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Abstract

Using teacher switching as a quasi-experiment, Chetty, Friedman,

and Rocko↵ (hereafter CFR) find that value added (VA) estimates of

teacher e↵ectiveness are not meaningfully biased by student sorting

and are strongly correlated with students’ later outcomes (CFR 2014a;

2014b). I successfully replicate CFR’s key results in a new sample. Fur-

ther investigation, however, reveals that the quasi-experiment is invalid:

Teacher switching is correlated with changes in student preparedness.

Estimates that adjust for this indicate moderate bias in VA scores. The

association between VA and long-run outcomes is not robust and quite

sensitive to controls.
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Value-added (hereafter, VA) models attempt to disentangle teacher e↵ec-

tiveness – defined as the teacher’s causal e↵ect on his or her students’ test

scores – from other factors that influence student achievement. They do so by

controlling for students’ prior-year scores and for other observed factors (e.g.,

free lunch status); any variation in student scores that is left after removing

the components that are statistically attributable to observable di↵erences in

students is attributed to the teacher.

VA scores are used increasingly for high-stakes teacher evaluations, but

this is highly controversial. One important criticism is that VA models may

not successfully isolate teachers’ causal e↵ects on their students.1 A student’s

classroom assignment may depend on parental requests or on teacher special-

izations that are not typically recorded in administrative databases, and it is

not clear a priori whether the variables controlled in VA models are su�cient

to absorb the endogeneity that this creates. If they are not, a teacher’s VA

score will reflect not just her e↵ectiveness but also the types of students who

were assigned to her. Teachers who have unusual assignments – e.g., those who

are thought to be particularly e↵ective with late readers, with hyperactive chil-

dren, or with advanced students – may be rewarded or punished for this under

VA-based evaluations, with potentially serious unintended consequences.

Rothstein (2010) finds that classroom assignments are significantly corre-

lated with student characteristics – in particular, the student’s full test score

history beyond the prior year’s score – that are predictive of later achievement

and not typically controlled for in VA models. This implies that VA scores are

biased. But it has not been possible to rule out the hypothesis that the mag-

nitude of the bias is small enough to be ignorable (Rothstein, 2009; Guarino,

Reckase, and Wooldridge, 2012).

Chetty, Friedman, and Rocko↵ (2014a; hereafter, CFR-I) introduce a new

strategy for quantifying bias in VA models from non-random student assign-

1Critics have also argued that teacher VA is too noisily measured to be useful, that it
misses teachers’ e↵ects on dimensions of achievement not captured by test scores, that VA-
based evaluation creates incentives to target the measure (e.g., by teaching to the test) rather
than to improve true achievement, and that the use of individual performance measures will
undermine teacher cooperation.
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ments. They examine teacher switches – events where one teacher leaves a

school and is replaced by another. If VA scores are unbiased, the year-over-

year change in school-level scores, averaging over both students in the switch-

ing teachers’ classes and others taught by teachers who remained in the school,

should be consistent with a prediction based on the di↵erence between the de-

parting and arriving teachers’ VA scores.2 But if VA scores are biased by

non-random student assignments, the change in student outcomes will gener-

ally be smaller than the VA-based prediction. The test is formalized in CFR-I

and in Section 1 below.

Using data from a large, unnamed school district, CFR-I find that VA

scores successfully predict changes in test scores following teacher switching,

and conclude that biases in teachers’ VA scores are minimal or nonexistent.

A companion paper, CFR (2014b; hereafter CFR-II), finds that teacher VA

is associated with students’ long-term outcomes, such as their earnings as

young adults, both in cross-sectional comparisons and in quasi-experimental

analyses of teacher switching. CFR thus conclude that high-VA teachers have

large e↵ects on students’ long-run outcomes.

I replicate CFR’s analyses using a statewide dataset from North Carolina.

Section 2 describes the North Carolina data, and Section 3 presents replication

results. I successfully reproduce all of CFR-I’s key results.

In the North Carolina data, as in CFR’s district, one of CFR’s robustness

tests yields results that appear inconsistent with those of the main specifica-

tion. To understand this, I investigate the validity of the teacher switching

quasi-experiment, in Section 4. Like all quasi-experiments, this one relies on

an assumption that the treatment – here, teacher switching – is as good as

random. I find that it is not: Teacher switching is correlated with changes in

students’ prior-year scores. Exiting teachers tend to be replaced by teachers

with higher measured VA when students’ prior achievement is increasing for

other reasons, and by teachers with lower measured VA when student pre-

2The CFR-I analysis, and my replication, is actually conducted at the school-grade-
subject level, and some teacher switches occur when a teacher merely changes grades within
the same school.
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paredness is declining. CFR have confirmed that this result holds in their

sample as well (CFR 2014c).3

The evidence that the teacher switching “treatment” is not randomly as-

signed implies that CFR-I’s quasi-experimental analyses, which do not control

for changes in student preparedness, cannot be interpreted causally. I thus

turn, in Section 5, to specifications that augment CFR-I’s by adding controls

for changes in students’ prior-year scores. If teacher switching is random con-

ditional on this observable, these specifications identify the prediction bias

coe�cient of interest. Results indicate that VA scores over-predict the change

in student learning, with a prediction coe�cient between 0.8 and 0.9. This

implies that the bias component of VA scores is statistically and practically

significant, with a magnitude squarely in the middle of the range identified as

plausible by Rothstein’s (2009) simulations.

Section 6 turns to CFR-II’s analyses of teachers’ long-run e↵ects. Again,

I successfully replicate all of the key results, albeit using a di↵erent set of

long-run outcome measures that are available in the North Carolina data.

It is not clear that the association between VA and long-run outcomes can

be interpreted causally. The evidence of bias in VA scores means that the as-

sociation between a teacher’s VA and students’ long-run outcomes may reflect

the student sorting component of the VA score rather than the teacher’s true

e↵ect. Moreover, even if this issue is set aside there is still a concern that

students assigned to high-VA teachers may be advantaged in ways that are

predictive of the students’ long-run outcomes, implying that the estimated “ef-

fect” of being assigned to a teacher with high estimated VA is upward biased.

In both CFR’s district and the North Carolina sample, teachers’ measured VA

is correlated with students’ prior scores and other observables.

Neither CFR-II’s observational estimates nor their quasi-experimental es-

timates of teachers’ long-run e↵ects control fully for students’ observed, pre-

determined characteristics. Unfortunately, the North Carolina data do not

3CFR (2014c) attribute the result to “mechanical” e↵ects deriving from the use of the
overlapping data for the VA calculations and for measuring prior achievement. I investigate
this explanation in Appendix B, and find that it cannot account for the results.
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provide detailed measures of family economic status, so I am limited in my

ability to explore the sensitivity of the results. Nevertheless, when I control

for the observables that are available, I estimate e↵ects of high-VA teachers on

students’ long-run that are much smaller than is implied by CFR-II’s meth-

ods. CFR-II present evidence suggesting that additional controls, were they

available, would further diminish the estimated e↵ects. Even with my limited

controls, however, quasi-experimental estimates are generally not significantly

di↵erent from zero, and all point estimates are smaller than when the controls

are omitted (as in CFR-II’s analyses).

Both the bias estimates and the estimated long-run e↵ects can be inter-

preted causally only under strong assumptions of selection-on-observables. At

a minimum, one can conclude that analyses like those proposed by CFR-I and

CFR-II do not provide strong evidence about either the magnitude of sorting

biases or the e↵ects of high-VA teachers on students’ later outcomes, and that

new research designs will be needed to provide credible estimates of either.

What evidence there is suggests that VA scores are importantly biased by

student sorting and that the long-run e↵ects of having a teacher with a high

(measured) VA score are substantially smaller than are implied by CFR-II’s

results.

1 The teacher switching quasi-experiment

I describe the quasi-experimental design briefly here, drawing on CFR-I and

adopting their notation. Readers are referred to their paper for a more com-

plete description.

1.1 Teacher value-added

The data generating process for student i’s test score in year t, A⇤
it, is

A

⇤
it = Xit� + µj(i,t)t + ✏it, (1)
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where Xit is a vector of observables, including the student’s prior year score;

j (i, t) represents student i’s teacher in year t; µjt is the causal e↵ect of teacher

j on her students; and ✏it is an unobserved shock that may be correlated among

students in the same classroom.4 CFR estimate � via a regression of A⇤ on

X, controlling for teacher fixed e↵ects, and compute the average residual score

among students in class (j, t):

Ājt =
1

njt

X

i: j(i,t)=j

A

⇤
it �Xit�̂. (2)

� is very precisely estimated. If the within-teacher regression is unbiased, then

to first approximation

Ājt = µjt + ✏̄jt, (3)

where ✏̄jt ⌘ 1
njt

P

i: j(i,t)=j ✏it.
5

CFR’s primary VA measure is the linear forecast of the teacher’s causal

e↵ect in year t, µjt, given her students’ average residuals in other years s 6= t.

The forecast is:

µ̂jt =
X

⌧2Tj ,⌧ 6=0

 

Tj

|⌧ |Āj,t+⌧ , (4)

where Tj ⌘
n

⌧ |Āj,t+⌧ is observed for teacher j
o

and  

Tj is a vector of best-

linear-predictor coe�cients.6 These coe�cients vary with |⌧ | and with the set

Tj – when a teacher is observed for many years, the prediction will put little

weight on any one of them, but when Tj is smaller the available data will be

weighted more heavily.7 Both in theory – given CFR-I’s stationarity assump-

4CFR use data from tests in math and reading, treating a student’s scores on the two
tests as two di↵erent observations and interacting most coe�cients with a subject indicator.
I suppress subject subscripts here for readability.

5CFR-I do not state assumptions under which �̂ is unbiased. One can imagine decompos-
ing µjt into a permanent teacher-level component and a transitory component, µjt = µ̃j+ujt.

CFR-I’s procedure allows µ̃j to be correlated with ¯̄
Xj ⌘ E [Xit | j(i, t) = j] across teach-

ers but implicitly assumes that ujt is uncorrelated with X̄jt ⌘ E [Xit | j (i, t) = j, t] across
classes within teachers.

6CFR refer to µ̂jt as teacher j’s value-added. That term is more commonly used for the
teacher’s true causal e↵ect µjt. In this paper, I reserve “value added” for µ, and refer to µ̂

as the “predicted” or “forecast” value added.
7CFR-I assume that the within-teacher, between-year covariance of Ājt depends only
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tions – and empirically, the sum of coe�cients for any teacher,
P

⌧2Tj ,⌧ 6=0  
Tj

|⌧ |,

is less than one, so µ̂jt is “shrunken” relative to a weighted average of the

Āj,t+⌧ s.

1.2 The teacher-switching quasi-experiment

A central question in the VA literature (see, e.g., Rothstein 2009, 2010) is

whether Ājt provides an unbiased estimate of teacher j’s causal e↵ect, or

whether it is biased by sorting of students to teachers on the basis of charac-

teristics that are not controlled in the VA model. CFR-I distinguish two kinds

of bias, which they call “forecast bias” and “teacher-level bias,” and argue

that the former is more relevant to policy. VA scores are forecast-unbiased if

E [µjt|µ̂jt] = µ̂jt.

Importantly, forecast bias cannot be identified by comparing Ājt to µ̂jt in

observational data, as the coe�cients  are chosen precisely to ensure that the

linear projection of Ājt onto µ̂jt (which, recall, is estimated only using data on

the teacher’s students’ scores in years other than t) has a slope of one, even if

both Ājt and µ̂jt are biased relative to µjt. Testing for forecast bias requires a

strategy for constructing a proxy for µjt that is unbiased, or at least subject

to a di↵erent form of bias than is Ājt.

Kane and Staiger (2008) develop an experimental test. Starting with pairs

of teachers A and B teaching in the same school and grade, they randomly

assign students among the two teachers in the pair. This ensures that any

student sorting component of the between-teacher di↵erence in average scores

in the year of random assignment, Ā⇤
At � Ā

⇤
Bt, is uncorrelated with the sorting

component of the between-pair di↵erence in average predicted value-added

based on prior years’ data, µ̂At � µ̂Bt. Thus, the regression of the former on

the latter identifies the coe�cient of a regression of µA � µB on µ̂At � µ̂Bt, so

should have a coe�cient of one if the VA measures are forecast-biased and a

on the number of elapsed years: Cov

�

Ājt, Ājs

�

= �|t�s|. They use data for all pairs of
observations |t� s| years apart to estimate �|t�s|, then use the vector of �s to construct the
best predictor coe�cients  T for each set T .
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coe�cient less than one if they are forecast-biased.8 Unfortunately, Kane and

Staiger’s sample was small and non-representative (see also Kane, McCa↵rey,

Miller, and Staiger 2013; Rothstein and Mathis 2013), so results were not

decisive.

CFR-I extend Kane and Staiger’s experimental design to examine “quasi-

experiments” created when a teacher leaves a school (or switches grades within

a school) and is replaced by another. If VA scores are forecast-unbiased, the

change in average predicted VA among the teachers in the school-grade cell

should accurately predict the change in average student test scores. CFR

define Qsgt as the average of µ̂jt among all teachers j in grade g at school s

in year t, weighted by the number of students taught.9 The predicted change

in teacher impacts is �Qsgt = Qsgt � Qsg,t�1. If we let µ̄jgt represent the

analogous weighted average of teachers’ true causal e↵ects µjt and �µ̄jgt its

di↵erence, forecast-unbiasedness implies that E [�µ̄st|�Qsgt] = �Qsgt.

Of course, �µ̄jgt is not directly observed. CFR-I use the change in aver-

age student scores, �Ā

⇤
sgt, in place of it. Importantly, the process by which

students are sorted across schools is distinct from the process of within-school

sorting to teachers, which might bias�Qsgt but should have no e↵ect on�Ā

⇤
sgt.

Thus, so long as changes in teacher quality are uncorrelated with changes in

the school population, the coe�cient of a regression of �Ā

⇤
sgt on �Qsgt should

have a coe�cient of one if VA scores are unbiased by within-grade student

sorting, and a coe�cient less than one if they are biased.

1.3 Evaluating the quasi-experiment

All quasi-experiments rely on untestable assumptions that the “treatment” is

uncorrelated with other determinants of the outcome. Here, the treatment is

8This test requires the true VA of teacher A to be uncorrelated with that of teacher B,
and the measurement error in the two teachers’ VA estimates to be similarly uncorrelated.
Without this, the di↵erence of unbiased predictors need not be an unbiased predictor of
the di↵erence (and vice versa). CFR-I’s test relies on a similar assumption that the only
available information that is informative about a teacher’s causal e↵ect is the sequence of
average residuals for that teacher’s students in other years.

9As noted above, CFR stack math and reading observations, so the actual level of ob-
servation is school-grade-subject-year.

8



the change in estimated teacher quality, �Qsgt. CFR-I argue that there is no

reason to expect that the arrival or departure of a teacher with high (or low)

µ̂jt would be correlated with changes in other determinants of average student

outcomes at the school-grade level; that is, that

cov

⇣

�Qsgt,�Ā

⇤
sgt

⌘

= cov

⇣

�Qsgt,�µ̄sgt +�X̄sgt� +�✏̄sgt
⌘

= cov (�Qsgt,�µ̄sgt) . (5)

The assumption that cov (�Qsgt,�✏̄sgt) = 0 is untestable, as �✏̄sgt is unob-

served. But it is possible to test whether cov

⇣

�Qsgt,�X̄sgt�

⌘

= 0.10 Vio-

lations of this restriction would indicate that teacher-switching is not a valid

quasi-experiment and that a simple regression of �Ā

⇤
sgt on �Qsgt does not

estimate the projection coe�cient of interest. At a minimum, one would want

to control for �X̄sgt in this regression; one might also question the validity

of the untestable assumption cov (�Qsgt,�✏̄sgt) = 0 and hesitate to attach a

causal interpretation to even the regression with controls.

The most important component of Xit is the student’s score in year t� 1.

Below, I present regressions of the change in mean lagged scores at the school-

grade-year level on �Qsgt as a test of the identifying assumption of the quasi-

experiment.

1.4 Missing data and Empirical Bayes predictions

CFR-I construct µ̂jt and µ̂j,t�1 only from Ājt0 observations from years other

than t � 1 and t. A problem arises when a teacher is observed only in those

years. For these teachers, CFR-I set µ̂jt and µ̂j,t�1 to missing, excluding these

teachers from their right-hand-side variable �Qsgt. They also exclude these

teacher’s students from the left-hand-side variable �Ā

⇤
sgt. They present an al-

10
µ̂jt is constructed from residuals of regressions of test scores on Xit. But �Qsgt need

not be orthogonal to �X̄sgt�. Recall that CFR-I estimate � using within-teacher variation,
so between-teacher variation could produce a non-zero covariance between X̄jt and Ājt. In
addition, the use of leave-one-out EB predictions can generate an association between µ̂jt

and X̄jt even if cov
�

Ājt, X̄jt

�

= 0. Finally, the di↵erenced, aggregated variables can covary
even if the teacher-by-year versions do not.
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ternative specification that includes the teachers and their students, assigning

predicted VA of zero to the teachers. This yields importantly di↵erent results,

both in their tables and in my replication sample. It is thus worth considering

the logic of the two approaches.

As CFR-I note, their predicted VA µ̂jt can be seen alternately as a “shrink-

age” estimator that pulls noisy signals of a teacher’s impact in other years s 6= t

toward zero in inverse proportion to the signal-to-noise ratio of the aggregated

signals; as a best linear predictor of µjt; as the posterior mean of µjt given

data
n

Ājs

o

s 6=t
; or as an Empirical Bayes estimate of µjt.

An important property of µ̂jt can be best understood in the special case

where µjt is assumed to be constant across t within teacher and ✏̄jt is i.i.d.

across t, as in an earlier version of CFR’s study (CFR 2011) and in the earlier

work on which they draw (Kane and Staiger, 2008). Then the weights  
Tj
⌧ are

uniform across ⌧ – as much weight is put on an observation from ten years ago

as is put on last year’s measure.11 In this case, µ̂jt can be written as a simple

average of the teacher’s students’ mean residual scores in all other years s 6= t,

multiplied by a shrinkage factor  j. This factor, defined in CFR-I’s equation

(9), is the reliability of the average of residual scores, seen as a noisy measure

of µj. Thus, 0 <  j < 1. It approaches one as the number of years of available

data rises toward infinity, and approaches zero as the amount of data shrinks

toward zero. Intuitively,  j shrinks the teacher’s observed performance toward

the grand mean of µ, 0, allowing teachers to deviate substantially from the

grand mean only when their posted performance is quite di↵erent from the

average and when enough data is available to ensure that this is not a fluke.

Now consider the problem of predicting the VA of a teacher who appears

in the data only in the {t� 1, t} window. The mean residual score – which

only uses data from years outside that window – cannot be constructed. If VA

estimation is seen as a signal extraction problem, the signal for this teacher

has zero precision, implying complete shrinkage, or  j = 0. Under shrinkage,

best prediction, or Empirical Bayes interpretations, this teacher’s VA should

11Following CFR-I, I abstract from di↵erences in class size across years. See Kane and
Staiger (2008) for a clear exposition that accounts for this.
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be set equal to the grand mean: µ̂jt = E [µ] = 0. Assigning this value is

nothing more than treating the teacher the same way as other teachers are

treated.12

CFR (2011) found evidence that µjt is not stable across t, and subsequent

versions of the paper implement a new EB estimator designed to allow for

“drift” in µjt (see equation 4 above). But the shrinkage interpretation is still

valid. CFR-I’s µ̂jt can be seen as a weighted average of Ājs, s 6= t, with weights

declining in |s� t|, again multiplied by a shrinkage factor  jt that corresponds

to the reliability of the weighted average as a signal of µjt.13 As in the no drift

case, as the amount of data from other years shrinks to zero, so does  jt and

µ̂jt. A teacher with no data from other years should be assigned µ̂jt = 0.

What of CFR-I’s preferred strategy of excluding classrooms of teachers

observed only once or twice? The exclusion of these teachers’ predicted VA

scores from Qsgt is defensible if µ̂jt is missing at random. This is a strong

assumption. But CFR-I’s procedure requires an even stronger restriction, as

they exclude these teachers’ students from the calculation of Ā⇤
sgt as well. This

requires that mean scores in the excluded classrooms equal mean scores in the

included classrooms conditional on the average predicted VA of the included

teachers. I show below that this is unlikely given the overall structure of the

data, and that the �Ā

⇤
sgt computed only from classrooms included in CFR-I’s

Qsgt calculation is biased relative to the whole-school �Ā

⇤
sgt in a way that is

correlated with CFR-I’s �Qsgt, skewing the quasi-experimental test statistic.

12This assumes that nothing is known about a teacher other than her sequence of mean
student residuals Ājt. One could adopt a richer model, relying on a vector of teacher
observables Zjt (e.g., teacher experience) that help to predict µjt. Then EB VA predictions
for teachers observed many times shrink the teachers’ average student residuals toward
E [µjt|Zjt], while the EB prediction for a teacher observed only in the {t� 1, t} window is
µ̂jt = E [µjt|Zjt]. CFR-I eschew the use of other information to predict µjt (see CFR 2014a,
footnote 19).

13Although CFR-I do not present their prediction coe�cients  ⌧ this way, their equation
(6) and the surrounding discussion imply that the sum of  ⌧ over all ⌧ 2 Tj is less than
one, and smaller the fewer years are available.
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2 North Carolina data

I draw on administrative data for all students in the North Carolina public

schools in 1997-2011, obtained under a restricted-use license from the North

Carolina Education Research Data Center. End-of-course scores in math and

reading are available for students in grades 3 through 8. Third grade students

are given “pre-tests” in the Fall; I treat these as grade 2 scores.14 I standardize

all scores within each year-grade-subject cell.

The North Carolina administrative records record the identity of the test

proctor. This is usually but not always the student’s regular classroom teacher,

though in grades where students are taught by separate teachers for di↵erent

subjects the proctor for the math test might be the English teacher. I thus

limit the sample to students in grades 3-5, for whom classrooms are generally

self-contained. I use data on teachers’ course assignments to identify exam

proctors who do not appear to be the regular classroom teacher.

Many studies using the North Carolina data exclude such proctors and

their students. That is not feasible here, as the quasi-experimental strategy

requires data on all students in the school-grade cell. As an alternative, I

assign each such proctor a unique teacher code that does not match across

years.15 This ensures that student achievement data is not used to infer the

proctoring teacher’s impact.

Not all of CFR-I’s covariates are available in the North Carolina data. In

particular, I do not have measures of absences and suspensions, enrollment in

honors classes, or foreign birth. Thus, the control variables in my X vector

are a subset of those that CFR-I use: Cubic polynomials in prior scores in

the same and the other subject, interacted with grade; gender; age; indicators

for special education, limited English, grade repetition, year, grade, free lunch

14Pre-test scores are not available in 2007-2009.
15I use a somewhat less restrictive threshold for a valid assignment than in past work

(e.g., Clotfelter, Ladd, and Vigdor, 2006; Rothstein, 2010), to maximize the number of
teachers for whom VA scores can be computed. Insofar as I fail to identify teachers who
merely proctored the exam, this will attenuate the within-teacher autocorrelation of Ājt.
My estimates of these autocorrelations are larger than those reported by CFR-I for their
data. See Appendix Table 1.
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status, race/ethnicity, and missing values of any of these; class- and school-

year- means of the individual-level controls; cubics in class- and school-grade

mean prior scores; and class size.

For my analysis of long-run impacts, I focus on five outcomes that can be

measured in students’ high school records: Whether the student graduated

from high school; whether she stated on a high school exit survey that she

planned to attend college after graduation; whether she planned specifically

to attend a four-year college; her high school grade point average; and her

high school class rank. These outcomes are more proximate than CFR-II’s

outcomes, which mostly measure post-high-school experiences. They also vary

in their availability; I focus only on cohorts for which they are available for

most students. Students who do not appear in the North Carolina high school

records are excluded from this analysis, while those who drop out of high

school are assigned as non-college-bound.

My sample consists of 8.6 million student-year-subject observations, spread

across three grades, two subjects (math and reading), 1,724 schools, and 15

years. 6.3 million of these observations can be linked to 36,888 valid teachers;

5.6 million also have non-missing end-of-grade and prior-year test scores. This

is a bit smaller than CFR-I’s sample, which contains approximately 18 million

student-year-subject observations, but I have valid teacher IDs for a larger

share (73% vs. 58%). I have non-missing leave-one-out predicted VA scores

for 240,660 teacher-year-subject cells, with an average of 22.4 students per cell.

3 Replication

I use CFR’s Stata programs (Chetty, Friedman, and Rocko↵, 2014d) to repro-

duce their VA calculations and analyses in the North Carolina data. Appendix

A presents several of CFR’s results and my replications in parallel. Summariz-

ing briefly, math VA is more variable in North Carolina than in CFR’s sample,

while English VA is more similar. In both math and English, the autocorrela-

tion of teacher VA across years is higher in the North Carolina data (Appendix

Table 1), implying less noise in the measurement process and perhaps also less
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drift in teachers’ true VA.

In both samples, students with higher prior-year scores tend to be assigned

to teachers with higher predicted VA (Appendix Table 2). I find that special

education students get higher VA teachers, on average, where CFR found the

opposite, but the magnitude is small. A bigger di↵erence relates to school com-

position: CFR-I find that the school minority share is insignificantly correlated

with average teacher VA, but I find a larger, significant, positive correlation

in North Carolina.

Table 1 presents my replication of CFR-I’s main quasi-experimental analy-

sis (Panel A) along with corresponding estimates from CFR-I (Panel B). Col-

umn 1 presents coe�cients from a regression of the year-over-year change in

average scores at the school-grade-year level on the change in average predicted

VA, with year fixed e↵ects, as in CFR-I’s Table 4, Column 1. I follow CFR-I’s

specification (using their code): The regression is estimated on school-grade-

year-subject-level aggregates and weighted by the number of students in the

school-grade-year cell; standard errors are clustered at the school-cohort level;

and classrooms for which the teacher’s predicted VA cannot be constructed

(because she is not seen in other years) are omitted from both the dependent

and independent variables.16 Column 2 repeats this specification with school-

year fixed e↵ects (as in CFR-I, Table 4, Column 2). In each case, the North

Carolina results closely match those obtained by CFR-I: My point estimates

are slightly larger than CFR-I’s, and none indicate an e↵ect significantly less

than one.

Panel A of Figure 1 presents a binned scatter plot that illustrates the

Column 2 specification. School-grade-subject-year observations are divided

into twenty bins by the change in average predicted VA (i.e., by �Qsgt); the

Figure shows the average change in end-of-year students scores in each bin

plotted against the average predicted change based on teachers’ VA measures,

after residualizing each against school-year fixed e↵ects. The points are all

16Following CFR’s code, the mean scores used for the dependent variable include class-
rooms taught by teachers observed in both t� 1 and t but not in other years, even though
these teachers are excluded from the independent variable.
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quite close to the 45 degree line, and the slope is not significantly di↵erent

from one.

Columns 3 and 4 of Table 1 present two of CFR’s robustness checks. In

Column 3, based on CFR-I, Table 4, Column 4, the dependent variable is the

average predicted score, constructed as the fitted value from a regression of

students’ scores on parent characteristics. 17 In both samples, the year-on-

year change in mean predicted VA is uncorrelated with the change in mean

predicted scores. I show below, however, that changes in other predetermined

student characteristics, not examined by CFR-I, are correlated with the change

in teacher VA in the North Carolina sample.

Column 4 returns to the specification from Column 1, but adds classrooms

with missing teacher VA predictions (16% of classrooms in the CFR-I sample

and 32% in my North Carolina sample) to both the left and right hand side

averages, with the teachers’ predicted VA set to zero. This yields coe�cients

around 0.87, with confidence intervals that exclude 1 in both samples.

These estimates, taken on their face, indicate that the hypothesis of zero

prediction bias is rejected. CFR-I instead attribute the result to measurement

error in average teacher quality, induced by the imputation of zero predicted

VA to previously excluded teachers, that leads to attenuation bias. It is well

known that classical measurement error in independent variables attenuates

regression coe�cients, as it inflates the variance of the independent variable

(which enters the demoninator of the regression coe�cient) but not its covari-

ance with the dependent variable (in the numerator). But the imputation of

the grand mean to some teachers does not produce classical measurement error.

In general, it reduces the variance of Qsgt and (in likely data configurations)

�Qsgt. It is not clear that this kind of imputation leads to attenuation.

One way to assess the divergent results in Columns 1 and 4 of Table 1

is to consider separately the change in the independent and the dependent

variables.18 CFR-I’s measurement error explanation implies that the change

17CFR-I’s prediction is based on mother’s age, marital status, parental income, 401(k)
contributions, and homeownership, all drawn from tax files. Mine is based only on parental
education, as reported in the North Carolina end-of-grade test score files through 2007.

18Another approach, pursued by CFR-I, is to restrict the analysis to the subsample of
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in coe�cients derives from the change in the independent variable. The final

columns of Table 1 show that this is not correct. Column 5 uses all teachers to

construct the independent variable, imputing zero predicted VA for those not

observed in other years, but limits the sample used to construct the dependent

variable to teachers whose VA is not imputed. Under CFR-I’s explanation, the

estimate in this column should be attenuated just as was the one in Column

4. But this is not the case – the coe�cient is 1.205, significantly greater

than one. Column 6 does the reverse, using all students to construct the

dependent variable but excluding teachers with missing predicted VA from

the independent variable. Here, the coe�cient is only 0.659.19

Evidently the decline in the coe�cient from Column 1 to Column 4 derives

more from the change in the dependent variable than from the change in

the independent variable. This is inconsistent with CFR-I’s explanation. In

the next Section, I show that the use of non-random subsets of students to

construct the dependent variable introduces sample selection that is positively

correlated with the measured change in average predicted VA, biasing the

coe�cients in Columns 1 and 2 upward relative to the parameter of interest.

school-grade-year cells for which leave-two-out predictions can be formed for all of the teach-
ers. This is less than one-third of the total. In both data sets (see Appendix Table 5), coe�-
cients estimated from this subsample are smaller but are statistically indistinguishable from
one. Variation in the independent variable in the subsample comes disproportionately from
teachers who have not switched schools. (�Qsgt can vary without between-school mobility
because teachers switch grades within schools or because the t� 1 and t VA predictions put
di↵erent weights on the teacher’s performance in each other year.) In the North Carolina
data, school switchers account for 71% of the variance of �Qsgt in the full sample but only
57% in the complete-data sample. In any event, even in the restricted sample controlling for
the change in lagged scores in a model for the change in end-of-grade scores, as discussed
in Section 5, reduces the �Qsgt coe�cient substantially and the null hypothesis of zero
prediction bias is rejected. See Appendix Table 5, Panel C.

19The qualitative results in Columns 4-6, Panel A, are robust to including school-year
fixed e↵ects and (for Column 4) to limiting the sample to school-grade-year cells included
in the Column 1 sample.

16



4 Assessing the Validity of the Quasi-Experiment

A standard approach to testing the validity of an experiment or quasi-experiment

is to estimate the correlation between supposedly randomly assigned treatment

and pre-treatment covariates, particularly those that might be correlated with

the outcome variable. Rothstein (2010) uses this method to assess teacher-level

VA estimates, finding that students’ teacher assignments are correlated with

the students’ test scores in earlier grades. The same approach can be applied

to the teacher switching quasi-experiment: This research design relies on an

assumption that the change in average predicted VA at the school-grade-year

level, �Qsgt, is as good as randomly assigned, so it should be uncorrelated

with changes in student characteristics that are predictive of outcomes.

As discussed above (see Column 3 of Table 1), CFR-I report an exercise

of this form. They find that the correlation between �Qsgt and an index of

parents’ characteristics, weighted to best predict end-of-year scores, is essen-

tially zero. But parents’ permanent characteristics are unlikely to capture the

dynamic sorting that Rothstein (2010) found to be a potentially important

source of bias in VA models.

Table 2 presents additional estimates in the North Carolina data. Here, I

replace the dependent variable from Table 1, the change in mean end-of-grade

scores, with the change in mean prior-year scores for the same students. That

is, when examining the change in 5th grade teachers’ predicted VA between

years t� 1 and t, the dependent variable is constructed from the average 4th

grade scores of the students in the teachers’ 5th grade classrooms in t � 1

and t. Grade g � 1 scores are strongly predictive of grade-g scores, at both

the individual and school-grade-year levels, but can’t be causally attributed

to the quality of grade-g teachers. Thus, the change in mean prior-year scores

at the school-grade-cohort level should not be a↵ected by the teacher switches

that generate the variation in the independent variable, and can be used to

diagnose non-randomness in the latter.

Column 1 uses the same specification as in Table 1, Column 2. The coef-

ficient is +0.134 and is highly significant. Evidently, student quality changes
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importantly when teaching sta↵s switch, in ways that are correlated with

the change in average predicted VA that is the basis for the CFR-I quasi-

experiment. The relationship is shown as a binned scatter plot in Figure 1,

Panel B.20

After a preliminary version of this paper was shared with Chetty, Friedman,

and Rocko↵, they confirmed that �Qsgt is correlated with the change in mean

lagged scores in the CFR-I sample (and in a separate sample from Los Angeles

as well). In a specification like that in Table 2, Column 1, albeit with year

fixed e↵ects rather than school-year e↵ects, they obtain a coe�cient of 0.226

(standard error 0.033). When I use an identical specification in the North

Carolina sample, the coe�cient is 0.220 (0.021).

Columns 4-6 of Table 1 suggest that sample construction may be a con-

tributing factor. As noted earlier, CFR’s estimates exclude teachers with

missing predicted VA scores from the independent variable and exclude their

students from the dependent variable. There is reason to expect that the

sample selection created by the latter exclusion induces a positive correlation

between average prior-year scores of the remaining students and the change in

average predicted VA of the remaining teachers.

To see this, consider a school-grade cell with two veteran teachers in t� 1,

labeled A and B. Suppose that teacher B leaves after the year and is replaced

in t by teacher C, who herself remains for only one year. Teacher C is excluded

from CFR-I’s calculation of Qsgt, which therefore equals the predicted VA of

teacher A. Because information is available for both teachers in t� 1, Qsg,t�1

equals the average predicted VA of A and B. Thus,

�Qsgt = µ̂At �
1

2
(µ̂A,t�1 + µ̂B,t�1) . (6)

Approximating µ̂jt = µ̂j,t�1 = µ̂j,21 this reduces to �Qsgt =
1
2 (µ̂A � µ̂B). This

20The first and last points appear to drive the upward slope in this Figure. But this is
an illusion – the slope is similar (and remains highly significant) when the extreme changes
are excluded.

21
µ̂jt and µ̂j,t�1 are constructed from the same data, the average residual scores of teacher

j’s students in years other than t and t�1. The best-prediction weights for year t di↵er from
those for t� 1, however, placing more weight on t+ 1 residuals and less on t� 2 residuals.
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is greater than zero if teacher A’s predicted VA is higher than that of teacher

B, and less than zero if B is predicted to be better than A.

Consider the former case, where µ̂A > µ̂B and �Qsgt > 0. We can draw

the following probabilistic inferences:

• Teacher A is likely an above average teacher. That is, E [µA | µ̂A > µ̂B] >

E [µ].

• Teacher C is likely worse than teacher A: E [µC | µ̂A > µ̂B] = E [µ] <

E [µA | µ̂A > µ̂B].

• Students with higher prior-year test scores tend to be assigned to teachers

with higher predicted VA (see Appendix Table 2), in both CFR’s district

and in North Carolina. Thus, teacher C likely is assigned students with

lower prior-year scores than teacherA: E
h

A

⇤
i,t�1 | j (i, t) = C, µ̂A > µ̂B

i

<

E

h

A

⇤
i,t�1 | j (i, t) = A, µ̂A > µ̂B

i

.

• The exclusion of teacher C’s students from the calculation of mean

prior-year scores in year t biases this upward relative to the whole-

school average, with a similar e↵ect on the change from t � 1 to t:

E

h

A

⇤
i,t�1 | j (i, t) = A, µ̂A > µ̂B

i

> E

h

A

⇤
i,t�1 | µ̂A > µ̂B

i

.

Each of these inferences is only probabilistic, but they all hold on average. A

parallel argument implies that when �Qsgt < 0, the change in mean prior-

year scores is biased downward. This implies that sample selection creates a

positive correlation between the measured values of�Qsgt and mean prior-year

scores when students whose teachers are missing VA scores are excluded.

To examine this empirically, Columns 2-4 of Table 2 vary the sample used

for construction of the dependent variable (the change in mean prior-year

scores) and the independent variable (the change in mean predicted VA of the

school-grade’s teachers). In Column 2, teachers observed only in years t � 1

and/or t are assigned predicted VA of zero and included in the independent

variable. The coe�cient here is similar to that in Column 1.

The approximation is thus inexact. But the di↵erence is very small.
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In Column 3, these teachers are excluded from the independent variable,

but their students are included in the dependent variable. Here, the coe�-

cient is much reduced. This is consistent with the above intuition that sample

selection in the group of students included in the dependent variable creates

a positive bias in the quasi-experimental regressions. However, it remains sig-

nificantly di↵erent from zero. The coe�cient grows again in Column 4, where

all classrooms are included in both dependent and independent variables.22

The contrast between Columns 3 and 4 is inconsistent with CFR-I’s argument

that the inclusion of teachers with missing predicted VA scores attenuates the

coe�cient. Rather, the bias associated with the exclusion from the dependent

variable of students whose teachers do not have predicted VA scores appears

to be a much more important factor. However, the significance of the Column

4 coe�cient indicates that sample selection does not fully account for the ev-

ident association of the change in predicted VA with the change in students’

lagged scores.

Given the evidence that the change in the average measured VA of grade-

g teachers is correlated with the change in students’ prior-grade scores, it is

natural to wonder about dynamics in prior years, both in earlier grades for

the same students and in earlier cohorts. Unfortunately, it is challenging to

measure these dynamics, as the “treatment” is not observed directly but in-

ferred from student outcomes in prior years. In many cases the same students’

scores will be used for both dependent and independent variables, potentially

creating spurious correlations. Nevertheless, I have been able to conduct some

exploratory analyses using VA measures constructed only from years outside

of the longer {t� 3, t� 2, t� 1, t} window. These indicate that the cohort-

over-cohort change in average grade-g teacher VA is correlated with the change

in cohort scores in grades g � 1, g � 2, and g � 3. The evidence regarding be-

tween cohort, within school (or within school-grade-subject) trends in student

22For comparability to earlier columns, the Column 4 sample is restricted to school-grade-
year cells where at least one teacher has non-missing predicted VA. The comparison between
Columns 3 and 4, where the only di↵erence is whether teachers with missing predicted VA
scores are included in the independent variable, is inconsistent with CFR-I’s argument that
the inclusion of these teachers attenuates the coe�cient.
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performance is less clear – while the t � 1 cohort’s achievement history is

correlated with �Qsgt, there is little relationship between �Qsgt and student

achievement changes in prior cohorts. The apparent association between the

change in teacher VA and the t � 1 to t change in prior-grade achievement

evidently reflects idiosyncratic cohort-level shocks rather than ongoing school-

by-grade-level trends.

5 Quasi-Experimental Estimates Under A Se-

lection on Observables Assumption

The observed association between teacher switching and changes in student

preparedness limits the credibility of quasi-experimental estimates. The situa-

tion is similar to a randomized experiment, where the supposedly randomized

treatment is found to be correlated with subjects’ pre-determined character-

istics. In such a situation, the most defensible estimator controls for the pre-

determined characteristics that are correlated with treatment.23 If selection

into treatment depends only on the observed characteristics, the estimated

treatment e↵ect can be unbiased, though if this unverifiable assumption does

not hold then there may be bias of unknown sign and magnitude.

I begin my exploration of selection-on-observables specifications with a

graphical analysis. Figure 1, Panel C shows a binned scatter plot of the

di↵erence-in-di↵erence in average student scores – the change from the t � 1

cohort to the t cohort in the growth in mean scores between grades g � 1 and

g – against the predicted change due to changes in the teaching sta↵ in the

school-grade cell. As in Panels A and B, the scatterplot is quite linear. But

the slope is 0.847, with a standard error (estimated from the micro-data) of

0.014. This is statistically and substantively less than one, indicating that the

23In personal communication, CFR suggest that the coe�cients in Table 2 could reflect
fluctuations in students’ grade-g � 1 scores that do not persist into grade g, implying that
controls for observables are not necessary. But they do not o↵er any empirical evidence
for this. As in all non-experimental analyses, estimates without controls could be unbiased
even when units are non-randomly selected into treatment, but this is in general unlikely.
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VA-based measures over-predict the change in student achievement growth

and thus that the VA scores are biased by student sorting.

By focusing on growth scores, this plot assumes that end-of-grade scores

rise one-for-one with lagged scores. Regression specifications that loosen this

constraint are presented in Table 3. Panel A reports results from the North

Carolina sample, while Panel B contains results from identical specifications

reported by CFR-I, where available. In Columns 1-4, I follow CFR-I’s preferred

strategy of excluding classrooms with missing predicted teacher VA, while

Columns 5-8 include these classrooms with the teacher’s predicted VA set to

zero.

Columns 1, 5, and 7 present estimates without controls for changes in

student observables. The first two of these repeat the specifications from

Table 1, Columns 1 and 4, respectively. Column 5, following CFR-I, uses year

fixed e↵ects; Column 7 repeats the specification with the school-by-year e↵ects

used in Column 1. As before, the coe�cient is close to one in Column 1, but

notably smaller than one in Columns 5 and 7.

CFR-I present only one specification that controls for observables. This

is reported in Column 2. It includes cubic polynomials in the change in the

mean prior score and mean prior other-subject score, as well as leads and

lags of �Qsgt. Results are quite similar to those in Column 1. The lead and

lag terms may be endogenous, however. CFR-I construct �Qsgt based only

on data from outside the {t� 1, t} window used to compute the dependent

variable, to avoid mechanical correlations between teacher VA and student

outcomes. But the lead, �Qsg,t+1, is based in part on data from t� 1 and the

lag, �Qsg,t�1, is based in part on data from t.24

Column 3 presents an estimate that includes the polynomials in mean

prior scores but excludes the lead and lag of �Q. The key coe�cient is much

reduced here, to 0.895.25 Column 4 further restricts the controls, replacing

24The coe�cient on the lead term, �Qsg,t+1, is 0.269 (standard error 0.016). Taken
literally, this is a failed falsification test, as teachers who arrive in t+1 should not have any
e↵ect on scores in t. But the mechanical correlation deriving from the use of overlapping data
to construct �Qsg,t+1 and �Ā

⇤
sgt counsels against taking this failure, or the specification

as a whole, too seriously.
25The Column 3 estimate is essentially unchanged when the sample is restricted to that

22



the cubic polynomials in the same-subject and other-subject prior scores with

a single linear control for the same-subject mean prior score. This has little

e↵ect relative to the richer specification. I thus restrict attention in all further

analyses to specifications with linear controls.

In Columns 5-8, I include all classrooms in the means used to construct

the dependent and independent variables, assigning predicted VAs of zero to

teachers without enough data to construct more informed predictions. As

noted earlier, even without controls this approach yields a coe�cient of 0.866

(in the North Carolina sample) or 0.877 (in CFR-I’s sample) when year fixed

e↵ects are controlled, and coe�cient of 0.818 (in the North Carolina sample)

when school-year e↵ects are included. All are significantly di↵erent from zero.

Columns 6 and 8 show that both of the North Carolina estimates fall when

mean predicted scores are controlled, though the decline is smaller than when

classrooms with missing predicted VA scores are excluded.

CFR, responding to an earlier draft of this paper, suggested that the as-

sociation between the change in VA and the change in prior-year scores could

be mechanical, deriving from the use of overlapping data to estimate the two

variables (CFR 2014c). Because the prior-year scores of t � 1 students were

obtained in t � 2, and t � 2 data is used to predict teachers’ VA, shocks to

t� 2 outcomes could potentially induce a spurious association between �Qsgt

and the t� 1 to t change in students’ prior-year scores.

The most straightforward way to address this is to compute VA predictions

for t� 1 and t that exclude data from t� 2 as well as from t� 1 and t. There

is no overlap in the data used for these “leave three out” predictions and

that used to measure the change in students’ prior-year scores, and thus no

mechanical association. I present results from this specification in Appendix B.

I also explore there other specifications suggested by CFR (2014c) to remove

mechanical e↵ects. Results are quite robust. The leave-three-out estimates

indicate, if anything, a stronger association between �Qsgt and the change in

lagged outcomes than in Table 2, and a smaller �Qsgt coe�cient in the key

prediction bias specification, controlling for lagged outcomes, than in Table

in Column 2 (which excludes observations for which the lead or lag of �Q is not available).
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3. Other specifications yield small di↵erences in results, and in a few the

estimated “e↵ect” of �Qsgt on the change in students’ lagged scores becomes

statistically insignificant. But the quasi-experimental estimates of the e↵ect

on �Ā

⇤
sgt, controlling for the change in lagged scores, are always significantly

below one.

Across all the specifications I have estimated, results are quite consistent:

In any specification that attempts to control for changes in student observables

– particularly those induced by sample selection in the construction of school-

grade averages – the key quasi-experimental coe�cient is significantly lower

than one. Estimates are generally near 0.9 when classrooms with missing

teacher VA predictions are excluded and around 0.8, or even a bit smaller,

when they are included. My preferred specification is in Table 3, Column 8.

This includes all classrooms, controls for lagged achievement, and identifies

the e↵ect only within school-by-year cells; it yields an estimate of the key

coe�cient of 0.800 (standard error 0.021). As I discuss below, in Section 7,

this indicates a substantively important amount of bias.

6 Long-Run E↵ects

The evidence presented above that the results of CFR-I’s analysis of student

end-of-grade test scores are sensitive to the inclusion of controls suggests that

further investigation is warranted of CFR-II’s analysis of the e↵ects of teacher

VA on students’ longer-run outcomes such as college graduation or earnings.

CFR-II present two sets of analyses of longer-run outcomes. The first

set, and the ones that they compute for the most outcomes, are “cross-class

comparisons,” simple regressions of class-level mean long run outcomes on the

teacher’s predicted VA with controls. The second estimates, presented for a

few outcomes, are quasi-experimental analyses akin to those explored above. I

reproduce both. I begin in Subsection 6.1 with a discussion of the identification

problem and the implications of non-random sorting of students to teachers.

I then present, in Subsection 6.2, estimates of the long-run e↵ects of North

Carolina teachers, focusing on the sensitivity to the selection of controls and
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to the estimation strategy.

6.1 Methods

A very simple model for students’ long-run outcomes is:

Yi =
X

t

⌧j(i,t)t + ⌘i, (7)

where Yi is the outcome (e.g., high school graduation) for student i; j (i, t) is

the identity of the student’s teacher in year t; ⌧jt is the causal e↵ect of teacher

j on the long-run outcomes of her year-t students, holding constant other

teachers’ e↵ects; and ⌘i is a residual that includes all non-school influences on

the outcome.

CFR-II argue that direct estimates of the ⌧s using this specification are

biased, because classroom assignments are dynamic. They focus on specifica-

tions that consider the impact of one teacher at a time. (7) can be rewritten

as:

Yi = ⌧j(i,t)t + ⌘̃it, (8)

where

⌘̃it = ⌘i +
X

s 6=t

⌧j(i,s)s.

(8) suggests a value-added model for teachers’ e↵ects on students’ long-run

outcomes, using observable characteristics measured at the end of year t�1 to

absorb associations between the year-t teacher assignment and the elements

of ⌘̃it. But CFR-II (Appendix A) argue that even this is not possible – that

⌘̃it di↵ers systematically across teachers, even after controlling for observables

measured at the end of year t � 1. They suggest that this is attributable to

unobserved, permanent family characteristics (e.g., family connections) that

are important determinants of Yi and that are non-randomly distributed across

teachers. Such sorting would seem to preclude estimation of teachers’ e↵ects on

test scores as well, but CFR-II speculate that these family characteristics might

not be correlated with test scores conditional on lagged scores, permitting the
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estimation of test score VA.

As an alternative to estimating earnings VA, CFR-II focus on estimating

the coe�cient of the infeasible regression of teachers’ long-run impacts on their

test-score impacts:

� ⌘ cov (µjt, ⌧jt)

var (µjt)
. (9)

Substituting in to (8), one obtains:

Yi = µj(i,t)t�+ ⌘̌it, (10)

where ⌘̌it = ⌘̃it +
⇣

⌧j(i,t)t � µj(i,t)t�

⌘

and the latter term is by construction

orthogonal to µj(i,t)t. Three challenges arise in using a specification like (10)

to estimate �:

First, ⌘̃it includes the e↵ects of the student’s other teachers, in years s 6= t.

Insofar as µj(i,t),t is predictive of ⌧j(i,s)s, where j (i, s) represents the teacher

assigned to student i year s 6= t, this will load into the estimated � coe�-

cient. CFR-II re-define the coe�cient of interest to include the projection of

subsequent teachers’ earnings e↵ects onto the year-t teacher’s test score VA,

labeling the reduced-form coe�cient . 26

Second, other components of the error term are likely correlated with µjt.

CFR-II find that when students’ predetermined characteristics (including vari-

ables measured from tax data, such as their parents’ income) are used to

predict the students’ long-run outcomes Y , the resulting predictions vary sys-

tematically across classrooms, even after controlling for the X variables used

in the test score VA model. There is no reason to think that this variation is

orthogonal to µjt, particularly given evidence (see Appendix Table 2) that µjt

is correlated with students’ predetermined characteristics. Even a rich set of

observables may not be su�cient to absorb the correlation between ⌘̌i and µjt,

particularly given the evidence in Section 5 of this paper that µ̂jt is biased by

student sorting on dimensions not captured by the VA model controls. Sensi-

26See equations 21-23 in CFR-II, online appendix A. CFR estimate that the correlation
between µj(i,t)t and µj(i,s)s, s > t, is relatively small. Insofar as the correlation between
µj(i,t)t and ⌧j(i,s)s � E

⇥

⌧j(i,s)s |µj(i,s)s

⇤

is small as well,  is not much di↵erent from �.
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tivity of the  estimates to the specific choice of controls would make it di�cult

to be confident in a causal interpretation of even a specification with maximal

controls. For this reason, CFR-II emphasize quasi-experimental estimates of

. Of course, the evidence above suggests that even in the quasi-experimental

design it is important to control for observables.

The third challenge to overcome in estimating � (or ) is that µjt is not

observed directly; only noisy estimates are available.27 To fix ideas, suppose

µ̂jt is free of forecast bias from student sorting and that the parameter of

interest is ̃, the µjt coe�cient from an OLS regression of Yi on µjt and Zit:28

Yi = µjt̃+ Zit�̃ + uit. (11)

Standard errors-in-variables results imply that if an unbiased but noisy esti-

mate of µjt is simply substituted into (11), the ̃ coe�cient will be attenu-

ated. Recall, however, that µ̂jt is an Empirical Bayes estimate – an unbiased

predictor of µjt, not an unbiased estimate. But the EB prediction is only

unconditionally unbiased; µ̂jt is not an unbiased predictor conditional on Z.

Thus, while the EB shrinkage factor o↵sets attenuation due to measurement

error when the EB estimate is used on the right-hand side of a regression bi-

variate regression, when controls are added the estimate of ̃ will in general

be attenuated relative to what would obtain were the true µjt included as a

control.

CFR-II adopt a two-step estimator of ̃. They first regress Yi on Zit with

teacher fixed e↵ects but without controls for variation in µjt within teachers

over time, then in a second stage they regress the first-stage residuals on

µ̂jt. Because the second-stage regression does not include controls, the EB

shrinkage factor ensures that the ˆ̃
 coe�cient is not biased by measurement

error in µ̂jt.

27I am grateful to CFR for clarifying this issue for me, in personal communication.
28I use the ̃ notation to emphasize that this may not be the same as the causal coe�cient

 defined above if µjt is correlated with unobserved determinants of Yi conditional on Zit;
for the moment, I am concerned only with the challenge recovering the projection coe�cient
that would be obtained were µjt measured without error.
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But this two-step estimator only identifies the projection coe�cient ̃ if the

first-stage Z coe�cient is a consistent estimate of �̃. This requires restrictions

on the data generating process. In particular, ̃ would be identified if:

• Zit � Z̄j is uncorrelated with µjt � µ̄j, where Z̄j and µ̄j are the teacher-

level means (across students and years) of Zit and µjt, respectively.

• The within-teacher regression of Yi � µjt̃ on Zit is identical (in proba-

bility limit) to the between-teacher regression of Ȳj � µ̄j̃ on Z̄j.

The first of these specifies that within-teacher “drift” in value-added be unre-

lated to any change in (observable) student assignments. The second specifies

that within-teacher and between-teacher variation in measured student char-

acteristics Z must be equally predictive of student outcomes net of teacher

quality.

This last is quite restrictive. Consider that both teachers and students are

clustered within schools and school assignments are decidedly non-random.

Insofar as clustering depends on unobserved factors (e.g., family income or

wealth) that are imperfectly proxied by Zij, one expects the school mean of Z

to be a better signal of the average long-run prospects of the school’s students

than is the deviation of a student’s Z from her school mean for her individual

prospects. If so, CFR-II’s two-step estimator under-controls for the between-

teacher variation in Z that is the biggest threat to identification of ̃.

Fortunately, the two-step approach is not the only way to estimate ̃ with-

out bias from mismeasurement of µjt. There are at least two other options,

each of which requires fewer auxiliary assumptions about the data generating

process than does the two-step approach. First, one can construct an alterna-

tive Empirical Bayes predictor of µjt that is suitable for use in the multivariate

regression, controlling for Z. Where CFR’s EB predictor shrinks the observed

performance of the teacher’s students toward the grand mean E [µjt] and is

an unconditionally unbiased predictor of µjt, E [µjt | µ̂jt] = µ̂jt, the alternative

shrinks toward E [µjt |Zit] and is an unbiased predictor conditional on Zit:

E [µjt | µ̌jt, Zit] = µ̌jt. This approach is potentially complex in the presence of

“drift” in VA, and I leave it to future work.
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Second, and simpler, one can use methods for correcting for the influence

of measurement error. I pursue this approach below. Specifically, I estimate

a two-stage least squares regression of Yi on the average residual score of the

teacher’s students in t, Ājt, and Zit, instrumenting for the former with CFR’s

EB predictor, µ̂jt.29 Insofar as the simple OLS regression of Yi on µ̂jt and

Zit is biased by mismeasurement of µ̂jt, this 2SLS estimator should undo the

bias. It is thus consistent under more general conditions than the restrictive

assumptions required for consistency of CFR’s two-step estimator. Evidence

that CFR’s two-step estimates diverge from the 2SLS estimates would suggest

that these assumptions are not satisfied and that the former are inconsistent.

6.2 Results

I present cross-class analyses of long-run e↵ects in Columns 1-5 of Table 4.

Controls for observables are of undisputed importance here, as students are

not randomly assigned to classrooms (Rothstein, 2010) and in both CFR-I’s

sample and the North Carolina data students with higher prior scores tend to

be assigned to teachers with higher predicted VA (see Appendix Table 2).

I present results without controls in Column 1. Teacher predicted VA is

strongly positively correlated with each of the five distal outcomes I consider.

A one standard deviation increase in an elementary teacher’s predicted VA is

associated with a 0.74 percentage point increase in her students’ high school

graduation; a 0.86 percentage point increase in college plans; a 3.42 percentage

point increase in 4-year college plans; a 0.046 increase in high school GPA, and

a 1.34 rank increase in standing within the high school class.

But these associations combine student sorting and teachers’ causal e↵ects.

In Column 2, I present estimates using CFR-II’s two-step method to control

for classroom-level mean prior scores and other characteristics (e.g., free lunch

status). Across outcomes, the coe�cients are reduced by one-half to two-

thirds.

Column 3 presents traditional multivariate regressions, controlling directly

29Recall that µ̂jt is computed from test score residuals from years other than t, so mea-
surement error is independent of that in Ājt.
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for classroom characteristics. Estimates are about one-third smaller than in

Column 2. Column 4 adds teacher-level means of each of the student-level

observables. This reduces the coe�cients by about one-sixth more, consistent

with the idea that between-teacher variation in observables is more predictive

of outcomes than is within-teacher variation.

The estimates in Columns 3 and 4 might be biased downward due to mea-

surement error in the unconditional Empirical Bayes VA measure, while those

in Column 2 might be biased upward by the failure to fully control for observ-

ables. Column 5 presents 2SLS estimates where the VA measure is used as an

instrument for the mean residual test score in the class. As discussed above,

this is an alternative to CFR’s two-step estimator that is consistent under less

restrictive assumptions. 2SLS estimates are essentially identical to those in

Column 4, suggesting that measurement error in µ̂jt is not a major problem.

Like that column, they are much smaller than the estimates in Column 2,

indicating that the assumptions needed to rationalize the two-step estimator

are not satisfied here and that the Column 2 estimates fail to fully control for

observables.30

The estimates in Column 5 control only for the VA model covariates, as

these are all that are available in the North Carolina data. CFR-II (Table

2, Column 2) present estimates that add controls for parents’ characteristics

extracted from tax returns. They find – using the non-standard two-step

estimator – that e↵ects of teachers’ predicted VA on college-going fall noticably

when the additional covariates are included. As I do not have access to these

additional controls, the more fully controlled estimates in Columns 4 and 5 of

Table 4 should be seen as an upper bound to teachers’ causal e↵ects. Moreover,

it is di�cult to be confident that even CFR-II’s expanded control vector fully

eliminates student sorting bias, so causal interpretation of the estimates is

tenuous.

I explore quasi-experimental estimates of the e↵ect of teacher predicted VA

on longer-run outcomes in Columns 6 and 7 of Table 4. Column 6 presents

30First stage coe�cients are nearly exactly one, again indicating that the EB shrinkage
factors nearly perfectly o↵set attenuation due to measurement error in µ̂jt.
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estimates without controls, while Column 6 adds a control for the change in

the school-grade-subject-year mean prior-year test score.31

Even without controls, in Column 6, the quasi-experimental estimate is

significant only for high school graduation. Two of the other coe�cients are

near zero, while the other two remain substantial but not large enough to

distinguish from zero.32 When the control for student sorting is added, the high

school graduation coe�cient falls by about half and ceases to be significant,

and all of the other coe�cients also fall substantially in magnitude.

7 Conclusion

This paper has implemented CFR-I’s test for bias in teacher VA scores, and

CFR-II’s analysis of long-run outcomes, in data from the North Carolina public

schools. All of CFR-I’s key reported results are successfully replicated in the

North Carolina sample. In particular, CFR-I’s preferred quasi-experimental

test indicates no bias in measured teacher VA from within-school, between-

teacher sorting of students to classrooms, just as in their sample.

I also reproduce the failure of one of CFR-I’s specification checks, aimed at

detecting the importance of sample selection to the results: When all teachers

and students, rather than just the classrooms for which predicted VA scores

can be constructed, are included in the sample, the key coe�cient falls and the

null hypothesis is rejected. I argue that the inclusion of all classrooms allows

for a closer comparison of mean achievement between years.

Further investigation shows that teacher switching does not create a valid

quasi-experiment in North Carolina, even when all classrooms are included.

Teacher turnover is associated with changes in student quality, as measured by

the students’ prior-year scores. When changes in observed student quality are

31In contrast to CFR-I’s preferred specifications for end-of-year scores, CFR-II’s samples
for analyses of long-run outcomes include teachers observed only once, with predicted VA
set to zero. I follow this decision.

32Several of the long-run outcomes, GPA and class rank in particular, are available only for
a few cohorts, limiting the number of observations that can be used in the quasi-experimental
analyses of cohort-to-cohort changes.
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controlled, in either the CFR-I sample of teachers with non-missing predicted

VA or the fuller sample that includes imputed VA scores, the key coe�cient

is between 0.8 and 0.9, precisely estimated, and highly significantly di↵erent

from zero. The estimates that include all teachers, which I regard as more

credible, are at the bottom of this range. They imply, in CFR-I’s terminology,

forecast bias of about 20%.

Finally, I revisit CFR-II’s estimates of the e↵ects of teacher VA on stu-

dents’ long-run outcomes. CFR-II find that the estimated e↵ects in cross-

sectional regressions on observational samples are modestly sensitive to con-

trols for student observables. I show that CFR-II’s methods under-control for

di↵erences in student observables across teachers, and that more conventional

methods indicate substantial sensitivity in the North Carolina sample. My

quasi-experimental estimates with controls for changes in student quality in-

dicate no statistically significant e↵ects on end-of-high-school outcomes, and

yield point estimates that are uniformly smaller (more negative) than in the

specifications without controls that CFR-II report.

Unfortunately, the North Carolina data do not provide as rich information

about students’ family backgrounds or longer-run outcomes as are available in

CFR-II’s data. I thus cannot fully explore teachers’ long-run e↵ects. But my

results are su�cient to re-open the question of whether high-VA elementary

teachers have substantial causal e↵ects on their students’ long-run outcomes,

and even more so to call into question the specific magnitudes obtained by

CFR-II’s methods.

None of the tests that CFR-I report – with the exception of the failed

specification check discussed above – would identify the violations of the quasi-

experimental research design that I diagnose here. Where I am able to estimate

the specifications that they report, I obtain substantively identical results

in the North Carolina sample, and indeed CFR have confirmed (in personal

communication) that many of my key results obtain in their data. It thus

seems likely the remainder would generalize across samples as well. At a

minimum, pending further evidence there is no grounds for confidence in the

unbiasedness of VA measures, in the district that CFR study or elsewhere.
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It is worth considering whether the statistically significant bias detected in

the North Carolina sample is substantively important. In a simple model, the

quasi-experimental coe�cient equals the ratio of the variance of teachers’ true

causal e↵ects to the variance of the sum of the causal e↵ects and the component

of student sorting bias that is constant across a teacher’s classrooms. Thus,

my results imply that the variance of the permanent component of student

sorting bias is between 11% and 25% of the variance of teachers’ true e↵ects.

The first of these is in the middle of the range that Rothstein (2009, 2010)

established as consistent with the data in simulations that used the amount

of observable sorting to bound the amount of sorting on unobservables, while

the second is closer to the top of the range that Rothstein (2010, Section VI)

argued was plausible.33 As my estimates are quite precise, I can rule out both

the very upper end of that range, corresponding to biases that swamp the

signal in VA scores, and the lower end, corresponding to essentially no bias.

This suggests that policies that use VA scores as the basis for personnel

decisions may be importantly confounded by di↵erences across teachers in the

students that they teach, though the problem is not likely to be as severe as

would be implied by the worst-case scenarios consistent with prior evidence.

Teachers who have unusual assignments may be rewarded or punished for this

under VA-based evaluations. This will limit the scope for improving teacher

quality through VA-based personnel policies.

An important, and unresolved, question is whether student sorting biases

will be worse in high-stakes settings. When pay or continued employment

depend on a high VA score, rational teachers would hesitate to accept assign-

ments that will predictably depress their scores. If VA-based evaluations make

it harder to sta↵ certain types of classrooms, this can depress overall educa-

tional e�ciency conditional on average teacher quality, potentially o↵setting

any benefits obtained through increases in the latter.

33CFR-I’s VA model is most similar to Rothstein’s (2010) “VAM2.” 10% prediction bias
corresponds almost exactly to the estimate in Table 7, Panel B of Rothstein (2010) (i.e.,
to a ratio of the standard deviation of the bias to that of the true e↵ect of 0.33), while
20% prediction bias is midway between the Panel C and Panel D estimates (with a ratio of
standard deviations of 0.5).
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Figure'1'
Effects'of'Teacher'Turnover'on'End5of5Year'and'Prior5Year'Scores'
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!
Notes:!These!figures!are!constructed!using!the!sample!used!in!Table!1,!Column!2,!pooling!all!grades!
and!subjects.!Each!presents!a!binned!scatter!plot!of!cohort>to>cohort!changes!in!school>grade>year>
subject!average!scores!against!changes!in!school>grade>year>subject!average!predicted!teacher!VA,!
each!residualized!against!school>year!fixed!effects.!In!Panel!A,!the!score!is!the!end>of>grade!score;!in!
Panel!B,!the!average!score!for!the!same!cohort!the!prior!year;!and!in!Panel!C!the!difference!between!
these.!School>grade>year>subject!cells!are!divided!into!twenty!equal>sized!groups!(vingtiles)!by!the!
change!in!average!predicted!teacher!VA;!points!plot!means!of!the!y>!and!x>variables!in!each!group.!
Solid! lines!present!best! linear! fits!estimated!on!the!underlying!micro!data!using!OLS!with!school>
year!fixed!effects;!coefficients!and!standard!errors!(clustered!at!the!school>cohort!level)!are!shown!
on!each!plot.!
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Table&1.&Replication&of&CFR&(2014a)&teacher&switching&quasi?experimental&estimates&of&forecast&bias

Dependent'variable: Δ'Score Δ'Score Δ'Score'
(Predicted)

Δ'Score''''''
(all'

students)

Δ'Score Δ'Score''''''
(all'

students)
(1) (2) (3) (4) (5) (6)

Change'in'mean'teacher'predicted'VA 1.050 0.981 0.011 0.659
'across'cohorts (0.023) (0.022) (0.011) (0.018)

Change'in'mean'teacher'predicted'VA 0.866 1.203
across'cohorts'(with'zeros) (0.022) (0.028)

Year'fixed'effects X X X X
School'x'year'fixed'effects X X
Grades 3'to'5 3'to'5 3'to'5 3'to'5 3'to'5 3'to'5
#'of'school'x'grade'x'subject'x'year'cells 77,147 77,147 54,567 92,467 77,147 77,147

Source: T4C1 T4C2 T4C4 T5C2
Change'in'mean'teacher'predicted'VA 0.974 0.957 0.004
'across'cohorts (0.033) (0.034) (0.005)

Change'in'mean'teacher'predicted'VA 0.877
across'cohorts'(with'zeros) (0.026)

Year'fixed'effects X X
School'x'year'fixed'effects X X
Grades 4'to'8 4'to'8 4'to'8 4'to'8
#'of'school'x'grade'x'subject'x'year'cells 59,770 59,770 59,323 62,209

Panel2B:2Chetty,2Friedman,2and2Rockoff2(2014a)

Panel2A:2North2Carolina2replication

Notes:'Panel'B'is'taken'from'the'indicated'Tables'and'Columns'of'CFR'(2014a);'Panel'A'is'estimated'
using'the'same'variable'construction'and'specifications'in'the'North'Carolina'sample.'Dependent'
variable'in'each'column'is'the'year[over[year'change'in'the'specified'variable'in'the'school[grade[
subject[year'cell.'In'Column'2,'the'dependent'variable'is'the'fitted'value'from'a'regression'of'end[of[
year'scores'on'parental'education'indicators'(Panel'A)'or'on'a'vector'of'parental'characteristics'taken'
from'tax'data'(Panel'B).'In'Columns'1[3'and'6,'teachers'observed'only'in'years't[1'and't,'whose'
predicted'VA'is'set'to'missing'by'CFR's'code,'are'excluded'from'the'school[grade[subject[year'mean'
predicted'VA;'in'Columns'4'and'5,'they'are'assigned'predicted'VA'of'zero'and'included.'In'Columns'1[
3'and'5,'the'dependent'variable'is'averaged'only'across'students'in'classrooms'whose'teachers'have'
non[missing'predicted'VA;'in'Columns'4'and'6,'all'students'are'included.'See'notes'to'CFR'(2014a),'
Table'4'for'additional'details'about'the'specifications.''Standard'errors'are'clustered'by'school[
cohort.



Table&2.&Teacher&switching&quasi4experimental&effects&on&prior&year&scores

Dependent'variable:

Δ'Prior'Year'
Score

Δ'Prior'Year'
Score

Δ'Prior'Year'
Score''''''''''

(all'students)

Δ'Prior'Year'
Score''''''''''

(all'students)
(1) (2) (3) (4)

Change'in'mean'teacher'predicted'VA 0.134 0.039
'across'cohorts (0.021) (0.017)

Change'in'mean'teacher'predicted'VA 0.121 0.078
across'cohorts'(with'zeros) (0.026) (0.023)

School'x'year'fixed'effects X X X X

Notes:'Dependent'variable'in'each'column'is'the'yearPoverPyear'change'in'mean'prior'year'scores'
in'the'schoolPgradePsubjectPyear'cell.'In'Columns'1'and'2,'this'is'constructed'only'over'classrooms'
with'teachers'with'nonPmissing'predicted'VA'scores.'In'Columns'3'and'4,'all'classrooms'are'
included'in'the'average.'The'independent'variable'is'the'change'in'mean'predicted'VA,'averaged'
over'teachers'with'nonPmissing'predicted'VA'in'Columns'1'and'3'and'over'all'teachers'(assigning'
zero'to'teachers'with'missing'values)'in'Columns'2'and'4.'Specifications'are'otherwise'identical'to'
Table'1,'Column'2.''Standard'errors'are'clustered'by'schoolPcohort.'Sample'size'in'all'columns'is'
77,177'schoolPgradePsubjectPyear'cells.



Table&3.&Sensitivity&of&quasi4experimental&results&to&controls&for&observables

(1) (2) (3) (4) (5) (6) (7) (8)

Change1in1mean1teacher 0.981 0.960 0.895 0.890 0.866 0.820 0.818 0.800
predicted1VA (0.022) (0.017) (0.015) (0.016) (0.022) (0.021) (0.022) (0.021)

Change1in1mean1prior X1(cubic) X1(cubic) 0.677 0.286 0.273
year1score (0.004) (0.006) (0.006)

Change1in1mean1predicted
endDofDyear1score

School1x1year1fixed1effects X X X X
Lead1and1lag1changes1in1VA X X X
Year1fixed1effects X X
Number1of1cells 77,147 56,783 75,182 77,147 92,467 91,029 92,467 91,029

Source T4,*C2 T4,*C3 T5,*C2
Change1in1mean1teacher 0.957 0.950 0.877
predicted1VA (0.034) (0.023) (0.026)

Change1in1mean1prior X1(cubic)
year1score

School1x1year1fixed1effects X X
Lead1and1lag1changes1in1VA X
Year1fixed1effects X
Number1of1cells 59,770 46,577 62,209

Notes:1Columns111and151are1identical1to1columns111and141of1Table11.1Column121matches1CFR1(2014a),1
Table14,1Column13.1It1and1Column131include1cubic1polynomials1in1the1priorDyear1scores1in1the1same1
subject1and1the1other1subject.1Column121also1includes1the1lead1and1lag1of1the1schoolDgradeDsubjectD
year1change1in1mean1predicted1teacher1VA;1cells1where1this1is1missing1are1excluded.1All1standard1
errors1are1clustered1at1the1schoolDcohort1level.

Panel*A:*North*Carolina

Panel*B:*Chetty,*Friedman,*and*Rockoff*(2014a)

Classes1with1nonDmissing1teacher1VA
All1classes,1assigning101if1VA1

missing

Classrooms1included1in1
schoolDgradeDsubject1

means:



OLS Two'
step

OLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7)

Graduate:high:school:(%) 0.74 0.38 0.24 0.21 0.21 0.36 0.20
N=1,947,791 (0.05) (0.05) (0.04) (0.04) (0.04) (0.18) (0.19)

Plan:college:(%) 0.86 0.35 0.25 0.21 0.22 0.35 0.19
N=1,269,762 (0.07) (0.06) (0.06) (0.06) (0.06) (0.22) (0.23)

Plan:4'year:college:(%) 3.42 1.21 0.75 0.63 0.64 '0.02 '0.35
N=1,269,740 (0.14) (0.10) (0.09) (0.09) (0.09) (0.33) (0.33)

GPA:(4:pt.:scale) 0.046 0.021 0.017 0.014 0.015 0.010 '0.003
N=945,336 (0.003) (0.002) (0.002) (0.002) (0.002) (0.008) (0.008)

Class:rank:(100=top) 1.34 0.62 0.42 0.33 0.34 0.34 0.03
N=943,409 (0.07) (0.06) (0.05) (0.05) (0.05) (0.24) (0.24)

Control:for:student:observables
Classroom:means X X X X
Teacher:means X X
Change:in:school'grade'
subject:mean:prior:year:score

X X

College:at:age:20 0.82 0.86
N=4,170,905 (0.07) (0.23)

Notes::Each:entry:represents:the:estimated:effect:of:a:one:standard:deviation:increase:in:predicted:
teacher:VA:from:a:separate:regression.:Row:headers:indicate:dependent:variables.:Cross'sectional:
regressions:in:columns:1'5:are:estimated:on:classroom'year'subject:means.:Classrooms:for:which:the:
teacher:is:missing:a:leave'one'out:VA:score:are:excluded.:The:number:of:students:included:is:listed:
on:each:row.:In:two'step:estimates:in:Column:2,:the:dependent:variable:is:regressed:on:a:vector:of:
classroom'level:controls,:with:teacher:fixed:effects;:the:teacher:effect:and:residual:are:then:summed:
and:regressed:on:the:teacher's:predicted:VA:without:controls.:In:Columns:3'4:the:dependent:variable:
is:regressed:directly:on:teacher:VA:with:covariates:included:as:controls.:Column:5:instruments:for:the:
classroom's:observed:mean:residual:score:with:the:teacher's:leave'one'out:predicted:VA:(used:as:the:
explanatory:variable:in:Columns:1'4).:Columns:6:and:7:present:quasi'experimental:estimates:for:the:
annual:change:in:mean:outcomes:at:the:school'grade'subject:level.:All:classrooms:are:included:in:
school'grade'subject'year:means,:assigning:teachers:with:missing:VA:values:of:zero.:Column:7:
controls:for:the:mean:prior:year:score.:Estimates:in:Panel:B:are:taken:from:CFR:(2014b),:Table:2,:
Column:1:and:Table:5,:Column:1.:

Table&4.&Sensitivity&of&effects&on&medium6&and&long6run&outcomes&to&controls&for&observables

Panel&A:&North&Carolina&sample

Panel&B:&Chetty,&Friedman,&and&Rockoff&(2014b)

Quasi'
experimental:
regressions

Cross'sectional:regressions


