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1. Introduction

There are contradictory results in nearly all fields of empirical research, and the economics of

education is no exception. In most any subfield in which a relationship between a variable of

interest and test scores is examined, conflicting conclusions across different studies continue

to arise even in topics that have long seen considerable research effort. For example, some

research posits that smaller class sizes yield pedagogical benefits in later grades (Krueger,

1999; Krueger and Whitmore, 2001), while other research claims that the benefits fade very

quickly (Hanushek, 1999; Ding and Lehrer, 2010). Another instance of disagreement is with

value-added models (VAMs), which is an econometric methodology that is typically employed

to obtain estimates of teacher quality proxied via their effect on student test scores. The

validity of this research entered the public eye in 2014, when the landmark case Vergara v.

California debated, inter alia, whether VAMs provided accurate estimates of teacher quality.

Debate continues to rage in this area, with some research supporting the idea (Chetty et al.,

2014a) and some claiming that VAMs suffer from serious flaws (Rothstein, 2009; Rothstein,

2014). An answer to the longstanding debate on the dynamics of the black-white test score

gap also proves to be elusive. The current majority view is that there is a small gap at entry

that quickly grows to be large by third grade (Fryer and Levitt, 2004; Fryer and Levitt,

2006), and that a substantial gap exists in the later grade (Clotfelter et al., 2009). However,

some scholars have argued that the test score gap is moderate at kindergarten entry but

instead shrinks after first grade (Murnane et al., 2006), or that it is large throughout (Bond

and Lang, 2013a). There exist other persistent disagreements in subjects relating to test

scores.

Recent research has potentially found a source of some of these contradictions in the

literature. It has long been accepted by psychometricians that test scores only have ordinal

properties, since these scores are monotonic transformations of some unobserved true mea-

sure of ability in a subject (Lord, 1975). Moreover, any monotonic transformation of a test

score scale is also a valid scale (Cunha and Heckman, 2008). In light of these facts, Bond

and Lang (2013b) perform a bounding exercise on the black-white test score gap. Using an

algorithm to generate monotonic transformations of the original test score scale to maximize
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and then minimize the growth of the test score gap, they find that they find that the bounds

they create are almost completely uninformative, and that the results of Fryer and Levitt

(2004, 2006) of an increasing gap starting from kindergarten likely reflect scaling decisions.

In this paper, I outline a method to normalize test score scales that is invariant to any

monotonic transformation. The primary strength of the proposed metric is that the same

results will be obtained as if one had access to the latent true test scores themselves, since the

observed test score is a monotonic transformation of the latent true scale. The measure has

interval properties and therefore solves the ordinality problem. An additional benefit of this

metric is that it solves a self-reference problem which caused difficulties when comparing

coefficient magnitudes between different samples that has heretofore gone unnoticed; this

issue was a mechanical side effect of employing the usual normalization of transforming test

scores into z-scores for analysis. Due to these desirable properties, the proposed measure can

be employed to produce comparisons that are valid across different samples and different test

score scales. The metric has the additional benefit of being based on unconditional quantile

regression (Firpo et al., 2009), which allows investigators to examine any quantile of interest.

I illustrate the use of the measure with a value-added model and in examining the black-

white test score gap. In the case of the latter, I find that the results at the mean in Fryer

and Levitt (2004, 2006) and Clotfelter et al. (2009) to be very similar to the results of this

new measure at the median; I additionally find substantial heterogeneity in the black-white

test score gap across different quantiles in many of the different grades examined.

This paper is organized as follows. Section 2 places the discussion into context by exam-

ining scaling issues related to test scores, and then explains the ordinality and self-reference

problems. The proposed measure is outlined in Section 3. The application to value-added

models is contained in Section 4, while the application to the black-white test score gap is

undertaken in Section 5. The paper concludes with a brief discussion in Section 6.
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2. Background

2.1. Scaling and Measurement Issues

Briefly, numbers come in one of four types of scales (Stevens, 1946). The first is a nominal

scale, which consists of numbers used to designate particular things, such as 1 for a bus

and 2 for a train. The second type of scale is an ordinal scale. As its name implies, order

matters. The magnitude of the differences between equal intervals is unknown: for example,

consider a happiness scale where a person can respond with a number from 1 to 3 with 1

being “unhappy” and 3 designating “happy”. The difference in happiness between 1 and 2

may be different than that of between 2 and 3; this is the case whether or not we assume

happiness is a latent continuous variable and every respondent selected the same thresholds

for each response. The third is an interval scale, wherein the distance between numbers

matters: the difference between 5 and 10 is the same as the difference between 80 and 85.

An example is temperature. One does not say that 30 degrees is twice as warm as 15 degrees;

for a scale to have this property, it needs to be a ratio scale, the last of the four types of

scales 2. Each subsequent scale includes the listed properties of all the prior listed scales in

the order given above; for example, an ordinal scale includes the properties of the nominal

scale.

Test scores are subject to rather unique issues relating to measurement. Most agreed-

upon scales that are used in the sciences have readily observable effects on the physical

environment: weight is a function of force on an object due to gravity, time is expressed in

terms of how long it takes for the earth to orbit the sun, and temperature has until recently

been defined as the length of a column of mercury. By contradistinction, academic test

scores do not have an effect on the physical environment and reference only the test they are

measured from; therefore, what they represent is more difficult to quantify. The development

of Item Response Theory (IRT) to scale tests, which produces scores that are estimates of

the underlying true trait of interest (e.g. mathematical ability), was a step towards more

meaningful inference. These test scores allow for both relative and absolute performance

2However, ratios of differences are possible with interval scales: for example, one can say that the difference
in temperature between 10 degrees and 20 degrees is twice that of between 30 degrees and 35 degrees.
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measures; for example, a verbal score of 800 on the GRE verbal indicates an eloquent in-

dividual, while a score of 200 would signal a person as inarticulate. However, IRT is not a

catholicon, as the scoring scales still only refer to the tests themselves. Comparing scores

on different scales which measure the same cognitive trait or ability presents an additional

challenge: for example, consider comparing a verbal score of 400 on the SAT with a reading

score of 9 on the ACT.

Many of the problems associated with test scaling are at least partially assuaged using test

score normalization. The usual practice in analyses involving test scores is to convert them

into z-scores (e.g. Fryer and Levitt 2004, 2006; Rivkin et al., 2005; Chetty et al., 2014a);

this is done by subtracting the mean from each score and then dividing by the standard

deviation. Normalizing test scores in this fashion accomplishes two things. First, it provides

concreteness to the test scores since the coefficient estimates in a model using normalized

scores describe magnitude in terms of their variability. Second, it allows the results to be

compared across tests that measure the same underlying trait but are on a different scale.

It is important to note that transforming a dependent variable into a z-score produces

the same parameter estimates (except for the intercept term) as dividing the coefficient

estimates after the regression is run by the standard deviation of the dependent variable.

The reason is that adding or subtracting a constant to y for every observation only affects

the intercept term in a linear regression because the vector of ones for the constant is not

correlated with any of the other explanatory variables, and dividing y by a constant simply

scales down the coefficient estimates: this can easily be seen by replacing y in the formula for

the OLS coefficient estimate of beta with y/k where k is a constant. Moreover, t-statistics

(and thus levels of significance) are also the same despite this transformation since the they

are also invariant to these changes in y for the same reasons3. Therefore, the step at which

normalization occurs is immaterial for inference.

3Since the correct t-statistic and coefficient estimate can be obtained ex post, so can the standard error
of the normalized coefficient estimate.
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2.2. The Ordinality Problem

Nearly all research in economics and education that uses test scores as a dependent variable

implicitly makes the following assumptions: (i) there exists an unobservable score A that

represents ability in a subject; (ii) A has interval properties; (iii) observable test scores T

have interval properties since they are an affine transformation of unobserved ability A: T =

mA+b, where m and b are parameters. The first two assumptions are uncontroversial and are

in agreement with the psychometric literature. However, the third is potentially problematic

because psychometricians almost universally assume instead that T is a monotonic (rather

than affine) transformation of A; that is, T = f(A) for some unknown monotonic function

f (Lord, 1975). This belief is partially based on the fact that the IRT test scores are

not uniquely identified: for any set of estimated test scores T , any arbitrary monotonic

transformation of these test scores g(T ) produces scores that fit the IRT model with the

same likelihood; therefore, latent ability in a subject or skill A cannot be identified.

TABLE 1 here

Table 1 illustrates the ordinality problem. Three different values of the latent true test

score A are listed, and there is a constant difference between each step. Suppose that a

test is created to measure the underlying trait that A represents. Under one monotonic

transformation, the first step is larger than the second; with the other, the second step is

larger than the first. While each monotonic transformation preserves ordinality, the interval

properties dissipate; even if the monotonic transformation f were affine, it would be impos-

sible to determine whether this was the case. Both sets of scores would fit with the same

likelihood.

2.3. The Self-reference Problem

The “self-reference problem” refers to the fact that the magnitude of a coefficient in a

regression whose dependent variable is normalized by some function of the variance is affected

by the variance of the explanatory variables (such as group membership dummies). Recall

that in the data generating process (DGP) of a variable of interest, its unconditional variance
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can be decomposed into two separate factors: (i) the variance due to the characteristics of the

observation, and (ii) the variance due to the randomness of the unexplained component. In

terms of what could be estimated given the data, we could think of (i) as the set of observable

characteristics, and (ii) as the unobserved factors and noise. When the unconditional variance

is used to normalize a variable, one is implicitly making use of the sum of both of these

components; in particular, the variance of the covariate of interest itself interacts with its

magnitude in a way that can affect inference. I call this the “self-reference problem”, which

I illustrate below.

Take for example a demographic test score gap. Consider the model with two groups, P

and R. Suppose the DGP is

testscore = β0 + β1D + e (1)

where D is a dummy variable indicating membership in group R, testscore is a scaled test

score, and e is the usual error term that is uncorrelated with D. Therefore, the test score

gap between groups P and R is β1. Let there be two samples, I and II. In sample I, P is 95%

of the sample membership and R is 5%. In sample II, P is 80% of the sample membership

and R is 20%. If we express the test score gap using the scaled test score, both samples will

produce the same OLS estimate for β1 asymptotically. However, if both samples normalize

the test score into a z-score, the coefficient for β1 will be smaller in absolute value for sample

II despite the scaled score gap being exactly the same; this is because the unconditional

variance of the test score in sample II is larger. Of course, it would be misleading to claim

that the test score gap between groups P and R is smaller in sample II simply due to

differences in the proportion of each group.

3. Methodology

The metric proposed herein employs the ordinary least squares variation of unconditional

quantile regressions4 as developed by Firpo, Fortin, and Lemieux (2009) to estimate the test

score gap at a given quantile (such as the median) and then normalizes the coefficients of

4There are three different methods to estimate it; Firpo, Fortin, and Lemieux (2009) provide evidence
that they all yield substantially the same results. The OLS variation is the one typically used in practice.
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interest by dividing them with the standard error of the regression; this is in contrast to the

usual method, which instead normalizes the coefficients by dividing them by the standard

deviation of the dependent variable. Unconditional quantile regressions possess a number of

useful invariance properties: for example, t-statistics and R-squared values are invariant to

monotonic transformations of the dependent variable.

This measure solves the ordinality and self-reference problems outlined in the previous

section. By using the standard error of the regression to normalize the coefficients rather

than the standard deviation of the test scores, the problem of coefficient magnitudes being

potentially influenced by the variability in the explanatory variables is sidestepped. This

measure’s invariance to monotonic transformations means that the same regression results

will be yielded as if one had access to the true set of test scores. Since this methodology

produces estimates at given quantiles, it implicitly relaxes the assumption that the effect of

interest is the same at every quantile of the distribution of test scores.5

I now provide a formal proof of the invariance property. Recall that an unconditional

quantile regression transforms the response variable y as

IF (y; qτ , Fy) = (τ − 1[y ≤ qτ ])/fy(qτ ) ≡ ỹ (2)

where τ is the quantile of interest, qτ is the value of y at the quantile τ , 1[·] is an indicator

function taking the value of 1 if the statement in the square brackets is true and 0 otherwise,

and fy(qτ ) is the density of y at qτ .
6 Observe that the key to many of the invariance properties

of unconditional quantile regressions is the indicator function.

Lemma 1. The term 1[y ≤ qτ ] is the same for any monotonic transformation of y.

Proof. Define y∗ = g(y) and let g be monotonic. Then, τ = Pr[y∗ ≤ j∗] = Pr[g(y) ≤ j∗] =

Pr[y ≤ g−1(j∗)]. Thus, j∗ = g(j), and therefore Pr[y∗ ≤ j∗] = Pr[y ≤ g−1(g(j))] = Pr[y ≤

j], hence j = qτ .

5Of course, the mean effects estimated in the literature could also be interpreted as the average effect of
the covariate of interest across the distribution.

6Note that the influence function used here is not recentered. The use of the influence function rather
than the recentered variation is used to considerably simplify the proof of Theorem 1. Using the recentered
influence function (RIF) in place of the influence function (IF) does not affect the results since qτ is a constant
element for all ỹ; because of this, its only influence on the coefficient estimates is on the constant term, and
thus it can be ignored.
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With this in hand, the invariance property of the proposed measure can now be proven.

Theorem 1. In an unconditional quantile regression model without a lag dependent variable,

the ratio of any regression coefficient to the standard error of the regression is invariant to

any monotonic transformation of the dependent variable.

Proof. Recall that ỹ is the transformed value of y by the IF. By Lemma 1, 1[y ≤ qτ ]

is invariant to monotonic transformations. What is left to show is that the ratio β̂/s is

invariant to changes in fy(qτ ). The value of the ratio is

β̂/s = (X>X)−1X>ỹ/
√
ỹ>Mxỹ(n− k)−1 (3)

where n is the number of observations and k is the number of estimated parameters. Note

that fy(qτ ) scales the values of ỹ by a constant factor. Suppose a monotonic transformation

of y takes place, y∗ = g(y) where g is monotonic, and thus ỹ∗ = θỹ. The ratio is thus

β̂∗/s∗ = (X>X)−1X>ỹ∗/

√
ỹ∗
>
Mxỹ∗(n− k)−1

= (X>X)−1X>θỹ/
√
θỹ>Mxθỹ(n− k)−1

= (X>X)−1X>ỹ/
√
ỹ>Mxỹ(n− k)−1 = β̂/s

where the third equality holds since θ is a scalar. Therefore, the ratio of the unconditional

quantile regression coefficient estimate to the standard error of the regression is invariant to

any monotonic transformation of y.

Note that the invariance property holds for any quantile of interest. In the case where

a lagged dependent variable is present on the right-hand side, the invariance property holds

only asymptotically. Because of the unknown monotonic transformation of the response

variable, it is necessary to include a polynomial expansion of the lagged response variable in

order to approximate the unknown form of its transformation.

Theorem 2. In an unconditional quantile regression model with a lag dependent variable,
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the ratio of any non-lag regression coefficient to the standard error of the regression is asymp-

totically invariant to any monotonic transformation of the dependent variable.

Proof. Specify the untransformed and transformed unconditional quantile regressions as

y∗1
σ1

= α0 + α1X + f(α2, y
′
1) + ε1 (4)

y∗2
σ2

= β0 + β2X + g(β2, y
′
2) + ε2 (5)

where f and g are polynomial expansions of the response variable. Recall that y′2 = h(y′1) for

some function h that is monotonic and continuous. Therefore, f can be well-approximated

by the polynomial expansion g(β2, y
′
2) = β21y

′
2 + β22y

2′
2 + . . . + β2ky

k′
2 . Recall that y∗2, the

transformed value of y2 by the influence function, is related to the transformed value of y1 by

y∗2 = Ay∗1 and similarly σ2 = Aσ1 for some unknown linear scaling factor A. Thus, estimating

(5) is equivalent to estimating

y∗1
σ1

= β0 + β1X + g(β2, y
′
2) + ε2. (6)

Let My′1 be a projection matrix that projects off the space spanned by the polynomial

expansion of y1. By the Frisch-Waugh-Lovell Theorem (1933, 1963), the estimates of α1 of

the regression

My′1
y∗1
σ1

= α0 + α1My′1X + u1. (7)

will be identical to those in equation (4). Therefore, the estimate of β1 in

My′1
y∗1
σ1

= β0 + β1My′1X +My′1g(β2, y
′
2) + u2 (8)

will be the same as the estimate of α1 in (4) if we have
∑

nMy′1xiju2 = 0: that is, the error

of approximation f(α2, y
′
1)− g(β2, y

′
2) is uncorrelated with the residuals from the linear rela-

tionship between y′1 and X. Since the former is a mathematical object that is asymptotically
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uncorrelated with the later, β1 in (5) is equal to α1 in (4) asymptotically.

4. Application: Value-Added Models

The goal of valued-added models (VAMs) is to measure teacher quality by examining the

test score gains of their students during their tutelage. It is somewhat controversial in that

it is exclusively based on test scores, and many scholars criticize it on this front (e.g. Ewing,

2011; Koretz, 2008). Nonetheless, these models have allowed education economists to come

to substantive policy conclusions. For example, using data from Texas public schools, Rivkin

et al. (2005) find that a class size reduction of ten students yielded a smaller benefit than a

one standard deviation increase in teacher quality. Evidence has begun to accumulate that

students who learn under high quality teachers (as defined by having high value-added) expe-

rience more desirable outcomes in adulthood, such as earning higher salaries and being more

likely to attend college (Chetty et al., 2014b). However, these findings have recently been

challenged (Rothstein, 2014). Analysis concerning value-added has thus far been exclusively

conducted under the assumption that test scores have interval properties.

The currently preferred model of student achievement is the VAM2 model using the

terminology of Rothstein (2010). It is parameterized as follows:

Tit = α +Diβ + γTi,t−1 + εit (9)

where Tit is the student’s test score in grade t, Di is a J vector of dummies indicating which

teacher a student was assigned to, and Ti,t−1 is the student’s test score in the previous grade.

The interpretation of the coefficient on β for the jth teacher is “Controlling for previous

inputs, how much did the average student of teacher j learn this year?”, i.e. the value-added

of that teacher. The VAM1 model drops the lagged term on test scores and replaces the

response variable with ∆Tit ≡ Tit − Ti,t−1, while the VAM3 model is identical to the VAM1

model but adds student fixed effects on the right-hand side.

The VAM2 model is preferred for several reasons. Including a lagged test score as a control

can be thought of as a sufficient statistic for past inputs; that is, the number provides an

accurate summary of what the student has experienced in the prior periods. In their measure
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of value-added, Chetty et al. (2014a) show that controlling for past scores is necessary in

order to obtain unbiased estimates. The primary downside to this specification is that the

effect of past inputs is assumed to decline at a common geometric rate (Todd and Wolpin,

2003). With reference to the methodology proposed herein, the VAM2 specification is the

only option, since VAM1 and VAM3 models can change the ranking of teacher value-added

(Penney, 2014).

4.1. Data

The data employed in this section come from a cohort of students that participated in

Project STAR, an experiment that took place in Tennessee that ran from 1985 until 1989.

The primary goal of the experiment, as its acronym (Student-Teacher Achievement Ratio)

implies, was to determine the effect of class size on student achievement in primary education

(Finn et. al., 2007). A cohort of over 6000 students from 79 schools took part in the

experiment. To qualify for participation, schools required sufficient enrollment to support at

least three different classes per grade. Both students and teachers were randomly assigned to

three different class types, but this randomization took place within schools only. The class

types were as follows: a small class (13 to 17 students), a regular class (22 to 25 students), or

a regular class with a full-time teacher’s aide. Compliance was nearly perfect in kindergarten,

with approximately 0.3% of students enrolled in a class type that was not assigned to them.

However, in first grade and beyond, there were some problems with noncompliance, with

a number of students switching in or out of small classes. Noncompliance was primarily

due to parental complaints or discipline problems. At the end of each academic year, all

participating students were given a battery of academic and non-academic tests. More

detailed overviews of Project STAR can be found in Krueger (1999) and Finn et. al. (2007).

The Project STAR dataset was selected due to its experimental protocol, so that there would

be no fears of bias due to non-random sorting in the teacher value-added estimates.

4.2. Application

In this section, I compare the results of a VAM2 model estimated by OLS using the z-score

transformation with those of a VAM2 model that also includes polynomial terms on the
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lagged test score that is normalized using the proposed metric. The regression I will run for

the later is

Ti1 = α +Diβ + γ1Ti,k + γ2T
2
i,k + γ3T

3
i,k + γ4T

4
i,k + εit (10)

where again the vector β contains the estimates of teacher value-added. The test score

Ti1 is grade 1 test scores in mathematics. The fourth-order polynomial in kindergarten

mathematics test score is employed as the control for past inputs.

The performance of three different teachers are evaluated and contrasted using both esti-

mation methods on the test score data; in addition, regressions results are also be produced

for two transformations of the original data: a square of the original test score, and a square

root of the original test score. Tables 2 and 3 below display the results of this exercise.

TABLE 2 here

TABLE 3 here

Despite different transformations of the test score, all regressions give approximately the

same value for the UQR case, while the OLS normalization produced estimates that are

much more variable. The monotonic transformations in the example are rather tame – more

extreme transformations would further display the robustness of the proposed metric relative

to OLS.

5. Application: Black-White Test Score Gap

The subject of gaps in various outcomes between demographic groups remains a contentious

issue that has attracted considerable attention from academics and policymakers for many

decades. One of the most examined gaps in the education and economics literatures is the

black-white test score gap (e.g. Bond and Lang, 2013a; Bond and Lang, 2013b; Clotfelter et

al., 2009; Fryer and Levitt, 2004; Fryer and Levitt, 2006). It is widely believed that reducing

this gap in test scores is an important step to promoting racial equity in outcomes such as

crime, health, and family structure (Dee, 2005).
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The seminal papers in this literature are the works of Fryer and Levitt (2004, 2006).

Using a nationally representative dataset they find that, inter alia, the black-white test score

gap is almost nonexistent once a small number of controls are taken into account; blacks were

even found to have an advantage over whites in reading test scores at school entry. However,

test score gaps began to emerge by the end of kindergarten, and by third grade, the gaps in

both mathematics and reading were quite considerable even using controls. Clotfelter et al.

(2009), using administrative data from North Carolina, show large persistent gaps between

blacks and whites from third through eighth grade. While there were studies that found

contradictory results (Murnane et al., 2006), most of the literature on the black-white test

score gap finds it to exhibit these patterns.

Bond and Lang (2013b) have recently called this entire body of research into question.

They argue that, once the ordinality of test scores is taken into account, the black-white test

score gap can vary between “there is a small gap in kindergarten that declines thereafter”

to “there is no gap in kindergarten but the gap grows to be significant”. These results are

obtained using a bounding exercise in which test scores are subject to various monotonic

transformations in order to find their growth maximizing and minimizing evolutions. These

results lead the authors to claim that the dynamics of the gap in the literature largely reflect

test score scaling decisions.

The debate as to the evolution of the black-white test score gap, then, requires a metric

that is invariant to monotonic transformations. In this section, I employ the proposed

measure in an attempt to uncover the true evolution of the test score gap.

5.1. Data

This research employs the Early Childhood Longitudinal Study Kindergarten Cohort (herein

“ECLS-K”) is a nationally representative survey of 21,260 children who entered kindergarten

in the autumn of 1998. This is the same dataset used by other prominent papers in the field

of test score gaps (e.g. Bond and Lang, 2013b; Fryer and Levitt, 2004; Fryer and Levitt,

2006). It contains a wide breadth of information on topics ranging from the emotional health

and wellbeing of children to various kinds of test scores. The ECLS-K surveyed students,

parents, and educators such as teachers and school administrators. Data were collected in
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the spring and fall of kindergarten, the spring and fall of first grade, and in the springs of

third, fifth, and eighth grade.

The analysis of this paper employs the Fryer-Levitt controls, which are as follows: race,

socioeconomic status, gender, age, whether the mother of the child was a teenager when

she first gave birth, whether the mother of the child was 30 or over when she first gave

birth, WIC participation, and the number of children’s books in the home. This set of

controls was found to produce estimates of the corrected racial test score gaps that were

largely similar with a much more fully specified model that included 94 control variables

(Fryer and Levitt, 2004). The racial categories are broken down into white, black, Hispanic,

Asian, and other. The “white” category refers exclusively to non-Hispanic whites, and the

“other” category includes Native Americans, native Alaskans, and other racial backgrounds

that do not fall into those previously listed. The socioeconomic status measure is continuous

variable that is a function of the education levels of the parents or guardians, the occupations

of the parents or guardians, and household income.7 WIC participation is a dummy variable

indicating enrollment in the Special Supplemental Nutrition Program for Women, Infants,

and Children, which is a program targeted to low-income mothers and children.

TABLE 4 here

The summary statistics of the data are listed on Table 4. White children tend to be

roughly a year older than children of other races when they first enter kindergarten; since test-

at-age effects are quite strong early in a child’s life, not correcting for age will overestimate

the test score gap between whites and other minorities. Blacks and Hispanics are more than

twice as likely as whites to participate in the WIC nutrition program. Black and Hispanic

mothers tend to have their children 3 to 4 years earlier than whites on average; moreover,

over half of black mothers in the sample began their families as teenage mothers, while

almost 40% of hispanic mothers did the same. Whites tend to have many more children’s

books in the home than the other races.

The ECLS-K dataset includes several kinds of math and reading test scores. Those

employed in this article are the longitudinal Item Response Theory (IRT) test scores, which

7Details about the construction of the variable can be found starting on page 7-8 of the ECLS-K User
Guide.
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were designed to be fully comparable across grades. These test scores were constructed using

a Bayesian three-parameter IRT model. One of the primary benefits of the IRT approach is

that it is able to yield precise estimates of the underlying latent trait of interest despite a

small number of test questions. Moreover, use of the Bayesian variation minimizes possible

issues related to test score shrinkage.8 The testing procedure was adaptive in that routing

items were used to give students tests that were commensurate with the likely range of their

ability, which should minimize floor and ceiling effects as well as maximize the accuracy of

the measurement. The test scores were found to have a very high level of reliability. The

reliability score is defined as 1 − ψ/θ, where ψ is the within-person variance estimate of

underlying ability and θ is the between-person estimate of the underlying ability (the total

between-person variance of the posterior mean). A value of 1 indicates that latent ability

is perfectly measured, while a value of zero signals that there is no information about the

latent trait in the data. The various reliability scores for the math and reading tests for each

year can be found below on Table 5. All but one of the values exceed 0.9 and some even

exceed 0.95, which should assuage measurement error concerns.

TABLE 5 here

It is important to note that the IRT test scores were recalibrated in every round, thus

estimates of the test score gaps across different studies that do not use the same iterations of

the ECLS-K data may be dissimilar to a small degree. The recalibration is necessary since the

IRT scale scores in the database represent estimates of the number of items children would

have answered correctly at each point in time if they had answered all of the questions from

each round: thus, the scaled score at time t is equal to the sum of the probabilities of a

correct answer for every question in the database. Therefore, as new questions are added

in successive waves, the scaled score for each child at every grade will increase if they are

estimated to have a non-zero probability of answering at least one of the new questions

correctly.

TABLE 6 here

8Test score shrinkage is occasionally a threat to the validity of results, for example, see Bond and Lang
(2013a) who implement a procedure to correct for it.

16



The test score summary statistics are displayed on Table 6. To maintain comparability

with the other literature on this subject, the test scores were converted into z scores.9 At

the population level, there exists an increasingly large gap between blacks and whites for

both reading and math test scores from kindergarten to eighth grade.

The criteria for inclusion in the dataset for this analysis is as follows. Students missing

data on the Fryer-Levitt controls or do not have at least one valid test score are dropped

from the sample.10 For the variables that are time-variant, the ones used in the analysis are

those from the fall of the child’s kindergarten year. Unlike Fryer and Levitt (2004, 2006),

students who are missing some waves of test score information are not dropped from the

sample; I do not follow the same practice because attrition in the 5th and 8th grade is quite

high relative to the earlier years. Nonetheless, replication exercises give similar results, so

the samples should be quite comparable.

The ECLS-K contains an extensive selection of sample weights, with the suggested weight

varying depending on the unit of analysis; see section 4-3-1 of the ECLS-K User Guide for

more information. I do not use sample weights in this analysis as the results are not sensitive

to their use; this was also found to be the case in the previous research by Fryer and Levitt

(2004, 2006) on this subject.

5.2. Application

The regression equation estimated is

Tit = β0 + ρiβ1 +Xitβ2 + εit (11)

where Tit is the normalized test score of individual i at time t, ρ is a vector of racial dummies

(black, Hispanic, Asian, other), Xit is a vector containing the Fryer-Levitt controls, and εit

is the usual error term. Non-Hispanic whites are the baseline racial category, therefore all

test score gaps are relative to their performance.

It is important to note that, because race cannot be changed, the β1 coefficients require

9By Theorem 1 below, this normalization does not affect the analysis.
10Analysis of the math and reading test scores in the fall of first grade are excluded because only a small

portion of the sample took this particular test.
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a slightly different interpretation than usual. Chernozhukov et al. (2013) show that a

dummy coefficient in an unconditional quantile regression is a first order approximation to

the following expression:

infy∈Y [

∫
χ1

FY0|X0(y|x)dFX1(x) ≤ τ ]− infy∈Y [

∫
χ0

FY0|X0(y|x)dFX0(x) ≤ τ ] (12)

where y is an arbitrary value of the response variable, Y is the set of values y can take, Yi

is the set of values for group i = 0, 1, x is an arbitrary set of values for the set of control

variables, Xi is the set of characteristics for group i with χi as its support, F is a cumulative

distribution function, and τ is the quantile of interest. Thus, the first term of this difference is

the counterfactual quantile τ for the group of interest, while the second term is the definition

of the quantile of the baseline group. Defining X1 = X0 for all controls except the dummy,

we can interpret the dummy variables (11) as the difference at quantile τ if the group of

interest had the same distribution of coefficients as the baseline group. In the case of this

paper, a coefficient β on black at the quantile τ indicates the difference between the blacks

and whites at that quantile of their distributions of test scores if the former had the same

distribution of control variables as the latter. Applications of Firpo et al. in the context of

gender gaps can be found in Boudarbat and Connolly (2013) and Fortin et al. (forthcoming).

FIGURE 1 here

FIGURE 2 here

Figures 1 and 2 display graphs containing information on the unconditional quantile

estimates of the proposed metric and their confidence intervals, as well as OLS estimates for

comparison purposes. In order to ensure comparability with the extant literature, the test

scores in the OLS regression have been converted to z-scores 11

Comparing the OLS estimates with the quantile regression results at the median, there

is a remarkable degree of consistency between the two measures, despite the fact that they

were constructed in different fashions. The similarity of the results suggests that research

11Recall that for the unconditional quantile regressions, regression (11) will yield the same result regardless
of how the test scores are monotonically transformed.
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using the ECLS-K math and reading test score data may be more robust to scaling concerns

than what was originally thought.

The black-white mathematics test score gap increases from kindergarten until third grade

for most of the distribution, and then remains roughly constant afterwards: black students

across the distribution do not regain much if any lost ground by eighth grade. However,

those near the top of the distribution of test scores experience little if any growth of the gap

in test scores at all, with it remaining approximately 0.1 standard errors throughout. For

those near the bottom of the distribution, they fall significantly behind by third grade: those

under the 4th decile experience a gap of almost 0.4 standard errors at this point. While the

gap at different deciles is fairly even in kindergarten and first grade, by the spring of third

grade, the gap is larger for those near the bottom and shrinks as we approach the top of the

distribution.

Reading scores for blacks are actually superior to whites when entering school, and this is

true across the distribution. By the spring of the first year, a small gap forms for about the

bottom half of the distribution, while those at the top of the reading distribution experience

no statistically significant gap associated with their race compared to whites. By fifth grade,

those under the 5th decile experience larger gaps than those above it. Blacks at the top of

the distribution only have a small gap by this point of about 0.1 standard errors, while those

near the bottom have only fallen further behind with a gap of roughly 0.4 standard errors.

The results of this analysis are largely in agreement with other literature on the sub-

ject. Recall that Fryer and Levitt (2004) examines kindergarten and first grade, Fryer and

Levitt (2006) covers kindergarten through third grade, and Clotfelter et al. investigate third

through eighth grade.12 Fryer and Levitt (2006) observed a widening of the black-white test

score gap in mathematics in the first four years of school, which I also document here. The

test score gap in mathematics appears to stabilize at third grade and remain the same all the

way up until at least eighth grade, which is the same pattern that was observed in Clotfelter

et al. (2009). I also document the initial advantage for blacks in reading that turns into a

deficiency by third grade. The gap is approximately constant in third and fifth grade, but

12However, the latter use administrative data from North Carolina rather than a nationally representative
sample such as the ECLS-K.
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widens for the eighth grade test score, which is mostly in agreement with Clotfelter et al.

(2009).

In conclusion, there is substantial distributional heterogeneity in the gaps over time. The

dynamics of the gaps at the median mostly agree with those of the literature at the mean13.

The gaps at the tops of the distributions in nearly all grades show a gap of zero or close to

zero; this suggests that there is no racial test score gap between whites and blacks at the

top of the ability distribution.

6. Discussion

In this paper, I proposed a method to normalize test scores that is invariant to monotonic

transformations. In addition, the metric assuaged a problem with z-score normalization

which caused the parameter estimates to be sensitive to the sample variability in the control

variables. Because of these desirable properties, the metric could be used to compare results

across different datasets. I applied the metric to a value-added model and to the debate

surrounding the black-white test score gap. For the latter, I concluded that the results

of the literature (Fryer and Levitt, 2004; Fryer and Levitt, 2006; Clotfelter et al., 2009)

were largely correct despite not taking into account the ordinality problem of test scores.

Substantial heterogeneity in the distribution of these gaps was found: most of the test score

gap between blacks and whites appears to be driven by poor-performing black students at

the bottom of the ability distribution. Blacks at the top of the ability distribution experience

no economic nor statistically significant gap with whites in most cases. The metric developed

in this paper should prove useful in resolving debates that are primarily based on test scores

in the economics of education literature.

The use of this proposed metric comes with an important caveat. While it is an effective

tool to compare results across different tests, the tests must be measuring the same underlying

factor in order for comparisons to be meaningful. For example, Murnane et al. (2006)

employ the National Institute of Child Health and Human Development dataset (NICHD)

and show that the racial test score gap between blacks and whites holds steady for reading

13This analysis was repeated for the other races (asians and hispanics) and the results were also found to
be consistent with the literature. A discussion of these results was omitted for reasons of space.
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and decreases by almost half for mathematics from kindergarten to third grade, which are

results that do not agree with Fryer and Levitt (2006). However, the tests used in the

NICHD cover basic skills, while the ECLS-K focuses on subjects learned in school; therefore,

the results are not comparable with each other. Discussion of demographic test score gaps,

like any other subject of interest, necessitates that they be clearly defined.

An alternative method to measure gaps is Oaxaca-Blinder decomposition. This method-

ology is most commonly used to determine the extent of possible discrimination in the gender

wage gap literature. The procedure decomposes an observed gap into two parts: an explained

gap due to observable characteristics, and an unexplained gap that is present due to differ-

ences in the coefficients and in the unobservables. It has a desirable technical property of

being “doubly robust”, i.e. it is consistent if either the propensity score assumption or the

model for outcomes is correct (Kline, 2011). The procedure outlined in this paper can be

suitably modified for Oaxaca decomposition analysis. However, it has recently been argued

that using a dummy variable to measure a gap between two groups is not only sufficient, but

it may also possess advantages over Oaxaca-Blinder decomposition (Elder et al., 2010).

An alternative method to measure demographic test score gaps is to anchor them to adult

outcomes (e.g. Bond and Lang 2013a, Cunha and Heckman, 2008; Cunha et al., 2010). Such

an approach is not a panacea. Some results may be sensitive to distributional assumptions,

such as whether to anchor test scores with either earnings or log earnings (Bond and Lang,

2013b). Adult outcomes come with significant delays (Barlevy and Neil, 2012), which may

limit the policy relevance of the results, or may fail to materialize altogether, leading to

possible selection bias. Moreover, the extent to which unobservable heterogeneity in tastes

affects the relationship between test scores and adult outcomes is currently unknown: for

example, educational attainment may be lower purely due to the desire of a person to pursue

a trade such as electrician before completing high school despite having the cognitive skills

necessary to complete higher education. Earnings may be lower due to occupational choice,

such as the desire to become a social worker. In these two particular examples, the former

yields high earnings and a low level of education, while the latter vice versa. Nonetheless,

the primary and significant advantage to anchoring is that the gaps are expressed in concrete

units, such as completed years of education; magnitudes expressed in such a metric are much
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more easily understood than the measures typically used in the test score gap literature.

These units also have the very desirable property of being ratio scales. I view the anchoring

literature as complementary to the approach advanced here for purposes of test score analysis.
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Table 1: Example of test score ordinality

A ∆A T = ln(A) ∆ln(A) T = eA ∆eA

1 - 0 - 2.7 -
2 1 0.7 0.7 7.4 4.7
3 1 1.1 0.4 20.1 12.7

26



Table 2: UQR with standard error of regression normalization

teacher T = math T = math2 T =
√
math

A -1.47 -1.47 -1.47
B -0.73 -0.72 -0.74
C -0.48 -0.46 -0.48

Table 3: OLS with standard error of T normalization
teacher T = math T = math2 T =

√
math

A -1.13 -1.09 -1.15
B 0.05 0.11 0.02
C -0.09 -0.03 -0.11
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Table 4: Summary Statistics

Total White Black Hispanic Asian

Sample proportion 1 0.58 0.14 0.18 0.05
Number of observations 17117 9890 2392 3027 868

Controls
Female 0.49 0.49 0.51 0.5 0.5

(0.50) (0.50) (0.50) (0.50) (0.50)
Age in fall kindergarten, months 65.5 65.93 65.12 64.78 64.55

(4.28) (4.25) (4.23) (4.28) (4.03)
SES composite measure 0.03 0.23 -0.34 -0.39 0.29

(0.79) (0.73) (0.75) (0.71) (0.87)
WIC participant 0.45 0.31 0.77 0.63 0.33

(0.50) (0.46) (0.42) (0.48) (0.47)
Number of children’s books in the home 73.79 94.62 40.15 42.4 48.47

(59.64) (59.36) (40.17) (46.16) (49.98)
Mother’s age at birth of first child 23.63 24.8 20.64 21.94 25.73

(5.47) (5.35) (4.75) (4.95) (5.46)
First birth under age 20 0.27 0.19 0.51 0.37 0.15

(0.44) (0.39) (0.50) (0.48) (0.35)
First birth at age 30 or over 0.16 0.2 0.06 0.09 0.25

(0.36) (0.40) (0.24) (0.29) (0.43)

Author’s calculations. Standard deviations are in parentheses. Statistics for time-variant variables
are those for the fall of the child’s kindergarten year. The first two rows do not add up to the total
because the “other” racial category, which contains all the other races other than those listed on
this table, is not listed here.
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Table 5: Reliability Estimates

Fall Spring Fall Spring Spring Spring Spring
grade K grade K grade 1 grade 1 grade 3 grade 5 grade 8

Reading 0.92 0.95 0.96 0.96 0.94 0.93 0.87
Mathematics 0.91 0.93 0.94 0.94 0.95 0.95 0.92
Source: Taken from Table 3-10 in the Combined User’s Manual for the ECLS-K Eighth-Grade and
K8 Full Sample Data Files and Electronic Codebooks. A value of 1 denotes perfect measurement
of the latent trait.
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Table 6: Test Score Summary Statistics

White Black Hispanic Asian
Mathematics
fall kindergarten 0.22 -0.39 -0.46 0.43

(1.02) (0.75) (0.79) (1.19)
spring kindergarten 0.22 -0.44 -0.41 0.33

(1.00) (0.80) (0.85) (1.12)
spring first grade 0.22 -0.51 -0.34 0.15

(1.01) (0.80) (0.87) (1.03)
spring third grade 0.24 -0.65 -0.33 0.24

(0.94) (0.90) (0.94) (1.01)
spring fifth grade 0.22 -0.75 -0.32 0.36

(0.90) (1.00) (0.99) (0.92)
spring eighth grade 0.2 -0.8 -0.33 0.41

(0.88) (1.07) (1.05) (0.91)

Reading
fall kindergarten 0.11 -0.27 -0.27 0.49

(1.00) (0.78) (0.88) (1.45)
spring kindergarten 0.1 -0.29 -0.22 0.5

(1.01) (0.81) (0.86) (1.34)
spring first grade 0.15 -0.38 -0.29 0.36

(1.00) (0.87) (0.89) (1.08)
spring third grade 0.25 -0.56 -0.41 0.1

(0.93) (0.91) (0.98) (0.92)
spring fifth grade 0.25 -0.62 -0.41 0.12

(0.90) (1.01) (0.98) (0.93)
spring eighth grade 0.23 -0.78 -0.42 0.26

(0.86) (1.09) (1.08) (0.88)
Author’s calculations. Test scores have been normalized to have
a mean of 0 and a standard deviation of 1. Standard deviations
are in parentheses.
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Figure 1: Black-white Mathematics Test Score Gap
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Figure 2: Black-white Reading Test Score Gap
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