019 \end{bmatrix} $	50						0.535	0.599	0.657	0.683	0.693	-5.348
[429; 211] [429; 151] [137; 892] [137; 831] [0.568 (0.019)] [489; 151] [198; 831] [[198; 831] [[198; 831]] [] [] [198; 831]] [] [] [] [] [] [] [] [] [(0.022)	(0.021)	(0.025)	(0.021)	(0.023)	(2.538)
[137; 892] [137; 831] [0.568 (0019) (0019) [[489; 151] [[198; 831]] [[198; 831]] [[429; 211]	[429; 151]	[429; 94]	[429; 62]	[429; 21]	[429; 0]
							[137; 892]	[137; 831]	[137; 738]	[137; 641]	[137; 452]	[137; 11]
	09							0.568	0.612	0.626	0.609	-8.144
								(0.019)	(0.017)	(0.020)	(0.027)	(2.907)
								[489; 151]	[489; 94]	[489; 62]	[489; 21]	[489; 0]
	(I							[198; 831]	[198; 738]	[198; 641]	[198; 452]	[198; 11]
	0,								0.539	0.538	0.484	-12.401
									(0.022)	(0.025)	(0.027)	(4.669)
									$\begin{bmatrix} 546; 94 \end{bmatrix}$	$\begin{bmatrix} 546; 62 \end{bmatrix}$	$\begin{bmatrix} 546; 21 \\ 222 \end{bmatrix}$	$\begin{bmatrix} 546; 0 \end{bmatrix}$
00 00 10 100	0								[291; 738]	[291; 641]	[291; 452]	[291; 11
90	80									0.447	0.356	-T0.837
90										(ATO' 00)	(700.0)	(1.903 7795 0
90										$\begin{bmatrix} 5.78; 62 \end{bmatrix}$	[578; 21] [900, 470]	[0.878; 0] [366 11
90										[388; 041]	388; 452	388; 11
100	00										0.118	-25.468
100											(0.044)	(6.458)
											[619; 21]	[619; 0]
											[577; 452]	[577; 11]
	100											-45.580
												(22.066
												[640; 0]

v	>0	≥ 10	≥ 20	≥ 30	≥ 40	≥ 50	≥ 60	≥ 70	≥ 80	≥ 90	≥ 100
0 =	-3.953	-3.953	-3.910	-3.886	-3.830	-3.791	-2.826	-2.525	-1.948	-0.623	0.009
	(0.623)	(0.615)	(0.683)	(0.723)	(0.547)	(0.574)	(0.912)	(0.783)	(0.791)	(0.920)	(0.421)
	[39;601]	[39; 601]	[39; 552]	[39; 491]	[39;417]	[39; 381]	[39; 199]	[39; 171]	[39; 140]	[39; 100]	[39; 76]
	[27; 1002]	[27; 1002]	27; 978	[27; 935]	$\begin{bmatrix} 27, 875 \end{bmatrix}$	[27; 841]	[27; 648]	$\begin{bmatrix} 27; 596 \end{bmatrix}$	$\begin{bmatrix} 27, 539 \end{bmatrix}$	$\begin{bmatrix} 27; 435 \end{bmatrix}$	[27; 357
< 10		-3.953	-3.910	-3.886	-3.830	-3.791	-2.826	-2.525	-1.948	-0.623	0.009
		(0.528)	(0.635)	(0.650)	(0.597)	(0.662)	(0.824)	(0.786)	(0.890)	(0.561)	(0.435)
		[39; 601]	[39; 552]	[39; 491]	[39:417]	[39; 381]	[39; 199]	[39; 171]	[39; 140]	[39; 100]	[39: 76]
		[27;1002]	[27; 978]	$\begin{bmatrix} 27; 935 \end{bmatrix}$	[27; 875]	[27; 841]	[27; 648]	[27; 596]	$\begin{bmatrix} 27, 539 \end{bmatrix}$	$\begin{bmatrix} 27; 435 \end{bmatrix}$	[27; 357
< 20			-1.366	-1.296	-1.176	-1.099	-0.134	0.017	0.041	0.051	0.047
			(0.197)	(0.213)	(0.184)	(0.223)	(0.182)	(0.116)	(0.013)	(0.011)	(0.008)
			[88; 552]	[88; 491]	[88; 417]	[88; 381]	[88; 199]	[88; 171]	[88; 140]	[88; 100]	[88; 76]
			[51; 978]	[51;935]	[51; 875]	[51; 841]	[51; 648]	[51;596]	[51; 539]	[51; 435]	[51; 357]
< 30				-0.409	-0.295	-0.223	0.096	0.103	0.106	0.091	0.074
				(0.079)	(0.077)	(0.097)	(0.019)	(0.016)	(0.013)	(0.009)	(0.007)
				[149;491]	[149; 417]	[149; 381]	[149; 199]	[149; 171]	[149; 140]	[149;100]	[149; 76]
				[94; 935]	[94; 875]	[94; 841]	[94; 648]	[94;596]	[94; 539]	[94; 435]	[94; 357
< 40					0.022	0.066	0.174	0.168	0.158	0.127	0.101
					(0.046)	(0.040)	(0.018)	(0.015)	(0.012)	(0.011)	(0.009)
					[223; 417]	[223; 381]	[223; 199]	[223; 171]	[223; 140]	[223;100]	[223;76]
					[154; 875]	[154; 841]	[154; 648]	[154; 596]	[154; 539]	[154; 435]	[154; 357]
< 50						0.131	0.204	0.193	0.178	0.141	0.111
						(0.035)	(0.014)	(0.019)	(0.015)	(0.013)	(0.011)
						[259; 381]	[259; 199]	[259; 171]	[259; 140]	[259;100]	[259; 76]
						[188; 841]	[188; 648]	[188; 596]	[188; 539]	[188; 435]	[188; 357]
< 60							0.305	0.276	0.242	0.170	0.110
							(0.024)	(0.020)	(0.023)	(0.027)	(0.024)
							[441;199]	[441; 171]	[441; 140]	[441;100]	[441; 76
							[381; 648]	[381; 596]	[381; 539]	[381; 435]	[381; 357]
< 70								0.271	0.234	0.153	0.083
								(0.024)	(0.025)	(0.031)	(0.027)
								[469; 171]	[469; 140]	[469;100]	[469; 76]
								[433; 596]	[433; 539]	[433; 435]	[433; 357]
< 80									0.218	0.126	0.044
									(0.024)	(0.029)	(0.039)
									[500; 140]	[500; 100]	$\begin{bmatrix} 500; 76 \end{bmatrix}$
									[490; 539]	[490; 435]	[490; 357]
< 90										0.045	-0.078
										(0.030)	(0.058)
										[540;100]	[540;76]
										[594; 435]	[594; 357]
< 100											-0.166
											(0.054)
											[564; 76]

~	>0	≥ 10	≥ 20	≥ 30	≥ 40	≥ 50	≥ 60	≥ 70	≥ 80	≥ 90	≥ 100
0 =	-318.692	-312.503	-293.630	-276.155	-257.494	-239.050	-214.986	-184.890	-168.860	-118.057	0.000
	(93.419)	(85.664)	(72.742)	(87.949)	(77.942)	(65.513)	(61.211)	(53.269)	(53.097)	(43.633)	(0000)
	[1; 639]	[1; 554]	[1; 428]	[1; 342]	[1; 268]	[1; 211]	[1; 151]	[1; 94]	[1; 62]	[1; 21]	[1; 0]
	[0; 1029]	[0; 1014]	[0; 993]	[0; 967]	[0; 931]	[0; 892]	[0; 831]	[0; 738]	[0; 641]	[0; 452]	[0; 11]
< 10		-1.998	-1.622	-1.266	-0.855	-0.425	0.039	0.123	0.131	0.093	0.001
		(0.308)	(0.283)	(0.255)	(0.289)	(0.232)	(0.090)	(0.019)	(0.013)	(0.008)	(30.571)
		[86; 554]	[86; 428]	[86; 342]	[86; 268]	[86; 211]	[86; 151]	[86;94]	[86; 62]	[86; 21]	[86; 0]
		[15;1014]	[15;993]	[15;967]	[15;931]	[15; 892]	[15; 831]	[15; 738]	[15; 641]	[15; 452]	[15; 11]
< 20			-0.099	0.081	0.196	0.256	0.287	0.276	0.238	0.154	-29.439
			(0.065)	(0.055)	(0.037)	(0.033)	(0.024)	(0.017)	(0.013)	(0.010)	(33.111)
			$[\ 212;\ 428\]$	$[\ 212;\ 342\]$	$[\ 212;\ 268\]$	$[\ 212;\ 211\]$	$[\ 212;\ 151\]$	[212; 94]	$[\ 212;\ 62\]$	$[\ 212;\ 21\]$	$[\ 212;\ 0\]$
			[36;993]	[36;967]	[36; 931]	[36; 892]	[36; 831]	[36; 738]	[36; 641]	[36; 452]	[36; 11]
< 30				0.285	0.353	0.382	0.385	0.352	0.300	0.199	-38.539
				(0.048)	(0.029)	(0.022)	(0.018)	(0.016)	(0.013)	(0.011)	(20.252)
				[298; 342]	[298; 268]	[298; 211]	[298; 151]	[298; 94]	[298; 62]	[298; 21]	298; 0
				[62;967]	[62; 931]	[62; 892]	[62; 831]	[62; 738]	[62; 641]	[62; 452]	[62; 11]
< 40					0.458	0.472	0.460	0.414	0.354	0.239	-42.848
					(0.024)	(0.022)	(0.015)	(0.016)	(0.017)	(0.010)	(20.301)
					[372; 268]	[372; 211]	[372; 151]	[372; 94]	[372; 62]	[372; 21]	[372; 0]
					[98; 931]	[98;892]	[98; 831]	[98; 738]	[98; 641]	[98; 452]	[98; 11
< 50						0.535	0.515	0.461	0.395	0.269	-44.748
						(0.024)	(0.018)	(0.017)	(0.013)	(0.012)	(19.399)
						[429; 211]	$[\ 429;\ 151\]$	[429; 94]	[429; 62]	[429; 21]	[429; 0]
						[137; 892]	[137; 831]	[137; 738]	[137; 641]	[137; 452]	[137; 11]
< 60							0.568	0.507	0.434	0.294	-46.563
							(0.023)	(0.019)	(0.017)	(0.016)	(31.483)
							[489; 151]	[489; 94]	[489; 62]	[489; 21]	[489; 0]
							[198; 831]	[198; 738]	[198; 641]	[198; 452]	[198; 11]
< 70								0.539	0.458	0.298	-48.038
								(0.024)	(0.021)	(0.020)	(17.485)
								[546; 94]	[546; 62]	[546; 21]	[546; 0]
								[291;738]	[291; 641]	[291; 452]	[291; 11]
< 80									0.447	0.265	-49.135
									(0.025)	(0.025)	(18.679)
									[578; 62]	[578; 21]	[578; 0]
									[388; 641]	[388; 452]	[388; 11]
< 90										0.118	-48.697
										(0.040)	(16.527)
										[619; 21]	[619; 0]
										[577; 452]	[577; 11]
< 100											-45.580
											(24.710)
											[640; 0