THE ESSENTIAL ECONOMICS OF THRESHOL D-BASED INCENTIVES

Darren Grant
Department of Economics and International Business
Sam Houston State University
Huntsville, TX 77341-2118
dgrant@shsu.edu

Abstract: Many public and private entities utilize incentive systems in which improvementsin
measured performance are rewarded only when the agent crosses some pre-specified
threshold. Thispaper comprehensively anadyzesthe effectsof these incentive systems
on effort, the net benefits of effort, and the accuracy of performanceinformation that
isprovided to the public, and lays out methods for estimating each. These methods
arethen used to reveal the motivationsand racing strategy of ultramarathonerstrying
to complete a one hundred mile race in under twenty-four hours.
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*** This paper has several figures that are best viewed in color. ***

" This paper completes a trilogy on the economics of threshold-based incentives. In the
application here, the threshold has strong incentive effects that conformto theory. Intheapplication
in the companion paper, Grant and Green (2013), there are no incentive effects. A related paper,
Grant (2010), sketches out thresholds' effects on the digribution of performance when there is
perfect measurement and population heterogeneity in the structural parameters. | am grateful to
Mitchedl Graff, Sohna Jaye, Lilly Park, Wade Pate, and Kevin Southerland for helpful research
assistance, to participantsat presentations at the North American Association of Sports Economists
and Texas Camp Econometrics for helpful comments, and to Curtis Barton of the Seven Hills
Running Club for guiding me to the application presented herein.



Rewards linked to the passing of a pre-determined threshold are a prevdent feature of
economiclife. Table1 givesseveral examples. 1nbusiness, thresholds separate workerswho qualify
for a performance bonus from those who do not. In the law, they dassify certain offenses, such as
drug possession or theft, into misdemeanors and feonies. 1n education they distinguish acceptable
from unacceptable performance for students, schools, and school districts. There are thresholdsfor
the collapse of ecosystems and for statistically significant research results. Andresearchin behavioral
economics, accounting, and psychology establishesthat firms and individualstreat certain numerical
values of performance, such asround numbers, as “foca points’ that they then strive to mest.

This simple change from a sandard, continuous reward structure dramaticaly affects its
incentive properties. When the link between effort and reward is certain, the margina benefit of
improved performance is nil unless one crosses the threshold. When it is uncertain—asistypica in
Table 1-expected margina benefits rise and then fall in the neighborhood of the threshold. In both
cases, incentive effects vary nonmonotonicaly and discontinuously with proximity to the threshold.

To date, however, development of the behavioral and normative propertiesof thresholds has
been limited, with several papers pointing out that individualswho would otherwisefall “just short”
will try harder in order to pass, and several others pointing out the potential perverse effects of
incentivesthat do not reward improved performance once the threshold isreached. (Both typesare
well-represented in Table 1.) A full characterization of thresholds' incentive effects and normative
propertiesis absent, asis afull development of the empirica methods used to estimate each.* The

purposeof thispaper isto remedy these gaps intheliterature and provide acomprehensivetheoretical

1'In contrag to thresholds well-studied cousin, regression discontinuity. Regresson
discontinuity designs measure the ex-post effect of an intervention by comparing outcomes on either
side of an institutionaly-imposed threshold separating those receiving treatment from those going
without. Here, instead, the threshold is an incentive mechanism; the resulting discontinuity in effort,
and its location, arise through optimizing behavior.



and empirical examination of threshold incentive systems.

Section| focusesontheir behaviord effects. The themeof thissectionissimplicity: rdatively
little structure isneeded to lay out essential theoretical predictions, test for the presence of threshold
incentives, or estimate their effects on behavior involves. Compared to exising methods, this
approach is more natural, more robust, and more rigorous.?

Section |11 focuses on their normative effects and estimation of the structural parameters
underlying these effects. The theme of this section is the importance of uncertainty. Without it,
thresholdscannot have beneficial normative propertiesand structural parameterscannot beidentified,
with it, both are possible.

Section |11 appliesthe methods from thefirst two sectionsto one of the most dramatic effort
provision problems found anywhere, in ultramarathoning, where runners try to complete a one
hundred race in less than twenty-four hours. In this application both the incentive effects and
structural parameters are of interest, and our methods revea non-obvious insights about human
motivation and behavior. Section IV concludes.

We hope thispaper will help the profession realize the full potentid of thisclass of incentives,
inboth sensesof theword. Thresholdsare unliketypical labor supply problemsin several ways they

yied avariety of unique behavioral predictions, can have beneficid normative propertiesthat include,

2 In some cases, the theoreticd predictions developed in this section can be compared to
existing estimates, sometimes successfully (Neal and Schanzenbach, 2010), sometimesnot (M cEwan
and Saltibanez, 2005, which violates the “Peak Proximity Property” below). Inother casessucha
comparisonis precluded by the estimation gpproach utilized, such as in Oettinger’s (2002) sudy of
gradeincentives, whichteds for incentive effects with afew dummy variables, or in Reback’ s (2008)
study of accountability standards on school behavior, whose key independent variable (the
“accountability incentive”) imposes several of the properties tested here instead.



but go beyond, economic efficiency, and can reveal alarge segment of theeffort supply function, not
just aloca elagticity, without requiringingruments or tempord variationin prices. Theexistence and

effects of thresholdsin many areas of economic life are phenomenathat deserve further exploration.®

I. Incentive Effects: Theory and Estimation.

Theory. An evduator assesses a continuous behaviora outcome of interest. Under routine
circumstances, the agent performs a some level of “ability,” which represents a pre-existing
combination of vigor, preparation, and natural endowment. |f so motivated, however, the agent can
give additional “effort” that improves performance on the outcome of interest. In many of the
education scenarios discussed above, for example, ability would represent knowledge acquired
through prior schooling and sudy, while effort representsadditiond tutoring or studying motivated
by an upcoming exam or standardized test. In sales, ability could represent general selling skills and
effort additiona year-end sdlling diligence in order to satisfy an annud quota or achieve abonus. In
accounting, ability represents unmanaged earnings and effort invesment in earnings management.
We dlow the outcome as assessed by the evaluator to differ from the outcome anticipated by
the agent at the time of evaluation. This could occur for many reasons, spanning most of the

applicationsin Table 1. One is measurement or sampling error, aswhen atest asksonly a subset of

% In a complementary paper, Dubey and Geanakoplos (2010) show that, in games of status,
in which only on€' s relative rank matters, and binary effort, athreshold evduation system can yield
greater aggregate effort than a continuous system, and grading on acurveisnever superior. Inthe
model here, in contragt, absolute, not relative, performance matters and effort can take any
nonnegative value. Rather than being placed in a separate literature review, other papers pertaining
to the problem studied here are cited at appropriate points in the text.
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al questionsthat might be asked. Another iserror in sdf-regulation, aswhenadriver incorrectly self-
assesses his blood alcohol level before driving. There could be some ambiguity in the assessment
criteria. Or the outcome could be impacted by random factors beyond the agent’ s perception or
control, aswhen unforeseen economic conditions cause the cancell ation of some ordersthat had been
placed for asalesman’ sproduct, or when anauditor unexpectedly requires an adjustment to reported
earnings (Yim, 2013). This uncertainty in the link between effort and measured outcome is, we
argue, of sufficient importance that it should be accounted for.

We intend to modd the typica situation in which threshold incentives inspire, at most,
perturbations in performance that are small relative to the variance in outcomes and which are
confined to a small, local range of ability. This militates for smple functiona forms that can be
thought of , if desired, asfirst order approximationsto more general alternatives. Accordingly, letthe
anticipated outcome, y, be the sum of ability, v, and effort, f, and let the observed outcome be Y =
vy + €, wheree isindependent, normally distributed error with amean of zero and astandard deviation
of o.. The evauator observes Y, but only reveals whether Y exceeds a pre-determined passing
threshold that is normalized, for smplicity, to 0. Conditiond on effort, the probability of passing is
@((v+f)lo,), where @ isthe standard normal distribution function.

The reward for passing the threshold, P, can beset by aprincipal for the agent or determined
by market forces and taken by each agent as given. The expected marginal returnsto effort are then
P®’(-)/o,: astandard bell curve. A risk-neutral agent will equate these returns to the marginal costs
of effort. The solutionis easily determined whenthe costs of effort are specified as C(f) = ke (exp(y/)
- 1), wherey>0represents diminishing returns or fatiguein the provision of effort and k is henceforth

normalized to one. The logged margina expected returnsto effort, In(P®’(+)/o.), form aquadratic



inf, while the log of margina cogts, In(y-exp(yf)), are aline.
For those agents who provide effort, the loci of points relating ability to effort forms a

segment of a parabolain the {v,f} plane that opensto the southeast (see the Appendix):

- (yoz+ V) + oe\/yzoz + 2yv+ 2In(0.4P/yo,) (1)
- (yoz+ V) + \/(yoz)[yoz +2v+ 21n(O.4P/yo€)/y]

Jf(v;v,0,,P)

A functional relationship likethisis needed for structural estimation, discussed below, but not to lay
out the basic properties of the threshold incentive effect. For this a few heuristics will do. By
separating the essentia intuitionsfrom the functiona form of the model, these generalizethemodd’ s
predictions and reduce the assumptions required for estimation.

The heuristics can be articulated by depicting the derivation of equation (1) graphicaly.
Accordingly, Figure 1 representsfive agents, A-E, whose upward sloping marginal cost of effort lines
begin at v,-v.. For sufficiently low v, asfor agent A, marginal costs and margind benefits do not
intersect, so /=0: it istoo much work to try to pass the threshold. This can also be true when the
curves do intersect, as the maximum may only be local, as between agents A and B, where total
benefitsare lessthan total costs (see aso Becker and Rosen, 1992). Thisisreversed a theextensive
margin, where it becomes optimal to put forth effort (agent B). Effort then exhibits adiscontinuity
and becomes positive.

Clearly, this margin is always reached where v < 0. It may be also reached where y <0, as
in the figure; if so effort increases until it reaches its maximum, for agent C, at the vertex of the
parabola, and declines steadily thereafter (agent D) until, a sufficiently high, positive v, it returnsto

nil (agent E). Those with 0 < v < v probably will pass without trying, but assessment isuncertain



so they put forth “precautionary” effort to raisetheir chances. If y > 0 at the extensive margin, the
point of maximum effort occurs there, and effort declines thereafter.

Figure 2 depictstheresulting{v,/} and {v,y} loc for the non-trivid situation in which some
agentsexert effort. Thereation between ability and effort isadequately described by five properties,
depicted in the figure and described below, with proofs found in the Appendix.

1 Peak Effort Property: Colloquially, those individuals far below the threshold (v << 0) put
forth little effort; those near it (v = 0) put forth more, those in between put forth the most.
This property stems from the non-monotonic returns to effort. The existence of a point of
peak effort has been previously shown by Oettinger (2002) and others.

2. Sawtooth Property: Effort rises more quickly than it falls, that is, line BC in Figure 2a
rises faster than line CE falls, so that the {v,f} locus takes a sawtooth shape. Thisfollows
both from the existence of the extensive margin, a which effort increasesdiscretdy, and from
the geometry of Figure 1. The point of intersection responds more to increases in v when
marginal cogts and expected marginal benefits are more similarly sloped, which occurstothe
left of point C.

3. Peak Proximity Property: Line OC in Figure 2a has a slope < -1, so that those individuals
who try the hardest—whose ability is argmax f(v)—have at least a 50% chance of passing the
threshold. Thisis anatural consequence of increasing returns to effort for y < 0.

4. Precautionary Effort Property: Effort is positive at v=0. Error in assessng y motivates
precautionary effort to increase the individual’ s chances of passing (as for agent D).

5. Stair Step Property: More able individuals have better outcomes than less able individuals;
that is, Af/Av > -1 and Ay/Av > (. Beyond point C, more ableindividualswork lessand ill
have better outcomes. The {v,y} locus aways dopes upward, fastest near the extensive
margin, like the doping stair step in Figure 2b.

Each heuristic clearly extendsto (and, to some degree, beyond) other functional forms satisfying the

geometry of Figure 1. log-concave error and increasing margind costs, both of which arecommonly

assumed in economics (Bagheganian and Popov, 2014). Thisis as good as one can do. Giventhe

nature of the problem, the sweeping comparative gatics of traditional price theory are not possible.



Estimation. These heurigtics, and the loca nature of the threshold incentive effect, are naturdly
suited to flexible, non-restrictive nonparametric or semiparametric estimation methods.

Density Estimation. The smplest and most intuitive test for the presence of threshold
incentive effectsrelies on the expected bunching of agentsjust above the threshold, which should
generate a discontinuity in the density of y.

The simplest way to test this intuition appliesthe “caiper method” (explicated in Gerber and
Malhotra, 2008, and implemented in economics by Borghesi, 2008, and others) to the distribution of
Y. Intheabsence of threshold incentive effects, “the conditional probability of observing an outcome
that falsin asubset in a[suitably small] interval equals the relative proportion of the subset to the
interval” (Gerber and Malhotra, 2008, p. 12). Thus, for an interval centered at the threshold, under
the null hypothesisthe population fraction of observations occurring abovethe threshold equals one-
haf. A one-sided rgection of this null implies threshold incentive effects are present. Thistest can
be extended to v-to-Y transitions or to more complex, more powerful nonparametric methods of
estimating the density on each sde of the threshold (McCrary, 2008).

Such methods havetwo problems, however, when the agent cannot perfectly predict whether
he will pass (o, > 0). First, as Figure 2 demonstrates, the discontinuity iny amost never occurs at
the threshold, but at avalue that depends on unknown structural parametersand thus cannot be pre-
specified (and which can, in fact, be negative, asin the figure). Second, the dendty of Y, unlikethat

of y, isnot (in generd) discontinuous, because of the presence of uncertainty.”

* Thisis easily shown for the normd errors assumed here. M cCrary was careful to emphasize
histes’ svalidity held only in the case of certainty—perfect manipulation” of the running variable, in
his parlance-but this warning has not always been heeded in practice. The act of manipulating the
runningvariablein aregression discontinuity framework isitself subject to threshold incentive effects,
with the un-manipulated variable serving as ability and manipulation serving as effort.
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Thus, while density tests are often useful as a “first cut” a the data, they should be
supplemented when possible with an analysisthat directly relates v to Y. Thisnot only yieldsanatural
test for the presence of threshold incentive effects that avoids these problems, but also reveds the
incentive effect itself.®

Least Squares Estimation. A semiparametric regression that estimatesthe{v, /} or{v, y}
loci directly, generating empirical results in the format of Figure 2, is easily implemented and allows
the properties above to be tesed, formdly or informaly, rather than imposed.

Consider a parametric regression that assumes a threshold has no incentive effects. If so,
outcomes should be asmooth function of ability (in the colloguial, not mathematical, sense)-that is,
atrend, such as the linear relationship assumed in our theoretical model. Allowing Y and v to be

measured in different units, and including control variables X and error &, thislinear rdationshipis:

Y = a+Pv+ AX+E ?2)

We can treat the adequacy of this specification as the null hypothesis in a specification test
for the presence of threshold incentive effects. The alternative is that this parametric rdation is
inadequate, because effort is systematically related to proximity to the threshold. If so, the residuds
near the threshold should be “autocorrelated.” Absent controls, a simple test is based on 4, the

average squared error in equation (2), and B, one half of the mean squared difference between

> Recent working papers by Yim (2013) and Allen et al. (2014) mode the bunching implied
by threshold incentives based only on the observed density. This approach’s limitations stem from
the absence of anobserved ability measure: estimation isreplaced withsmulation, inwhich additional
free parameters are calibrated in order to try to reproduce the distribution of observed outcomes.
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adjacent values of Y, after being placed in v-order:

Z = y/§(A4- B)/B ~ N(0,1) (3)

where S isthe number of observations (Y atchew, 1998). The null is regjected for sufficiently large
values of the test statigic Z. When controls are present, practica alternatives are provided by
Henderson and Parmeter (2014), Pagan and Ullah (1999), and Y atchew (1998).

This test can be strengthened using a priori information on the ability domain, v, < v < v,
over which threshold incentive effects may be expected to appear.® The null should be rejected for
thisdomain only. Onits complement, equation (2) should suffice. If the appropriate null isrejected,

the effort perturbation g(v) is then estimated semiparametrically, as follows:

Y = o+ Bv+g(v)1(v, <vev, )+ AX+E @)

A discontinuity in performance is not formally specified; it should reveal itself as a sharp rise in
performance for some value of v, v, wherev, < v, <0. We suspect this will usually be adequate.
If not, one can use the sructural or quas-structura models introduced below.

This equation is easly adapted to a single-index model, when v cannot be directly observed
but can be predicted from other observed variables, or to adiscrete choice framework that only needs

dataon 1(Y = 0).

® | dedlly, this domain is chosen without referenceto the data. But, as emphasized by Hardle
and Horowitz (1994) in a related application, sometimes this can be difficult to do. Thisissueis
addressed in the empirica application below by choosing aninterval that isa*round number” (0.1
log points) that iscentered on a v-value that isitself a“round number” (amultiple of 0.1 log points).

"The singleindex model isY = v + g(v)-1(v <v<v,) + AX + &, withv =« + 6Z + {, where Z
are observed predictors of ahility, ¢ isan error term, and « and 6 are coefficients. But two caveats
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Quantile Estimation. It isimportant to recognize that equation (4) digtinguishes between
the performance-predicting information that is, and is not, avallable to the agent. The index v
captures everything known to the agent ex ante, with controls limited to factors not known to the
agent prior to evaluation. Inthe companion paper, for example, semester dummies control for inter-
semester variationinthe difficulty level of eachinstructor’ s final exams, assuming studentsknow only
the average difficulty level of these exams, not the inter-semester deviations.

Furthermore, if v is not perfectly observed (or perfectly predictable), the error term could
reflect ability information that was known to the agent ex ante but not observed by the
econometrician. If so, semiparametric mean regression isproblematic. To seethis, scale Y so 3=1,
and decomposetheerror termin equation (4), £, into componentsreflecting privatey-known ability,

r, and true random error, w. Both are mean zero and uncorrelated with v. Then:

Y = a+v+a+g(v+ M)+ AX+ @

(5)
E (Y|v,X) = a+v+E [g(v+m)]+AX

Semiparametric mean regression estimates the perturbation in the second line. This does not equal
g, but rather a convolution of g with the density of =, which smooths out, or disperses, the original
function, so that it is diminished on the vertical scale and overly broad on the horizontd.

(Fortunatdly, if = is normdly distributed, at least, the five properties articulated above Hill apply.)

in extending equation (4) to aprobit or logit model should be noted. Frgt, the quantile regresson
that is advocated below cannot be estimated. Second, estimates of the {v, Y} trend, 3, in the
underlying latent variable can be far less robust, as dmog dl low-v observations fail, while almost
al high-v observations pass. Estimates of the effort perturbation near the threshold are affected
accordingly. Both limitations pertained in probits estimated on the ultramarathoning data below,
which predicted whether a contestant completed the run before the course closed, or whether a
finisher broke the twenty-four hour threshold. These latter results resemble those in Figure 6b.
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Thisproblemcan be addressed with semiparametric quantile regresson, whichpartly accounts
for private information about ability. To seethis, let » vanish and = be homoskedasticinv. Given
v, one’s performance ranking is amonotonic function of =. Quantile regression thus conditionson
7, SO g isrecovered nonetheless. Even when w is nonzero, if private information is substantid,
quantile regression should still be quite helpful. 1n addition, if only some agents are motivated by
threshold incentives, incentive effects may be revealed at high quantiles even when they are absent

dsewhere. Asthereis little cost to using quantile regresson, we recommend doing so routinely.®

II. Normative Effects: Theory and Estimation.

Thresholds' normative effects are best examined using a strict interpretation of the model
above, in which v represents pre-existing “natural ability,” the market value of aunit of y isp, and
€ represents measurement or sampling error in evaluation. (Some conclusions that follow extend to
other interpretations.) We compare a threshold to direct, continuous reporting of performance.
Under the threshold the market sets the value of passing a P = (Ypassers - Ynoneassers)P = AYP-

If the evaluator perfectly measures performance (o, = 0) and reportsit directly, each agent’s
effort maximizesthe difference between its rewards, pf, and its cost, C(f). If p reflectsthe marginal
social benefit of y, then continuous, direct measurement of y providesidea informationto the market

and appropriate incentives to the agent, and thresholds are unnecessary (see Costrell, 1994).

8The one threshold study using both least-squares and quantile methods (Oettinger, 2002)
supportsthisrecommendation: estimates from the former wereinggnificant, but not those fromthe
latter. Nonparametric quantile estimators now can be found in Limdep, while Hayfield and Racine
(2011) present a kernel-based package, np, for the programming language R; the spline-based
methods used here (for example, Wang and Y ang, 2009) can be implemented in SAS.
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When output is measured with error, on the other hand, direct measurement exhibits the
classic signal extraction problem: variation in the measured outcome is &tributable partly to
population variation in y and partly to error. Assume henceforth that v isalso normally digtributed
(throughout the population) with standard deviation o,. The market price of a unit of Y is then
po,Z(0,2+0.2);? the price of a unit of effort is attenuated by o,%(0 2+0.2) < 1. Effort diminishes
accordingly. It ispossible to increase the accuracy of the information provided to consumers, the
total effort eicited by agents, or the net benefits of effort (efficiency). Under the right conditions

thresholds can do one or all of these. Thresholds can be justified by imperfect information.

Theory. We now sketch out the conditions under which this occurs.

Motivating. By leveraging the divergencein performance between passersand non-passers,
Yonssers - Ynoneassers = AY, thresholds can magnify the returns to effort, thus increasing aggregate
effort. That is, the expected margind returnsto effort under athreshold, P® /o, = pAy® /o, can
exceed those under direct measurement, po ?/(o,2+0.?), for most agents. If these returns are not
magnified too greatly, so that effort isoverprovided, efficiency also increases.

These motivationd effects can be characterized in terms of the “potency” of the incentive,
p/y. Incentives are more potent when they are sronger (higher p) or when agents regpond moreto

them (lower y). For any redistic value of ¢_/o,'° the Appendix derives arange of potency for which

° In the equilibrium supported by this price, each person’ s effort is optimal given everyone
else’schoices. Aseach person provides the same amount of effort, the variance of y ex post equals
the variance of v.

1 Theseresultsrequire 1.2, <o, (seethe Appendix). Thisisrealigtic—error isgenerally much
lessvariable than ahility. Alternatively, whenerror islarge, effort under direct measurement fallsfar
short of efficiency, but a threshold may also be impotent: passng is primarily due to luck, not

12



thresholds alone induce effort, and a subset of that range for which that effort is guaranteed to be
inefficient. Simulations that build on these findings generate “bands of potency” under which mean
effort under a threshold is efficiently, and inefficiently, greater than that under direct measurement.
Figure 3 depictsboth for atypica case, inwhich o /o, =¥ Each band slopes upward at an angle of
roughly 45°, dong which potency is constant. For other cases the results are qualitatively similar,
with the set of information- and efficiency-improving parameters shrinking as o /o, falls.

Figure 3 shows that thresholds' motivational properties are strongest when potency is
aufficiently mild, increasing both effort and efficiency. At higher levels of potency, moving to the
upper left in the figure, thresholds continue to increase mean effort, but efficiency falls Thresholds
can be a blunt instrument, underincentivizing some agents while overincentivizing others. At dill
higher levels of potency, thresholds decrease mean effort and efficiency. At this point most agents
areessentiallyinfra-marginal, resigned to failing or clustered at large vaues of y, where they are quite
likely to pass. 1n conseguence, increases in potency do not cdl forth much additiona effort, and
direct measurement, which does not have this problem, becomes superior.

Informing. |nformationmay bedesred about ability, v, asinasignaing model, or about true
performance, y. Thresholds can help with the latter but not the former.

Thresholds are problematic for sgnaling becausethe effort of passersis negatively related to
ability. Low-v individuals exert great effort to pass, while high-v individuals exert, at most, alittle
precautionary effort. This negative relation widens the variation in ability conditional on passing.

This is avoided, dong with some truncation error, by using direct measurement.

performance, so Ay canbecome small. Thereisthen no systematic method of constructing examples
of effort-increasing thresholds, but whenthey do, efficiency usualy increases aswell, asin Figure4a.
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For inferring performance, however, the opposite is true: the negative relaion between
passers effort and ability diminishesthevarianceof y conditional on passing. Passersand nonpassers
have digparate cross-group outcomes but similar within-group outcomes—especially passers, with
whom information users are probably most interested. These within-group outcomes can be
aufficiently smilar that the variance of y for passers, var(y|Y>0), is less than var(y|Y) when
performance is measured directly.

As Figure 3 shows, such outcomes are easily generated when measurement is noisy and

incentives are potent. The true performance of those agents who exert effort is:

Y1.0,P) = vif = -y0i+ 0 /y?0}+ 2yv+ 2In(0.4P/y0) 6)

For sufficiently high rewards or low fatigue, yv << In(0.4P/yo,), so these agents' performance is
weakly related to v. If there aren’t too many inframarginal passers, the spread in true performance
conditional on passing will be small.

The conditionsunder whichthresholdsimproveinformation accuracy areclearly distinct from
those under which effort and efficiency improve. Yet, as Figure 3 shows, a threshold can be both

motivationally and informationally superior.

| dentification and Edtimation. Estimates of the structural parameters are needed to quantify these

normative effects, or can be useful in themselves. Under the right circumstances, the data identify
{P,v,0.}; giventhedigribution of Y and the estimate of o_, Ay and hencep can be calculated. Note
that neither P nor the cogt function C(¥) is given in dollar terms, as this function’s congant, «, has

beennormalized to one. Then onecannot determinethe magnitude, only thesign, of theeffect of the
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threshold on efficiency. But if thenomina reward for passing isobserved, then x equalsthe ratio of
thisto the structurd estimate of P. Then C(f) can be put in dollar terms and the dollar magnitude of
the effect on efficiency calculated.

I dentification of the structura parameters can be strong, weak, or non-existent, depending
on the circumgances. They are not identified from the points on the ahility-effort profile alone.
These depend on just two composite parameters, kI = yo 2, k2 = In(.4P/yo )]y, in the second line
of equation (1). There are three cases, which can be categorized by the nature of €.

Case 1: No Uncertainty. We have dready discussed the normative properties of this case,
but there still may be interest in the remaining structural parameters. Unfortunately, as o, -~ O
equation (1) devolvesto /= -v, and provides no value in identifying these parameters. Thelocation
of theextensgve margin{v.,, f..} provides some value, but not enough: -v., =f;, =In(P)/y. Neither
P nor vy isidentified. Thuswe have asurprising result: uncertainty is required in order to identify
the structural parameters of threshold-based incentive problems.

Case 2: No Private Ability Information. Here identification can be completed from the
proportions of agents passing the threshold for various vaues of v. Given true performance y, the
probability of passing the threshold is ®(y/c,.). This suggests a probit modd with a dummy for
passing the threshold as the dependent variable and the estimate of y asthe independent variable. |If
y(v) is congstently estimated as outlined above, the inverse of the dope coefficient in this probit
model consistently estimates o_** Structural estimation is not required to estimate the remaining

parameters; the method of moments applied to the semiparametric ability-effort profile will do.

1 Surprisingly, the effect of the threshold on mean effort can then be signed given the
distribution of Y, without knowing y or P (seethe Appendix).
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Case 3: Private Ability Information. Herestructural estimation of thefull ability-effort profile
IS required; identification is completed via the location of the extensive margin. Here, however,
identification canbe weak. Asthe Appendix shows, tothesecond order, thelocation of the extensive
marginisaso governed by the aforementioned composite parameters. Thus, disparate combinations
of structural parameters associated with similar {4/, k2} vaues can generate smilar ability-effort
profiles (especialy whenincentivesare not too potent—seethe Appendix). Then structural parameter
estimates will be imprecise and normative effects unclear. Panels b-d of Fgure 4 illugrate this
phenomenon, depicting nearly identical ability-effort profilesthat are generated fromvarying sets of
parameter valueswith divergent efficiency properties. Comparedwith direct measurement, threshold
effort is inefficiently underprovided in pand b, efficiently provided in pand c, and inefficiently
overprovided in pandl d.

Thisproblemshapesour approach to esimation: along with astructural model, weintroduce
a “quad-gructurd” model that sacrifices precision in the specification for greater precison in the

estimates. The structural econometric model insertsthe first line of equation (1) into equation (4):

Y = o+ Byv+ (PO((v+f1))V0) > C(A)) /(v 1,0.,P) + AX+E (7)

where f{¢) > 0, ®(¢), and C(e) are defined in Section |. The effort discontinuity at the extensive
margin isgoverned by 1(-). The quas-structural model inserts the second line of equation (1) into

equation (4), ingead, and appends a free parameter, v, for the location of the extensve margin:

Y = o+ Bv+ 1(vWvg) f(vikLk2) + AX+E ®

wherek!, k2 aredefined above. Either model can be estimated inleast squaresor quantileregression.
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III. Application to Ultramarathoning.

Our empiricd application, to ultramarathoning, utilizes simple implementations of our

semiparametric and structural models, whilerepresenting the major estimationissuesdiscussed above.

Dataand Ingitutional Details. California’s venerated Western States 100 (WS100) admits roughly

370 runnerseach year, by lottery, from about one thousand applicants. Each applicant must qualify
by demonstrating the capacity to complete the WS100-though not necessarily quickly. The one
hundred mile course closes after thirty hours, and a coveted medal is presented to finishers under
twenty-four hours. Only onerunner infour meetsthisstandard, so thismedal isamark of distinction.
Aswe shall see, runners are highly motivated to meet this threshold.

With afew exceptions, such asyears with wildfires, the WS100 has run the same course since
itsinceptionin 1977. Finishtimesand “split” times, taken at nine aid stations spread throughout the
course, arerecorded on therun’sweb site (www.ws100.com) for itsentirehistory. Eliminating years
inwhich the course was changed or the location of the aid stations was moved (2003, 2002, 1998,
1995) and observations with incomplete split information yields a sample of 3,991 finishersover the
period 1986-2006. Split times are recorded in minutes, finish times in minutes and seconds.

Figure5illustratesthe course layout and the distribution of times at selected aid stations and
at the finish, for the full sample, with a simple histogram and a more precise kernel density. (The
scae of the horizontal axis, suppressed for clarity, increasesasthe race progresses.) The layout and
the distributions both demonstrate that the course is effectively run in two stages. Thefirst stage,

through split six, featureshighelevations, seepgradients, andtemperatureextremesof mountain cold
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and daytime heat. The split times herearealmost normaly distributed. The second stage, after split
sx, begins around nightfall, after which the course cools, drops in dtitude, and flattens out. Here
each runner is allowed a companion, or “pacer,” because of ther mental and physica deterioration
a thispoint intherace. Immediately the distribution of times beginsto bifurcate. At thefinishitis
almost divided intwo, one bunched ahead of twenty-four hours, and another ahead of thirty hours,
when the course closes. All this suggests contestantsrun thefirst stage of the race at areasonably
evenpace, generating theever-widening, norma split distributions, and then, with their pacers, tweak
their times during the second stage to try to satisfy one of the two thresholds.

There is abundant precedent in long-distance running for atwo-stage strategy of this sort.
Thisisbecauseof afeedback effect: running toofast too earlyinduces physiologica deterioration that
hampers performance later on. This is most visible at “middle distances’ such as five or ten
kilometers. There, most of theraceisrun a afairly even pacethat relieson easily-sustained aerobic
energy. Then, toward the end, the runner begins a“kick” that drawson alimited store of anaerobic
energy. The waste thereby released, lactic acid, quickly accumulates in the muscles, diminishing
performance, S0 the kick is vigorous but brief. A similar principle pertains in ultramarathoning,
though far more gradually, and less because of anaerobic energy use than because of the genera
physical and mental deterioration that accrues over such long distances (Weir et al., 2006). Allen et
d. (2014) confirm the use of a similar strategy in the 26.2-mile marathon, and argue that runners
strive to beat “round number” finish times, such as twenty-four hours, because of prospect theory.

Our empirical model iswdl-suited to this two-stage strategy. The sixth splittime, at the end
of the first stage of the race, represents ability, v (lower times are better). Output, Y, isthe finish

time, and threshold-motivated effort, g(v), generates unexpectedly fagt finish times for runners that
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werejust on or just behind scheduleto meet thethreshold. The fatigue parameter, v, representsthe
increasing difficulty of further increasng one’s pace, while the error term, e, cgptures the major
sourceof uncertainty: imprecisioninregulating one' spaceand predicting one’ sfinish timemid-race.™

The use of the sixth split time as our ability proxy isaso supported in preliminary regressions
using the sample and specification defined below. Parametricdly, it alone explains 78% of the
variancein finish times; thefirst six splits together explain 80%. Furthermore, thereisno sign of an
effort perturbation in the sixth split times themselves. These findings suggest they are reasonable,
though not perfect, indicatorsof participants’ general fithess and endurance. Some of the remaining
varianceinfinish times, however, may reflect private ability information: differencesin the degree of
fatigue each participant perceivesat the end of therace' sfirst stage. Two runnerswithidenticd sixth
split times should not expect to finish together if one feels fresher than the other. These differences
in perceived freshness could result incidentdly, from fedling strong that day, or deliberately, from
differencesin racing strategy. Either way they would by revealed by, and necesstate the use of,

quantile estimation of equation (4), which would differ materialy from estimates of the mean.

Estimating the Incentive Effect. The caliper test easily supports the importance of the twenty-four

hour threshold. In Figure 5, atotal of 97 runnersfinish at most ten minutes ahead of this threshold,
while only 19 runners finish at most ten minutes behind it, a highly significant difference.

We thus relate finish times to the sixth split times, restricting the sample to those 2,273

12'Y ear dummies, which capture small differencesin mean finishtimesconditiond onthetime
at the sixth split, are not included as controls, because their values are not wholly unknown to the
runner: they are, instead, gradualy reveded to the runner in the split times observed during the
second stage of therace. Ther indusion does not alter the general shape of the estimated effort
perturbation, however; and materially strengthens the specification tests below.
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individuas whose sixth split is less than fifteen hours, for their finish times are very rarely censored
(seeFigure 6a). Bothtimesare measured in logarithms, which best fit thedata, andthelinear relation
isempirically supported by the insignificance of a quadratic term, when added. The g(v) estimates
can be interpreted as percentage changes in time or overall pace; suitably transformed, they also
edimatetheratio of the second-stage paceto the first-stage pace, how much the runner “sped up” .3

We begin with aparametric regression analysis, asin equation (2), which yiddsan estimated
intercept of -0.053 (standard error 0.08) and trend of 1.10 (standard error 0.01). The relevance of
threshold incentive effects is supported by the specification test in equation (3). The tet statistic of
1.45 (p = .07) marginally rgectsthe null hypothess of no misspecification. This regresson predicts
atwenty-four hour finish for alogged split time of 6.68, and the residuals suggest unusually strong
finish timesinthis (and only this) neighborhood, associated with logged split times of roughly 6.65
t0 6.75. Splitting the sample, and conducting the specification test separately on observationsfalling
within and outside this domain, the null hypothess is rejected for the former, with atest statistic of
1.70 (p = .04), but not the latter, with ates statistic of 0.47.

We structure the nonparametric term accordingly in the mean regression of equation (4).
Figure 6b presents estimates of the effort perturbation g(v) from this regresson, conducted with a
loess smoother, with the bandwidth chosen by cross validaion. Each axis has been placed in
descending order, so outward movements on each indicate better performance or ability, asin Figure
2. Performance improves by as much as 1.5% for threshold-motivated runners. The Peak Effort

Property and the Precautionary Effort Property are trangparent, while the Peak Proximity Property

13 One can easily show that a finish time perturbation of -1% is associated with a change in
overdl race pace of -1% and achangein the ratio of the second-gtage pace to the first-stage pace of
(total time/second-stage time)%, which, for the average finisher, is about -2.25%.
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isalso confirmed: at the point of maximum effort the runner hasathree-fourths chance of passingthe
threshold.” The dope of the declivity is less than one in absolute value, supporting the Stair Step
Property, and is one-third less than the dope of the acdlivity, supporting the Sawtooth Property.

The sxth split time may be animperfect indicator of ability, however, as noted above. If so,
guantile regresson of equation (4) should yield improved estimates of the effort perturbation g(v).
It does indeed. The trend, § = 1.15, is virtually identicd a the 25", 50", and 75" percentiles
(implying £ ishomoskedastic). Thusall three perturbations can be depicted by asingle graph of these
smoothed, detrended quantiles (smoothed quantiles of Y - « - fv), shown in Figure 7a. Our five
heuristics are clearly satisfied. At the extensive margin, increases in effort shave 3% off the finish
time, anincreasein the second-stage pace of almost one minuteper mile. The modest meanthreshold
effects in Figure 6b are, indeed, a convolution of much stronger effects dispersed across runners a
different quantiles. The similarities in the size and shape of each effort perturbation suggest that
ultramarathonersare more alikethan different intheir motivations and use of the two-stagestrategy.

The sharp onset of each effort perturbation indicates the location of the extensve margin,
which turns out to be nearly thirty minutes “off pace” for a twenty-four hour finish. Runners who
are further behind than that at the sixth split do not try to meet the threshold, and the absence of a
material “dip” in Figure 7a below the extensive margin indicates these runners' times do not suffer
indegpair. Theremaining runnersdo try to meet thethreshold. Most are successful, asthe histogram
in Fgure 5 and scatterplot in Figure 6a make dear.

Figure 7b illuminates the strategy runners employ to achieve this end. This figure conjoins

1 This finding implies that maximum effort occurs a the extensive margin, whilethe gentle
upward slope of the perturbation suggests that it occurs a an interior solution ingead, asin Figure
2. Thisseeming contradiction is reconciled in the quantile regression below.
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two effort perturbations: the eighth split time onthe sixth split time, in the right half of thefigure, and
the finish time on the eighth split time, in the I&ft half, both estimated as in Figure 7a, at the 50"
percentile. Both perturbations are sizeable, but the latter is higher and “ sharper” than the former,
indicating that threshol d-motivated runnersdepl oy increasing, increasingly focused effort throughout
the second stage of therace. This affirms our theoretica model: the effective degree of uncertainty
about one's eventual finish time decreases as one progresses through the race, and this diminished
uncertainty yields higher, sharper ability-effort profiles.

The dlure of the 100-miles-in-24-hours standard cannot be overstated. The web site
RealEndurance.com (realendurance.com/list.php) presents finish time histograms for every
ultramarathoninthe U.S. Virtually all show bunching just ahead of twenty-four hours.”® Whilethe
incentive effects documented here may be augmented by the receipt of amedal and the pregtige of
the WS100, the prevalence of thisphenomenon acrossawide variety of ultramarathonsindicatesthat

most motivationisintrinsc. Thestructural model below providesfurther insghtintothat motivation.

Structural Estimation. The normative issues related to market-based thresholds clearly do not apply

to the WS100, where finish times are accurately measured and freely published, and output is not
sold. Structural egtimation is useful nonetheless, distinguishing the mental and physcal primitives

underlying the threshold incentive effect. Because of the prevalence of privateinformation about v,

!> One can aso consider the dual: “twenty-four hour races” in which the objective isto run
asfar aspossible. The most venerable of theseisthe Sri Chinmoy Self-Transcendence UltraClassc,
run around an indoor track in Ottawa, Canada, with results recorded in kilometers. A histogram of
the last five years of finishesreveals abroad underlying normal digtribution centered around 135 km,
punctuated by a sizeable cluster of finishers in the right neighborhood of 100 km, and another in the
right neighborhood of 161 km—that is, 100 miles.
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we use quantile estimation of the 50" percentile. For simplicity of interpretation, both v and Y are
multiplied by 100, so a one unit change in each represents a 1% change in time.

The quasi-structural model yields very precise estimates that affirm the reevance (non-zero
value of) dl three sructurd parameters (sandard errorsin parentheses): v, =-2.99 (0.001), k1 =
1.05(0.01) , k2 =4.67(0.02). Theestimateof v, placesthe extensive marginat 3%, or 24 minutes,
off-pace to break twenty-four hours; the other estimates have no natura interpretation. The
incentivesinthe WS100 are sufficiently sgrong that the structural estimates are also precise: P =0.17
(0.03); y =0.03(0.002); 0. =1.32 (0.05). All three are reasonable. The esimate of o, suggests a
mild degree of difficulty regulating one’s pace, such that afinish time deviation of one percent from
expected is not uncommon. The edimate of the fatigue parameter y is positive but small: the 3%
reduction intimes observed by runners a the extensive marginincreases the margina cost of effort
by about 10%. The P egimateindicatesthevaue of passing the threshold is five times greater than
the cogs incurred to lower one’s time by one percent. This is sufficient motivation to induce
substantial effort. The ability-effort profile implied by these estimates, given by the dashed linein
Figure 7a, isreasonably consonant with the semiparametric profile, suggesting that our simple model
does an adequate job representing the major forces at work.

Inthe market-based theoretical model above, these sructural estimateswoul d all ow theeffect
of the threshold on effort and efficiency to be determined. Given the very large deviation in
performance between passers and nonpassers, the estimate of p in this market would be 0.0072,
which is insufficient to motivate additional effort. This situation falls in the range of potency
identified in the Appendix and in the lowest shaded band in Figure 3: actual effort under direct

measurement, like the efficient level of effort, is zero, so the threshold inefficiently motivates greater
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effort than direct measurement does. The accuracy of information clearly diminishes under the
threshold as well.

For theWS100, instead, thesestructural estimatesreveal the limitsof human motivation. Like
the semiparametric estimates, they imply that runnerswho are not motivated by the threshold finish
well below their potential. But what governsthe location of the line separating these runners from
those who are so motivated-the extensve margin? In a five-kilometer race, the primary factor
limiting threshold incentive effects would be the rapid buildup of lactic acid during the kick. There
the fatigue parameter would be large, implying that it would be hard to kick much faster, and the
location of the extensive margin would be determined mostly by physiological limitsin the muscles
and circulatory system, consistent with the “ cardiovascular/anaerobic/catastrophe” model of fatigue.

Here, in contragt, the low vaue of the fatigue parameter suggests different mechanisms are
at work. Oneisphysological: the® central governor” moded of fatigue, which suitsultramarathoning,
operating through the central nervous system, and supports our low fatigue estimate. (These two
fatigue models are discussed and compared, in relation to disance running, by Weir et al., 2006; see
alsoMillet, 2011. SeeHamilton, 2013, onthesignificant role of “mental toughness’ in ultramarathon
performance.) But the other is preference-based, as belied by the high success rate of those runners
who try to attain thetwenty-four hour threshold. Figure 6b indicatesthat runners dightly abovethe
extensive margin stand amore than even chance of passng thethreshold. Runnersdightly belowthis
margin could expend the same amount of additional effort as those slightly above, and still stand a
reasonable chance of succeeding. Thisis not a matter of limits, but a matter of choice.

The structural mode! indicates that even modest increases in runners desire to achieve the

threshold, P, would generate notable changes in behavior. When P increases from 0.17 to 0.20, for
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example, the extensive margin movesback one percentage point and maximum effort, which occurs
at that margin, increases by one percentage point. Thisisthe ultimate irony of the Western States
100: in one of the toughest endurance racesin the world, most finisherschoose not to “useup al the

gasin the tank.”

IV. Conclusion.

Threshold-based incentives provide a rich arenafor examining basic precepts of economic
theory, yieldingamultifaceted set of unusua implicationsthat can be tested structurally or with non-
restrictive semiparametric methods. These methods can uncover the postive and normative effects
of these types of incentives in many areas of economic life. In our application to ultramarathoning,
they show that, whileit may be seemingly irrational to focusonanarhitrary timethreshold of twenty-
four hours, attemptsto meet this threshold are anything but irrational, reflecting aclear, deliberate

strategy that dowly unfolds throughout the race and closely conformsto the predictions of theory.
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APPENDIX

Derivation of Effort under Direct Measurement and a Threshold. Given the cost function C(f)
= exp(y/) - 1, the log of margina costsisIn(y) + yf. Similarly, the expected margind benefits of
effort, P®'(+)/o,, logged, equal In(.4P/c_) - (f + v)?c.2. Given these, the program and solution for
effort under three systems of measurement and reward is as follows.

. Direct, Perfect Measurement: max pf - C(/); feereeer = (Uy)IN(p/y).
. Direct, | mperfect Measurement: max po 2/(o,2to_2)f - C(f);
Sivpereecr =(UY)[In(p/y)+In(o,% (0,240 2))] = feereeer - (UY)IN(1+0 20 2).
. Imperfect Measurement, with a Threshold Placed at Zero: max P@(v+f) - C(f);

JthresHoLD = -(Yoez +v) + (Y2064 +2yo v + Zoezln(O.4P/y06))"1/2.

Proofs of Five Behavioral Properties. \When positive, f{v) in equation (1) satisfies the following
conditions:; C1) /'>-1; C2) /"< 0; C3) /"> 0; and C4) /=0 impliesf=-vand y = 0.

Let v* = argmax f(v). C4 (along with C1, when the maximum is a the extensive margin)
ensure max(f) > -v*, so that y(v*) > 0. Theseindividuals chances of passing the threshold are at
least 50%, proving the Peak Proximity Property. And max(f) > -v*, along with C1, ensures f{0) >
0, the Precautionary Effort Property.

The Sawtooth Property istrivial if v* occurs at the extensive margin. For interior maxima,
along with the presence of the extensive margin, 1’ (v*-d) > -f ' (v¥+d) foranyd>0by f'= [ f"
and C3. This Property, along with C1 and y = f'+ v, ensures the Stair Step Property.

Because /=0 below the extensive margin, while /{0) > 0, C2 and C4 ensure that f{v) has a
single peak for some v* < 0, possibly at the extensive margin. Thus one can define aregion of v <
0 for which effort ishigher than anywhere else: the Peak Effort Property.

Motivational Effects. For dl {o_, 0.}, fiupereecr = [IN(P/Y) - IN(1+0.2/0,2)] / v isnil when p/y <
(1+0 /0 ?). The efficient leve of effort, foereecr = IN(P/y) /v, isnil when p/y < 1.

For a threshold, derivation of equation (1) shows that maximum effort never exceeds
In(.4P/yc )y =In(.4Ayp/ys )/y. Onecanalso show that E(y|Y>0,/=0)=0.80 [0 /(0 2+0,2)"]. Thus,
in the absence of effort, Ay = 1.60,/(1+0.2/0,2)"” and threshold effort is nil when p/y <
1.56(1+0.2/0,?)"*c_lo,. Above this value, one can be sure that /> O for v sufficiently close to 0.

Therefore, threshold effort will be positive, and effort under direct measurement nil, when
1.56(1+0 .20 2) %o lo, < p/y < 1+0 20,2 One can easily show the set of parameters satisfying these
criteriaisnon-empty whenever 1.26_ <o,. Mean threshold effort will continueto exceed effort under
direct measurement for some (not necessarily small) range of p/y exceeding 1+o %o 2.

Using similar logic, one can show that threshold effort will be positive, and efficient effort
zero, when 1.56(1+0,2/0 2”0 lo, < p/y < 1. The set of parameters satisfying these criteriais non-
empty whenever 1.80, < o,. Whenthis condition holds, thereis aset of parameter values for which
threshold effort isinefficiently overprovided. When1.26, < o, < 1.80_, in contrast, thereisa set of
parameter values for which thresholds increase both effort and efficiency. When1.20, > o, then the
effects of thresholds on average effort and efficiency cannot be characterized analytically, but
smulations (as in Figure 4a) indicate that thresholds can ill increase both effort and efficiency.



Signing Incentive Effects. Threshold effort f{v) and outcomesy(v) satisfy thefollowing condition,
which equates margina costs and expected marginal benefits, in logarithms: yf = In(P) - In(y) +
In(@'(y)/o.). This, P = (Yeassers - Ynonpassers)P = AYP, @ yfiypereecr = IN(p/y) + In(0,%/0,2+0.2)
yield: y(f(v)- fivperrecr) = IN(AY) + IN(1+0.%/0,2) +In(@'(y)) = In(Ay) + In(1+0.%0,?) - In(2.50,) -
y(v)¥20 2 Taking expectations across v, and using var(Y) = var(y) + ¢ 2, yields:

YE(f- fiveerrecr) = -0.4 + In(Ay) + In(1+0,%0 2 - In(a,) - (var(Y) + ¥?)/20.2.
Giveno,_, dl right-hand side terms can beinferred from the data, so the net incentive effect is signed.

Weak Identification in Structural Estimation. Equation (1) impliestwo relationshipsneeded for
identification of the gructural parameters: yo 2 = kI, In(.4P/yo )/y = k2, where kI and k2 are
constantsthat are easily expressed, for example, asfunctions of the horizontal and vertical intercepts.

The condition satisfied by the extensivemargin, { vy fex}, ISP[@((vexHe)/0.)-P(ve /o, )] =
C(fzx) - C(0), where C(f) = exp(yf) - 1 isthe cost function. Define ¢(+;0.) as the normal density
function with mean zero and standard deviation o,_. Then, replace ®(v.,/o.) with its second order
Taylor series approximation around v, /¢y, and replace C(0) with its second order Taylor series
approximation around f¢,. Then, to the second order, {vey fex} Setisfies:

FioPOVy frp:0) = FiP® (Ve * £ 12 = fC/(Fi) - FaiC ! (Fi) 12

The first term on the | eft-hand side equal sthe first term on the right-hand side; thisis simply the first
order conditionfor optimdity, P¢ =C’, multiplied by f¢,. Furthermore, it is sraightforward to show
that do/dx = -xdplo 2 and C” = yC'. Eliminating the first term on each side and making these
substitutions in the second term on each side yields:

ToPY Vgt foy:0)/20; = = oy Cl(F) /2

Again using P¢ = C’ and rearranging yields:

- Vgt fi) = ~Viy © YO, = kI

Thus, when higher order effects are small, k1 = -y, Substituting this relation into equation (6)
solvesfor v, intermsof {k/, k2}: thethree structurd parameters are weakly identified. Asyo 2>
0, thisis most likely to happen when there isan interior maximum, so that y., isnegative, or when
0 = yex <<fex, 8sin FHgure 4. By the geometry of Figure 1, this will occur when incentives are not
too potent—that is, when the slope of the margina costs ling, v, is sufficiently large relative to the
height of the parabolaof margina benefits, P/o..
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Figure 1. Analysis of the Effort Decision, Conditional on Ability.
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Figure 2. (a) Ability-Effort Locus, (b) Ability-Performance Locus.
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Figure 3. Mean Effort, Efficiency, and Information Accuracy under a Threshold, Compared to
Direct Measurement. (Drawing is to scale. The term o is normalized to one, and c:/c, = %.)
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Note: Information accuracy is determined by the standard deviation of true performance, y. The
standard deviation of y, conditional on passing, under the threshold is compared to the standard
deviation of y, conditional on observed Y, under direct measurement. If the former is smaller
(larger), the threshold is more (less) informative than direct measurement. The threshold is located
one standard deviation of the error (c;) above mean ability. To a very close approximation, this is
where thresholds’ motivational properties are strongest. The figure is invariant to proportional
changes in all parameters (p, v, o¢, and oy).



Figure 4: Theoretical Relation between Natural Ability and Effort under a Threshold Placed at Zero (o, =3)
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(a) Parameter Values: y =0.2, 6. =3, P =5, mean v = -3, p=0.71. (b) Parameter Values: y= 1.2, 6, = 0.4, P =12, meanv = -1, p=2.25.
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(c) Parameter Values: y =0.1, 6. =2, P = .6, mean v = -2, p=0.13. (d) Parameter Values: y = 0.6, . = 0.8, P = 3%, mean v = -1, p=0.66.
f perrect = 2.75, T imperrecT = 0, f THrESHOLD = 0.31. f perrecT = 0.16, f mperrecT = 0.04, f tHRESHOLD = 0.35.

Note: Given P, meany is calculated for passers and nonpassers across the full domain of v. From this p is backed out and used to calculate
frerrecT and fimperrecT, Which are independent of v; fruresHoLp refers to mean effort across all agents in the presence of the threshold.



Figure 5. Course Layout and Time Distributions at Splits 2, 6, and 7 and the Finish, Western States
100. (Times in the Course Layout are for a runner who finishes in twenty-four hours.)
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Figure 6. (a) Split 6 and Finish Time Scatterplot, with Smoothed Mean, (b) Effort Perturbation.
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Note: The dashed vertical line corresponds to a predicted finish time, absent the effort perturbation, of 24
hours.



Figure 7. Detrended Smoothed Quantiles: (a) Finish Time on Sixth Split, (b) Inter-Split Breakdown.
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Note: In both graphs, dots represent individual time deviations from the parametric trend. In Figure b,
quantiles are estimated at the 50" percentile. 95% confidence intervals included.



Table 1. Summary of Academic Studies of Threshold Incentive Effects.

Topic

Selected Studies

Threshold

Theory

Evidence

gaming of bonus
systems or financial
reporting
requirements

Healy (1985), Courty
and Marschke (2004),
Grundfest and
Malenko (2009), Yim
(2013), and more

annual cutoff for meeting

quotas to qualify for

bonuses, or the 0.5 cent

cutoff to round up
earnings per share

emphasizes potential
adverse effects of
thresholds

timing of reported output is
adjusted to maximize bonuses;
small accounting adjustments are
made to nudge up earnings per
share to the next cent

criminal behavior,
drunk driving

Friedman and
Sjostrom (1993),
lyengar (2008), Grant
(2010)

zero tolerance thresholds

of various types

emphasizes potential
adverse effects of
thresholds or threshold
reductions

reduced BAC thresholds do not
effect the amount of drunk
driving by youth; criminals on
their “third strike” commit more
severe offenses

biodiversity loss

Perrings and Pearce
(1994), Muradian
(2001)

where species populations
are sufficiently depleted
that “the ecosystem loses

resilience”

emphasizes risk
avoidance in a
dynamic, uncertain
environment

“there is abundant evidence
of...threshold effects as the
consequence of human
perturbations on [ecosystems]”

effort by students,
schoolteachers,
schools, or districts

McEwan and Salti-
banez (2005), Reback
(2008), Chakrabarti
(2013), Grant and
Green (2013), and
many others

letter grade cutoffs;
“points” required for

promotion, for passing a
high-stakes test, or for a

higher school rating

emphasizes the “Peak
Effort Property”
described below

school districts focus their efforts
on those students who are near
the border between passing and
failing standardized tests,
improving the rate at which those
students pass the tests

analyst / publication
bias in several fields
of social science

Card and Krueger
(1998), Tufte (2006),
Gerber and Malhotra
(2008), Stanley and
Doucouliagos (2012)

the t values required for
statistical significance of

regression coefficients

formally derives the
“caliper test”

researchers’ methodological
choices and/or editors’
acceptance decisions favor
rejections of the standard null






