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Abstract

Empirical studies of the allocation of consumption within the family have often failed
to reject the null hypothesis of Pareto efficiency. To study the power of these tests, I
construct a class of noncooperative models with inefficient equilibria. In these models,
variations in the economic or social circumstances outside of the household (“distribu-
tion factors”) cause variations in the distribution of wealth within the household. If
these implicit transfers go unobserved by the econometrician, noncooperative models
imply the same restrictions on household demand as do efficient models. Therefore,
many tests in the literature cannot identify inefficiency when it is present. I then show
that without restrictions on preferences or data on individual consumption, the hypoth-
esis of Pareto efficiency is not well-separated from the noncooperative alternative. So
in a nonparametric setting, there can be no tests that both reject all inefficient models
and do not reject any efficient models. However, if the relative wealth of each partner is
observed without error and satisfies a large support condition, and if the consumption
of a public good and at least one assignable private good can be observed, then it is
possible to reject efficiency.
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1 Introduction

A glance at Table 1 creates the impression that, although the literature is short of a con-
sensus, Pareto efficiency characterizes family life well. That is, many studies have failed
to reject the null hypothesis of efficiency. What remains unexamined, though, is whether
those tests have power against inefficient alternatives - or, to put the question more sharply,
whether those tests have the ability to identify inefficiency.

Table 1: Selected empirical studies of allocation within the family.
A “unitary” model of the family is one in which there exists a
positive representative consumer.

Paper Country Subject Conclusions

[Attanasio & Lechene, 2014] Mexico consumer goods favors efficiency
[Bayudan, 2006] Philippines time use favors efficiency
[Bobonis, 2009] Mexico consumer goods favors efficiency

[Bourguignon et al. , 1993] France consumer goods favors efficiency
[Browning et al. , 1994] Canada consumer goods favors efficiency

[Browning & Chiappori, 1998] Canada consumer goods favors efficiency
[Chiappori et al. , 2002] US labor supply favors efficiency
[Del Boca & Flinn, 2014] US time use favors efficiency
[Del Boca & Flinn, 2012] US time use favors efficiency

[Donni, 2007] France consumer goods favors efficiency
[Donni & Moreau, 2007] France labor supply favors efficiency

[Duflo, 2003] South Africa child health rejects unitary model
[Fortin & Lacroix, 1997] Canada labor supply favors efficiency
[Goldstein & Udry, 2008] Ghana land use rejects efficiency
[Lise & Yamada, 2014] Japan risk-sharing, credit rejects ex-ante efficiency
[Lundberg et al. , 1997] UK consumer goods rejects unitary model

[Mazzocco, 2007] US risk-sharing, credit rejects ex-ante efficiency
[Vermeulen, 2005] Netherlands labor supply favors efficiency

[Voena, 2010] US risk-sharing, credit rejects ex-ante efficiency
[Udry, 1996] Burkina Faso land use rejects efficiency

To explore the possibility of a false negative, I construct two models of the allocation of goods
within a two-person family. The first of these models leads to efficient outcomes, while the
second leads to inefficient ones. But, in Section 4, I show that both classes of models lead
to a particular proportionality condition. Since the failure to reject this condition has been
widely interpreted as evidence for efficiency, this calculation shows that a popular style of
test for efficiency cannot detect inefficiency when it is present.

Next, in Section 5, I turn to the question of whether powerful tests can be constructed.
My answer is negative: in Proposition 5, I show that in data with no price variation, there
are always household demand systems that are consistent with both efficient models and
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inefficient models. Within this class, there are no properties of household demand that are
unique to efficient models, and therefore there can be no tests that simultaneously do not
reject any efficient models and do reject all inefficient models.

Finally, I use my negative results to reassess the evidence on within-family efficiency and
suggest ways to break the identification problem. The suggestions I will be able to make in-
volve either obtaining richer data on income and consumption at the individual, rather than
the household level, or using data with variation in relative prices. Alternatively, studying
household production, not consumption, may lead to more powerful tests of efficiency.

I am not claiming that families are always and everywhere inefficient. One can offer other
arguments for efficiency, such as those of [Becker, 1991], based on the existence of specializa-
tion or assortative matching. I am claiming that an analysis of cross-sectional expenditure
patterns cannot be informative.

My results do not rely on the existence of unobserved heterogeneity in preferences. Instead,
my argument is that models of efficient allocation have a natural alternative - namely, that
each family member makes voluntary contributions to a public good.1 But absent price
variation, the data can only tell us about income effects, not substitution effects, and it is
the latter which are needed to assess whether inefficiency is present - at least at the margin.

There are at least two reasons to examine the efficiency of the family. First, there is much
evidence against the “unitary” model of the family, in which all members agree on how to use
the household’s resources. That evidence comes from many different contexts, but generally
consists of the observation that merely redistributing resources from one family member to
another affects how those resources are used. If all members had the same preferences, intra-
family redistributions would have no such effects.2 Nevertheless, it is possible that efficiency
prevails, but this cannot be taken for granted.

Second, any discussion of the policies of a welfare state must be informed by a view, perhaps
implicit, of how of families use and distribute their resources. By definition, welfare states
provide transfers to their citizens, and many countries do so both in cash and in kind; public
education and healthcare are only the most expensive examples of in-kind transfers. As
[Becker & Murphy, 1988] point out, both sorts of transfers can be motivated by a concern
for the well-being of the next generation. But for a policymaker with those concerns, the
two tools may be substitutes. It can only make sense to examine their usefulness together,
and doing so entails taking a stand on intrafamily efficiency.

Other economists before me have raised questions about the strength of the evidence for “col-
lective” models of the family. The closest relatives of my work are [Del Boca & Flinn, 2012]
and [Del Boca & Flinn, 2014]. In the first of those two papers, the authors use time-use

1This sort of inefficient model is in no way exotic or pathological, nor is it especially new:
[Chen & Woolley, 2001], [Lundberg & Pollak, 1993], and even earlier [McElroy & Horney, 1981] and
[Manser & Brown, 1980] all proposed noncooperative models of the family.

2[Duflo, 2003] and [Lundberg et al. , 1997] are two prominent examples of this type of study, and
[Alderman et al. , 1995] is an early summary of the evidence.
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data from the 2005 wave of the Panel Study of Income Dynamics (PSID) to estimate both
a cooperative and a non-cooperative model of labor supply and housework. They find that
over three-quarters of the couples in their sample manage to achieve efficiency, at least in a
static sense.

However, their econometric models differ substantially from mine. Theirs is a mixture model,
so they attribute unexplained differences in time allocation to unobserved differences across
households in preferences, home production technologies, and participation constraints. Most
of the papers in this literature (such as those in Table 1) avoid implying a degenerate dis-
tribution of the data by invoking measurement error in consumption. To be consistent with
this literature, that is also the approach I take here.

[Del Boca & Flinn, 2014] uses the same economic model as [Del Boca & Flinn, 2012], but
adjoins it to a simulation of a Gale-Shapley matching algorithm. They do so in order to
incorporate marriage market patterns into their examination of the efficiency of time allo-
cation for a sample of American couples from the 2007 wave of the PSID. They conclude
that their sample is best characterized by Pareto efficiency within marriage, but do not for-
mally test that claim. ([Del Boca & Flinn, 2012] also do not define or test Pareto efficiency
econometrically.) Instead, they show that the distribution of a likelihood ratio statistic is
such that efficiency is more the likely characterization of their sample. In this paper, I take
a more formal approach to the identification of inefficiency.

[Cherchye et al. , 2007] and [Cherchye et al. , 2009] are methodologically more distant from
this paper, although again the questions they address are similar to mine. They provide
revealed-preference conditions on household consumption which, they argue, are necessary
and sufficient for Pareto optimality. Again, unlike much of the literature in Table 1, those
conditions treat a household’s observed purchases as exact data, free of measurement error.

In Section 2 below I begin my analysis, by stating my assumptions about the information
available to an imagined econometrician.

2 Econometric Preliminaries

2.1 Data, Present and Missing

I assume the econometrician has access to a dataset consisting of observations of many
households. These households themselves consist of two members each; I will refer to the
two members as A and B. Later, it will become important that prices do not vary across
households, so it may be easiest to imagine that the data is cross-sectional.

Let P be a vector of prices, of dimension m+1, for some integer m ≥ 1. Let Q be a vector of
quantities purchased by a given household, so the dimension of Q is also m+ 1. I think of Q
as the vector of a given household’s aggregate consumption. It is often difficult to attribute
the expenditures on consumer goods, such as food, to either A or B, and furthermore, some
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consumption may genuinely be “public,” such as expenditures on children. So for now I will
assume that the econometrician cannot disaggregate the vector Q into separate accounts for
public consumption and for the private consumption of A and B each.

Together, A and B have individual incomes YA and YB at their disposal. I presume the
econometrician does not observe these income (or, in a static context, wealth) variables, but
only their sum Y = YA + YB . I consider this reasonable because although market labor
earnings are easily assignable to either A or B, there are many assets such as housing or
land that may be jointly owned. However, the decision to attribute the returns, or implied
rent, to either spouse must be arbitrary, so even in ideal circumstances the relative income
of each spouse may be hard to pin down. Moreover, income from self-employment is very
often misreported, both in the developed and the developing world; and there is obviously
no reason to assume that the reporting errors will cancel out at the household level. (See
[Bound et al. , 2001], or more recently [Hurst et al. , 2014], for discussions of the difficulties
of recording self-employment income in the US; [Banerjee & Duflo, 2007] and [Deaton, 1997]
discuss those problems as they relate to developing countries.)

Still, at least in a static context, budget balance implies that the total value of consumption,
P ·Q, must be equal to aggregate wealth, Y . So to avoid making the identification problem
completely hopeless, I will maintain the assumption that the econometrician can learn the
value of Y for each household.

Finally, let Z be a vector of social or economic variables which I will call “distribution fac-
tors”. These are variables which may affect the consumption of a household, but not its
budget set. For example, some authors have used the local sex ratio - understood as a
proxy for conditions on the marriage market - as a distribution factor. It is certainly true
that variables can be found that do not directly affect the income of, or prices facing, any
given household, but are nonetheless correlated with consumption patterns. However, the
economic mechanism by which the variables in Z affect the household’s choice of Q is, for
now, left unstated. Most of what I will have to say concerns how to interpret the empirical
relationship between Z and Q.

2.2 Household Demand Systems

I assume that the econometrician has enough data so that the joint distribution of (P,Q, Y, Z)
is known with certainty, and therefore so is the conditional mean in the population

g(p, y, z) = E[Q|P = p, Y = y, Z = z]. (1)

In making this assumption, I am avoiding the complications of inference in finite samples,
and focusing only on the logical possibilities for the identification of inefficiency under vari-
ous assumptions about the domain of (p, y, z) over which g can be observed.

Let U ⊂ Rm+1
++ × R++ and V ⊂ RK be open. U is the domain for prices and household

wealth, (p, y); V is the domain for the distribution factors z.
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Definition 1. Let g : U × V −→ Rm+1
++ be continuously differentiable and such that, for all

((p, y), z) ∈ U × V ,

m∑
i=0

pigi(p, y, z) = y. (2)

Then g is called an extended aggregate demand system on U × V . 4

Given a pair of open sets (U, V ) of appropriate dimensions, let G(U, V ) denote the set of all
extended aggregate demand systems on the domain U × V .

In most cross-sectional data, though, all households face the same prices. So it will be im-
portant to allow for the possibility that, for some p, only the conditional distribution of
(Q,Y, Z) given P = p, can be known by the econometrician.

To that end, let p be such that for some y > 0, (p, y) ∈ U and define the p-section of U × V
as

(U × V )|p = {(y, z) : (p, y) ∈ U, z ∈ V }. (3)

By multiplying each quantity gi(p, y, z) by its price pi, one puts the quantities represented
by g(p, y, z) into expenditure form:

m∑
i=0

pigi(p, y, z) = y. (4)

The above domain restriction and change of units leads to the following definition:

Definition 2. Let p be such that for some y > 0, (p, y) ∈ U . A restricted aggregate demand
system on (U × V )|p is a continuously differentiable function h : (U × V )|p −→ Rm+1

++ such
that for all (y, z)

m∑
i=0

hi(y, z) = y. (5)

4

I write H(U, V |p) for the set of all such functions. At any suitable p, each extended aggregate
demand system g ∈ G(U, V ) induces a restricted aggregate demand system h ∈ H(U, V |p),
in the way indicated by equation (4).

I also assume that only “nondegenerate” demand systems are of interest, in the following
sense:

Definition 3. Let h ∈ H(U, V |p) be a restricted aggregate demand system, and define

hi = sup

{
hi(y, z)

y
: (y, z) ∈ (U × V )|p

}
(6)

hi = inf

{
hi(y, z)

y
: (y, z) ∈ (U × V )|p

}
(7)

6



If h is such that, for all goods 0 ≤ i ≤ m,

0 < hi < hi < 1 (8)

then say that h is nondegenerate. 4

h is degenerate if the budget share of at least one good either (i) does not vary at all in
the data (so hi = hi), (ii) has vanishing consumption (so hi = 0), or (iii) occupies the
households’ entire budget (hi = 1). Thus, imposing that h be nondegenerate seems like a
very weak requirement.

3 Two Models of Allocation Within the Family

Below, I construct two parallel formulations of an intrahousehold allocation problem. One
model leads to efficient allocations, which, following [Chiappori, 1992], I call a “collective”
model of the household. The second model leads to inefficient allocations.

I call the second family of models I construct “Cournot” models, because of their resemblance
to that classical model of imperfect competition. Inefficiency exists in equilibrium because
both A and B contribute voluntarily and noncooperatively to a public good. Thus, under
a Cournot model, the equilibrium consumption of the public good is too low. I need to
assume the existence of a public good, otherwise the first welfare theorem implies that
noncooperative decision-making is efficient. (Of course, if all goods are private, there are no
gains from marriage either.)

3.1 Cournot and Collective Models: Definition

3.1.1 Collective Models

A model of the efficient allocation of goods in a many-person family has two components:
(i) a description of the family members’ individual preferences over the goods, including
a list of which goods are public and which are private, and (ii) a description of which
particular efficient allocation will be chosen, and how that “collective” choice varies with
the parameters describing the family’s environment. In the context of Section 2 above, the
family’s environment is characterized by its budget set and the distribution factors, i.e. the
tuple (p, y, z). Formalizing this, we have the following:

Definition 4. Let I ⊂ {0, 1, . . .m} and write n = |I|. By permuting indices, we may
assume I = {0, 1, . . . n− 1}.

Also let uA, uB be weakly increasing and quasiconcave functions on Rm+1
++ , and say µ :

U × V −→ (0, 1) is smooth. Given (p, y, z), consider the social planner’s problem

max
(qAB ,qA,qB)

µ · uA(qAB , qA) + [1− µ] · uB(qAB , qB)

subject to

n−1∑
i=0

piqAB,i +

m∑
i=n

pi(qA,i + qB,i) ≤ y. (9)
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If (9) has a unique solution (q∗∗AB , q
∗∗
A , q

∗∗
B ) ∈ Rn++ × Rm+1−n

++ × Rm+1−n
++ for all (p, y, µ) ∈

U × (0, 1), and the function

g∗∗(p, y, µ(p, y, z)) = (q∗∗AB , q
∗∗
A + q∗∗B ) (10)

is continuously differentiable on U × V , then the tuple (I, uA, uB , µ) is called a collective
model with n public goods. 4

Given open sets U ⊂ Rm+1
++ × R++ and V ⊂ RK , write Θn(U, V ) for the set of all collective

models with n public goods defined for the domain (U, V ), and let

Θ(U, V ) =

m+1⋃
n=0

Θn(U, V ) (11)

be the set of all collective models on (U, V ). I will use θ = (I, uA, uB , µ) to denote a typical
collective model in Θ(U, V ).

The function µ is often called the “Pareto weight”, and inspection of (9) shows that higher
values of µ tilt the household’s decisions towards A’s preferences. µ is allowed to depend on
the economic and social environment of the household, (p, y, z).

Example 1. Suppose m = 2, so there are three goods in total: a public good q0 and two
private goods q1, q2. Assume that goods 1 and 2 are “exclusive”, so that A does not consume
good 2 and B does not consume good 1. Preferences are

uA(q0, qA1) = α log(q0) + (1− α) log(qA1) (12)

uB(q0, qB1) = β log(q0) + (1− β) log(qB2) (13)

for some 0 < α, β < 1. Normalizing the price of the public good to unity, let p = (1, p1, p2)
be the price vector, and let household wealth y be given.

For any µ ∈ [0, 1], the efficient allocation is

q0 = y · [µα+ (1− µ)β] (14)

qA1 =
y

p1
· µ(1− α) (15)

qA2 = 0 (16)

qB1 = 0 (17)

qB2 =
y

p2
· (1− µ)(1− β). (18)

To complete the description of this collective model, suppose A and B supply labor inelas-
tically, earning wages zA and zB , and suppose that the Pareto weight µ is given by

µ(y, zA, zB) =
1

2y
(y + zA − zB). (19)
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A’s Pareto weight, µ, depends positively on zA and negatively on zB , perhaps because each
individual’s wages are correlated with their outside option on the marriage market.

The aggregate demands generated by this collective model are

g∗∗0 (p, y, µ(y, zA, zB)) = y · [αµ(y, zA, zB) + β(1− µ(y, zA, zB))]

= α · 1

2
(y + zA − zB) + β · 1

2
(y + zB − zA) (20)

g∗∗1 (p, y, µ(y, zA, zB)) =
y

p1
· (1− α)µ(y, zA, zB)

=
(1− α)

2p1
· (y + zA − zB) (21)

g∗∗2 (p, y, µ(y, zA, zB)) =
y

p2
· (1− β)(1− µ(y, zA, zB))

=
(1− β)

2p2
· (y + zA − zB) (22)

4

3.1.2 Cournot Models

Under a collective model, variations in the distribution factors z at fixed values of (p, y)
cause the household to move along a utility possibility frontier. Those variations along a
fixed Pareto frontier cause changes in the aggregate consumption patterns of the household.

However, changes in a family’s consumption patterns can be caused by variations in the
intrahousehold distribution of resources, too. An empirical relationship between distribu-
tion factors z and consumption patterns can also be rationalized by models which allow for
distribution factors and the intrahousehold distribution of wealth to be correlated.

Example 2. As before, suppose A and B supply labor inelastically, earning wages zA and
zB . They also have nonlabor wealth zAB , to which they have equal claim. Thus,

y = zA + zB + zAB . (23)

Since each member of the household has equal claim to the “joint” wealth zAB , and full
claim to his or her own labor earnings, A’s total wealth is

yA = zA +
1

2
zAB

=
1

2
(y + zA − zB) (24)

and A’s relative wealth is

ω(y, zA, zB) =
1

2y
(y + zA − zB). (25)

4
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A noncooperative model of allocation in a many-person family has similar ingredients to a
collective one, namely (i) a description of the preferences of the family members, and (ii) a
description of how the distribution of wealth varies with the social and economic environ-
ment. I formalize this below.

Definition 5. Let I ⊂ {0, 1, . . .m} be a singleton. By permuting indices, we may assume
I = {0}.

Also let uA, uB be weakly increasing and quasiconcave functions on Rm+1
++ , and say ω :

U × V −→ (0, 1) is smooth. Consider the system

max
(qA0,qA)

uA(qA0 + qB0, qA) s.t. p0qA0 +
m∑
i=1

piqAi ≤ yω (26)

max
(qB0,qB)

uB(qA0 + qB0, qB) s.t p0qB0 +

m∑
i=1

piqBi ≤ y(1− ω). (27)

If the system (26) - (27) has a unique solution ((q∗A0, q
∗
A), (q∗B0, q

∗
B)) for all (p, y, ω) ∈ U×(0, 1),

and the function

g∗(p, y, ω(p, y, z)) = (q∗0 , q
∗
A + q∗B) (28)

is continuously differentiable in (p, y, ω) on U × V , then the tuple (I, uA, uB , ω) is called a
Cournot model with one public good. 4

The system (26) - (27) defines the Nash equilibrium of a simultaneous-move game in which
A and B make voluntary contributions to a public good. Their strategies (and actions) are
their contributions qA0 and qB0. Their strategy spaces are [0, yω/p0] for A and [0, y(1−ω)/p0]
for B.3

3.2 Scope and Interpretation of the Models

Both collective and Cournot models concern allocation within an existing family. Both the
Pareto weight function µ and the relative wealth function ω are atheoretic ways of incorporat-
ing “outside influences” into the within-family decision problem. A tempting interpretation
of the Pareto weight µ is that it represents the opportunity cost of marriage, but without
a specification of what exactly the alternatives to marriage are, it is just a black box that
picks out a point on the Pareto frontier.

Cournot models are also silent on the mechanism by which prices and wealth, (p, y), and
social circumstances (“distribution factors”) z affect allocation within a family. The function
ω simply associates each configuration of (p, y, z) with a share of wealth for A. It is possible
that the map ω represents equilibrium transfers on the marriage market. This would be the

3It is important to assume that there is only one public good, because that assumption, along with a
mild normality condition on the preferences of A and B, will be sufficient to guarantee that the equilibrium
allocation is unique. I discuss those conditions further in Section 3.3.1.
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case if the distribution factors z indicate conditions on the marriage market and help to de-
termine transfers - dowries or bride prices, for example - made between A and B. However,
this interpretation is not necessary for the identification arguments I will make.

The major difference between these two classes of models would seem to be that ω(p, y, z) is at
least potentially observable, given a well-designed survey. In practice, it may be very difficult
or expensive to gather accurate information about ω. But if a survey were so generously
funded that it became feasible to learn about ω, not much more imagination is required
to think that such a survey could also collect information on individual-level consumption.
And if consumption can be disaggregated from the household to the individual level, a much
more direct route to the identification of inefficiency is possible, as I discuss in Section ??.

3.3 Properties of Cournot Models

3.3.1 Existence and Uniqueness of Equilibrium

Let Γ(U, V ) denote the set of all Cournot models defined over (U, V ), and write γ =
(I, uA, uB , ω) for a single Cournot model. Definition 5 requires that the equilibrium de-
fined by the best-response functions (26) - (27) is unique, but it is not immediate that there
are preferences uA and uB such that it will be.

The following example exhibits preferences uA and uB such that the equilibrium exists and
is unique for all (p, y, ω) ∈ U × (0, 1); furthermore, the equilibrium allocations g∗(p, y, ω)
depend smoothly on (p, y, ω), except at two points ω∗, ω

∗ ∈ (0, 1).

Thus, if the map ω is such that neither ω∗ nor ω∗ are in its range ω(U × V ), then we will
have found a Cournot model γ meeting Definition 5, and hence we can conclude that the set
Γ(U, V ) is nonempty.

Example 3. As in Example 1, let there be three goods in total: a public good q0 and two
private goods q1, q2. Again assume preferences are

uA(q0, qA1) = a log(q0) + (1− a) log(qA1) (29)

uB(q0, qB1) = b log(q0) + (1− b) log(qB2) (30)

for some 0 < a, b < 1. Let yA, yB be the wealth levels of the two family members.

If we normalize the p0, the price of the public good, to unity, A’s decision problem is

max
qA0,qA1

a log(qA0 + qB0) + (1− a) log(qA1) s.t qA0 + p1qA1 ≤ yA (31)

given B’s contribution qB0. But since the total consumption of the public good is q0 =
qA0 + qB0, we can rewrite A’s problem as

max
q0,qA1

a log(q0) + (1− a) log(qA1) s.t q0 + p1qA1 ≤ yω + qB0 (32)

q0 ≥ qB0 (33)
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which has the solution

q∗A0(p, yA, qB0) =

{
a(yA + qB0)− qB0 if qB0 < a(yA + qB0)
0 if qB0 ≥ a(yA + qB0)

(34)

p1 · q∗A1(p, yA, qB0) =

{
(1− a)(yA + qB0) if qB0 < a(yA + qB0)
yA if qB0 ≥ a(yA + qB0)

(35)

Similarly, B’s best response is

q∗B0(p, yB , qA0) =

{
b(yB + qA0)− qA0 if qA0 < b(yB + qA0)
0 if qA0 ≥ b(yB + qA0)

(36)

p2 · q∗B2(p, yB , qA0) =

{
(1− b)(yB + qA0) if qA0 < b(yB + qA0)
yB if qA0 ≥ b(yB + qA0)

(37)

An equilibrium for this “Cournot” game is a pair (q∗A0, q
∗
B0) ∈ [0, yA/p0] × [0, yB/p0] such

that solves (34) and (36) simultaneously; the equilibrium levels of private consumption q∗A1

and q∗B2 are then implicitly determined by A and B’s individual budget constraints.

Let ω = yA/(yA+yB) be A’s share of the household’s total wealth, y = yA+yB . The unique
equilibrium of this public-goods game is

q∗A0 =

 0 if ω < ω∗
y · [aω − (1− a)b(1− ω)] if ω ∈ (ω∗, ω

∗)
aω · y if ω ≥ ω∗

(38)

q∗B0 =

 y · b(1− ω) if ω < ω∗
y · [b(1− ω)− (1− b)aω] if ω ∈ (ω∗, ω

∗)
0 if ω ≥ ω∗

(39)

where ω∗ and ω∗ solve

aω∗ − (1− a)b(1− ω∗) = 0 (40)

bω∗ − (1− b)aω∗ = 0 (41)

i.e.

ω∗ =
b(1− a)

1− (1− a)(1− b)
(42)

ω∗ =
b

1− (1− a)(1− b)
(43)
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Hence, aggregate demands are

g∗0(p, y, ω) =


y · b(1− ω) if ω < ω∗

y · ab
1−(1−a)(1−b) if ω ∈ (ω∗, ω

∗)

y · aω if ω ≥ ω∗

(44)

g∗1(p, y, ω) =



y
p1
· ω if ω < ω∗

y
p1
· (1−a)b
1−(1−a)(1−b) if ω ∈ (ω∗, ω

∗)

y
p1
· (1− a)ω if ω ≥ ω∗

(45)

g∗2(p, y, ω) =



y
p2
· (1− b)(1− ω) if ω < ω∗

y
p2
· b
1−(1−a)(1−b) if ω ∈ (ω∗, ω

∗)

y
p2
· (1− ω) if ω ≥ ω∗

(46)

Figure 1 depicts the aggregate demands g∗(p, y, ω) as a function of A’s relative wealth,
ω. Now, if the range ω({(p, y)} × V ) is contained in either (0, ω∗) or (ω∗, 1), then the tuple
γ = ({0}, uA, uB , ω) is a Cournot model in the sense of Definition 5; that is, γ ∈ Γ(U, V ). 4

13



Figure 1: Equilibrium allocations for the Cournot game, g∗(p, y, ω) under Cobb-Douglas
preferences. Share parameters are a = 0.7 and b = 0.4. The relative prices of the private
goods are p1 = p2 = 1, and total household wealth is y = 1.

14



Example 3 contains two lessons. First, the conditions under which a unique equilibrium of the
public goods game exists are fairly mild. In the above example, a unique equilibrium exists
whenever the best-response functions (34) and (36) have a unique intersection (q∗A0, q

∗
B0),

and this was always the case because both a and b lay in the interval (0, 1). The fact that
preferences were Cobb-Douglas is not essential: as long as the slope of each partners’ Engel
curve for the public good is strictly between zero and one, there will be a unique equilibrium.
In other words, we have the following:

Proposition 1. Let qA0(p, yA) be A’s Marshallian demand for the public good, and similarly
for qB0(p, yB). If, for all (p, yA, yB), 0 < ∂qA0(p, yA)/∂yA < 1, and 0 < ∂qB0(p, yB)/∂yB <
1, then the public goods game of Definition 5 has a unique Nash equilibrium.

Proof. This is simply a restatement of Theorems 2 and 3 of [Bergstrom et al. , 1986]).

Second, by inspection of (44) - (46), one can see that variations in (p, y) do not change the
qualitative properties of the aggregate demands: when A is sufficiently poor relative to B, A
will not contribute to the public good; when B is sufficiently poor relative to A, the reverse
happens; and when A and B are nearly equally endowed, both will contribute to the public
good.4 Formalizing this, we have:

Proposition 2. Let qA0(p, yA) be A’s Marshallian demand for the public good, and similarly
let qB0(p, yB) be B’s Marshallian demand for the public good. Normalize the price of the
public good p0 to unity, and fix the other prices (p1 . . . pm) and the aggregate endowment
y. Let A’s share of wealth be ω, and write q∗A(ω|p, y) and q∗B(1− ω|p, y) for the equilibrium
quantities of A and B’s private consumption. Then there exist scalars ω∗(p, y), ω∗(p, y), with
0 < ω∗ < ω∗ < 1, such that the shares of aggregate consumption devoted to each partner’s
private consumption are:

y−1
m∑
i=1

piq
∗
Ai(ω|p, y) =


ω if ω ∈ [0, ω∗]

ω∗ if ω ∈ (ω∗, ω
∗)

ω − y−1qA0(p, yω) if ω ∈ [ω∗, 1]

(47)

y−1
m∑
i=1

piq
∗
Bi(ω|p, y) =


(1− ω)− y−1qB0(p, (1− ω)y) if ω ∈ [0, ω∗]

1− ω∗ if ω ∈ (ω∗, ω
∗)

(1− ω) if ω ∈ [ω∗, 1]

(48)

Proof. See Appendix A.

4It can be shown that when both partners contribute to the public good, its aggregate consump-
tion is invariant to small redistributions of the endowment. (That result is stated in Theorem 1 of
[Bergstrom et al. , 1986].) But, given the budget constraints of each partner, the value of the private con-
sumption of each partner must be locally constant in ω too, although the composition of their private
consumption may change. This is visually obvious in Figure 1, since all budget shares pig

∗
i (p, y, ω)/y are flat

whenever ω ∈ (ω∗, ω∗). However, this “income-pooling” zone will not be useful for my analysis, so I leave it
aside.

15



3.3.2 Inefficiency of Equilibrium

Except in extreme cases, such as when the public good and private goods are perfect com-
plements, or when one partner has no wealth, Cournot equilibria are inefficient.

Figure 2 depicts, for fixed (p, y), the set of efficient and equilibrium allocations for a house-
hold with the same profile of preferences as in Example 3. The set of efficient allocations is
the image of the unit interval [0, 1] under the map µ 7→ g∗∗(p, y, µ). The set of equilibrium
allocations, though, is the image of the unit interval under the map ω 7→ g∗(p, y, ω). Clearly,
the two sets are different, so Cournot equilibria are inefficient.

Just how inefficient the Cournot equilibria are depends on the preferences of the two partners
and on the distribution of wealth ω. In Appendix B, I give an expression for the magnitude
of the inefficiency when both partners have constant-elasticity of substitution (CES) prefer-
ences.

To see why noncooperative equilibria are inefficient, suppose the preferences of the agents
are such that the marginal rates of substitution are well-defined and depend smoothly on
consumption. An allocation (q0, qA, qB) is efficient only if, for each private good 1 ≤ i ≤ m,

p0
pi

≥ ∂uA/∂q0
∂uA/∂qAi

(q0, qA) +
∂uB/∂q0
∂uB/∂qBi

(q0, qB) (49)

with equality if q0 > 0.

The left-hand side of (49) is the relative price of the public good, while the right-hand side is
the marginal social willingness to pay for the public good. Efficiency requires their equality.
In a Cournot equilibrium, though, each person who contributes will have a marginal will-
ingness to pay equal to the relative price; and even those who do not contribute will have
a nonzero willingness to pay. The household’s social willingness to pay for the public good
will therefore be higher than its relative price. Taken the other way around, this means the
equilibrium quantity of the public good will be too low.

Having constructed both an efficient and an inefficient model, we are finally in a position to
see whether the sort of data described in Section 2 above can distinguish between them.
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Figure 2: Equilibrium and efficient allocations under Cobb-Douglas preferences. Share pa-
rameters are a = 0.7 and b = 0.4. The relative prices of the private goods are p1 = p2 = 1,
and total household wealth is y = 1. The black line is the set of Cournot equilibrium
allocations, g∗(p, y, ω). The dashed blue line is the set of efficient allocations, g∗∗(p, y, µ).
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4 Tests of Distribution Factor Proportionality

By definition, both collective and Cournot models induce extended demand systems on
U × V . In view of that fact, I will abuse notation slightly and write g∗∗(p, y, z|θ) ∈ G(U, V )
and g∗(p, y, z|γ) ∈ G(U, V ). Similarly, at any suitable p, define h∗∗(y, z|θ) ∈ H(U, V |p) to be
the restricted aggregate demand system implied by the collective model θ at p:

h∗∗(y, z|θ) =


p0g
∗∗
0 (p, y, z|θ)

p1g
∗∗
1 (p, y, z|θ)

...
pmg

∗∗
m (p, y, z|θ)

 (50)

The obvious analogue for Cournot models is

h∗(y, z|γ) =


p0g
∗
0(p, y, z|γ)

p1g
∗
1(p, y, z|γ)

...
pmg

∗
m(p, y, z|γ)

 . (51)

The problem facing the econometrician is to determine whether a given h ∈ H(U, V |p) was
generated by a collective model, by a Cournot model, or neither. That is, is h = h∗∗(·|θ)
for some θ ∈ Θ(U, V )? Alternatively, is h = h∗(·|γ) for some γ ∈ Γ(U, V )? An obvious
place to start would be finding conditions on h implied by efficiency. In fact, there are such
conditions, as first introduced by [Browning & Chiappori, 1998].

Definition 6. Let h ∈ H(U, V |p) be a restricted aggregate demand system such that no
distribution factor is redundant, i.e. for all goods i and all distribution factors zk,

∂hi
∂zk

(y, z) 6= 0 (52)

for all (y, z) ∈ (U × V )|p. If, for all (y, z) ∈ (U × V )|p, and all goods i, i′ and all distribution
factors k, k′,

∂hi/∂zk
∂hi/∂zk′

=
∂hi′/∂zk
∂hi′/∂zk′

(53)

then say that h satisfies distribution factor proportionality (DFP) on (U × V )|p. 4
Because the distribution factors only act on demands through the scalar index µ, the chain
rule implies that the effects of different distribution factors must be proportional. For if h is
induced by a collective model, we can write

h(y, z) = h∗∗(y, µ(y, z)|θ) (54)

Differentiating, we obtain that for any good i, and any two distribution factors k, k′,

∂hi
∂zk

=
∂h∗∗i
∂µ
· ∂µ
∂zk

(55)

∂hi
∂zk′

=
∂h∗∗i
∂µ
· ∂µ
∂zk′

(56)
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Because no distribution factor is redundant, we can divide (55) by (56), so for all goods i,

∂hi/∂zk
∂hi/∂zk′

=
∂µ/∂zk
∂µ/∂zk′

. (57)

In short, we have the following:

Proposition 3. If the restricted aggregate demand system h ∈ H(U, V |p) is induced by a
collective model, h satisfies distribution factor proportionality.

Proposition 3 appears to give a way of testing efficiency, even with quite limited data. In
fact, [Bourguignon et al. , 2009] endorse the testing of distribution factor proportionality as
the sole implication of efficiency in data without variation in relative prices.5

However, distribution factor proportionality is also a property of Cournot models. Just like
collective models, Cournot models imply that the distribution factors only act on demands
through the scalar index ω. So for the same reasons that collective models imply distribution
factor proportionality, Cournot models do too.

Proposition 4. If the restricted aggregate demand system h ∈ H(U, V |p) is induced by a
Cournot model, h satisfies distribution factor proportionality.

Proof. Let h be induced by a Cournot model. We can write

h(y, z) = h∗(y, ω(y, z)|γ) (58)

Differentiating and taking ratios as in the proof of Proposition 3, we have the result.

Proposition 4 means that a test of distribution factor proportionality cannot be interpreted
as a test of Pareto efficiency, because it will have no power against Cournot alternatives.

5 Limits to Identifiability

Still, one might hold out hope that the failure of identification highlighted by Proposition 4
might be avoided by testing properties more stringent than distribution factor proportion-
ality.

Unfortunately, I am able show that there are limits to the identifying power of any test,
at least when prices do not vary across households. If one uses only information local to a
point (y, z) ∈ (U × V )|p about the conditional mean h(y, z) = E[Q|P = p, Y = y, Z = z],
then any test that rejects no efficient models will have no power against some inefficient
alternatives. Conversely, any test using only local information about demands with power
against all Cournot alternatives must reject some efficient models. To see how this type of
observational equivalence can arise, I offer the following twist on my running example of a
couple with Cobb-Douglas preferences.

5When the data do contain variation in relative prices, efficiency also implies a separate set of properties
on the price and wealth derivatives of the extended demand system g∗∗(p, y, µ(p, y, z)). For completeness, I
state these conditions in Appendix C.

19



Example 4. Suppose that, as in Example 2, the relationship between A’s true relative
wealth ω and the distribution factors zA and zB is

ω(y, zA, zB) =
1

2y
(y + zA − zB). (59)

Also suppose that, under an efficient model,

µ(y, zA, zB) =
1

2y
(y + zA − zB). (60)

A’s Pareto weight is positively related to her earnings zA, perhaps because they are correlated
with her outside options on the marriage market. Now reconsider the collective model of
Example 1. The restricted aggregate demand system in that case was

h∗∗0 (y, µ(y, zA, zB)) = α · 1

2
(y + zA − zB) + β · 1

2
(y + zB − zA) (61)

h∗∗1 (y, µ(y, zA, zB)) =
(1− α)

2
· (y + zA − zB) (62)

h∗∗2 (y, µ(y, zA, zB)) =
(1− β)

2
· (y + zB − zA). (63)

But in Example 3, we have an example of a Cournot model that results, at least over a
certain part of its domain, in the restricted aggregate demands

h∗0(y, ω(y, zA, zB)) = a · 1

2
(y + zA − zB) (64)

h∗1(y, ω(y, zA, zB)) = (1− a) · 1

2
(y + zA − zB) (65)

h∗2(y, ω(y, zA, zB)) =
1

2
(y + zB − zA). (66)

A comparison of (64)-(66) with (61) - (63) reveals that if α = a and β = 0, the aggregate
demands implied by the Cournot model and those implied by the collective model are exactly
the same, for all (y, z). So the set of allocations generated by the efficient and the inefficient
models coincide exactly. Yet one is Pareto efficient, and the other is not.

4

The economics of Example 4 are easy to state: without knowing who is paying for what, or
the preferences of the two agents, it is impossible to tell if B is free-riding by withholding
contributions to the public good q0, as in the Cournot model, or if B simply does not like
the public good, as in the collective model.6 Put differently, the solution concept and the

6The observational equivalence of the two models can be interpreted geometrically, too. In Figure 2, the
set of equilibrium allocations (the solid black line) is distinct from the set of efficient allocations (the dashed
blue line) for a fixed profile of preferences (uA, uB), summarized here by the parameters (a, b). However, the
particular location and slope of the set of equilibrium allocations depends on preferences. So for a different
set of preferences - say (α, β) - the set of equilibrium allocations for (a, b) and the set of efficient allocations
for (α, β) can overlap, at least partly. If the data are such that only allocations in the overlap are observed,
it will be impossible to distinguish between efficiency and inefficiency.
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preferences of the household members need to be identified jointly. Efficiency is a concept
that only makes sense with respect to a fixed set of preferences and production possibilities;
one cannot claim that outcomes are efficient but then refuse to say what “efficiency” means.

Proposition 5 below generalizes Example 4 by exhibiting a class of demand systems that are
locally consistent with both collective and Cournot models. Roughly speaking, a restricted
aggregate demand system h is consistent with a collective model over a given domain if there
is a collective model θ such that h(y, z) = h∗∗(y, z|θ) identically.

I need to work with the weaker concept of a demand system being “consistent with” a given
model, rather than being “generated by” that model, because with data observed over a
bounded domain, and at only one set of relative prices p, it will obviously be impossible
to learn about the preferences of the two household members over bundles that are never
affordable. Definition 7 below states this idea formally.

Definition 7. Let h ∈ H(U, V |p) be a restricted aggregate demand system and let I ⊆
{0, 1, . . .m} be a set with 0 ≤ n ≤ m + 1 elements. By permuting indices, we may assume
I = {0, 1, . . . n − 1}. Let DAB ⊂ Rn++ be open and convex, and similarly let DA, DB ⊂
Rm+1−n

++ be open and convex. Suppose that for all (y, z) ∈ (U × V )|p,

h(y, z) ∈ DAB × (DA +DB) (67)

where DA + DB is the Minkowski sum of DA and DB . Suppose also that there are two
increasing and quasiconcave functions uA : DAB × DA −→ R and uB : DAB × DB −→ R,
and a smooth function µ : (U × V )|p −→ (0, 1) such that

h(y, z) = arg max
(qAB ,qA,qB)

µ · uA(qAB , qA) + [1− µ] · uB(qAB , qB)

subject to

n−1∑
i=0

piqAB,i +

m∑
i=n

pi(qA,i + qB,i) ≤ y (68)

for all (y, z) ∈ (U × V )|p. Then we say that h is consistent with a collective model with n
public goods over (U × V )|p. 4

Similarly, to say that a given restricted aggregate demand system h is consistent with a
Cournot model is to say that there is a Cournot model γ such that, over its domain, h(y, z) =
h∗(y, z|γ) identically.

Definition 8. Let h ∈ H(U, V |p) be a restricted aggregate demand system and let I ⊆
{0, 1, . . .m} be a singleton. By permuting indices, we may assume I = {0}. Let DAB

be an open interval, and let DA, DB ⊂ Rm++ be open and convex. Suppose that for all
(y, z) ∈ (U × V )|p,

h(y, z) ∈ DAB × (DA +DB) (69)

where DA + DB is the Minkowski sum of DA and DB . Suppose also that there are two
increasing and quasiconcave functions uA : DAB × DA −→ R and uB : DAB × DB −→ R,
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and a smooth function ω : (U × V )|p −→ (0, 1) such that the system

max
(qA0,qA)

uA(qA0 + qB0, qA) s.t. p0qA0 +

m∑
i=1

piqAi ≤ yω (70)

max
(qB0,qB)

uB(qA0 + qB0, qB) s.t p0qB0 +

m∑
i=1

piqBi ≤ y(1− ω) (71)

has a unique solution ((q∗A0, q
∗
A), (q∗B0, q

∗
B)) for all (y, z) ∈ (U × V )|p, and further that

h0(y, z) = q∗A0 + q∗B0 (72)

hi(y, z) = q∗Ai + q∗Bi for all i = 1, . . .m. (73)

Then we say h is consistent with a Cournot model over (U × V )|p. 4
Define, for each possible domain (U × V )|p, the family of demand systems

H(n)
0 (U, V |p) = {h ∈ H(U, V |p) : h is consistent with a collective model with n public goods}. (74)

Their union is the set of demand systems which are consistent with at least one collective
model:

H0(U, V |p) =

m+1⋃
n=0

H(n)
0 (U, V |p). (75)

Also define the set of demand systems which are consistent with at least one Cournot model:

H1(U, V |p) = {h ∈ H(U, V |p) : h is consistent with a Cournot model}. (76)

I will show that H0(U, V |p) and H1(U, V |p) are not well-separated, in the following sense:

Proposition 5. Let (y, z) ∈ (U × V )|p be given. There is an open neighborhood U ′ × V ′ ⊂
U × V of (p, y, z) such that

H0(U ′, V ′|p) ∩H1(U ′, V ′|p) 6= ∅. (77)

I establish Proposition 5 by showing directly that there is a nonempty set of restricted ag-
gregate demand systems that belongs both to H0(U, V |p) and to H1(U, V |p), at least when
the domain (U × V )|p is restricted to a (perhaps small) neighborhood of a given point (y, z).

In fact, it will be easy to describe some of the demand systems in the intersection. Consider
restricted aggregate demand systems that are linear, i.e. ones of the form

h(y, z) =


h00 h01 . . . h0K
h10 h11 . . . h1K

...
. . .

hm0 hm1 . . . hmK

×

y
z1
...
zK

 . (78)

Let HL(U, V |p) ⊂ H(U, V |p) be the set of all such h. Let HND(U, V |p) be the set of all
nondegenerate h, in the sense of Definition 3. Lastly, let HDFP (U, V |p) ⊂ H(U, V |p) be the
set of restricted aggregate demand systems satisfying distribution factor proportionality.
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Proposition 6. Let (y, z) ∈ (U × V )|p be given. There is an open neighborhood U ′ × V ′ ⊂
U × V of (p, y, z) such that if h is linear, nondegenerate, and satisfies distribution factor
proportionality, then h is consistent with a Cournot model over (U ′ × V ′)|p.

Proof. See Appendix A.

Proposition 7. Let (y, z) ∈ (U × V )|p be given. There is an open neighborhood U ′ × V ′ ⊂
U × V of (p, y, z) such that if h is linear, nondegenerate, and satisfies distribution factor
proportionality, then h is consistent with a collective model over (U ′ × V ′)|p.

Proof. See Appendix A.

Proof of Proposition 5. Proposition 6 shows that

HL(U ′, V ′|p) ∩HND(U ′, V ′|p) ∩HDFP (U ′, V ′|p) ⊂ H1(U, V ′|p). (79)

But Proposition 7 shows that

HL(U ′, V ′|p) ∩HND(U ′, V ′|p) ∩HDFP (U ′, V ′|p) ⊂ H0(U, V ′|p) (80)

too. Examples 1 and 3 provide examples of restricted aggregate demand systems inHL(U, V ′|p)∩
HND(U, V ′|p) ∩HDFP (U, V ′|p). Thus,

HL(U ′, V ′|p) ∩HND(U ′, V ′|p) ∩HDFP (U ′, V ′|p) 6= ∅. (81)

So we have H0(U ′, V ′|p) ∩H1(U ′, V ′|p) 6= ∅, as required.

Since distribution factors very rarely have a natural scale, arguments for using global infor-
mation about the relationship between the distribution factors and household consumption
patterns to identify inefficiency are bound to be somewhat contrived. So even though Propo-
sition 5 is only local in nature, it still severely constrains the use of variation in distribution
factors alone to identify inefficiency.

6 Restoring Identifiability

But inefficiency is a well-defined concept, even if its presence is not detectable in some set-
tings. Identification problems arise when the data are too poor, or when the set of models
are too rich. The econometrician can escape the negative conclusions of Proposition 5 either
by gathering different data, or by restricting the class of models Θ(U, V ) and Γ(U, V ) he is
willing to entertain.

To prove Propositions 4 and 5, I used the assumptions that (a) the data contain no variation
in relative prices, (b) only information about aggregate consumption and income is available,
and (c) other than weak monotonicity and convexity, both agents’ preferences can be be
arbitrary. Perhaps surprisingly, there are reasons to think that introducing variation in
prices will not prove useful. The binding constraints on inference are more likely aggregation
and lack of information about preferences.
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6.1 Price Variation

Without variation in relative prices, both collective and Cournot models can only generate
variation in consumption through income effects, as either aggregate wealth or its distribu-
tion varies. In a public-goods economy, inefficiency arises from substitution away from public
consumption and towards private consumption, so data without price variation cannot be
informative about the degree of inefficiency. (Consider the extreme case where public and
private goods are perfect complements; then there is no inefficiency. But an agent’s Engel
curves are uninformative about the degree of substitutability, so the same data can be con-
sistent with a strictly positive level of inefficiency too.) As argued in Section 4, tests using
this sort of data will have no power against a Cournot alternative. Much of the evidence in
Table 2 is therefore not persuasive.

In the presence of price variation, the aggregate demand of an efficient household has to obey
restrictions other than distribution factor proportionality. [Browning & Chiappori, 1998]
show that under efficiency, the household analogue of the Slutsky substitution matrix has to
be decomposable as the sum of a negative semidefinite matrix and a matrix of rank at most
one. For completeness, I derive that condition, sometimes known as “SR1”, in Appendix C.

Yet Theorem 4 of [Lechene & Preston, 2011] shows that the aggregate demands of a non-
cooperative household will obey the same “SR1” conditions as will an efficient household,
at least when each partner’s preferences for private goods are weakly separable from the
public good. So the prospects for the identification of inefficiency from aggregate household
consumption patterns, even with price variation, are not good.

6.2 Disaggregated Data

Now suppose, contrary to my assumptions in Section 2, that the econometrician knows yA
and yB , not just y = yA + yB . Then he also knows the relative wealth ω of each partner.

If the household’s expenditures cannot be classified into public consumption and the private
consumption of each member, disaggregated income data would not help in identifying inef-
ficiency, because ω itself can be a distribution factor - a component of z - and the collective
model imposes no restrictions on the form of the Pareto weight function µ. Disaggregated
income data can help rule out some inefficient models, though.

Cournot models generate relationships of the form q = h∗(y, ω(y, z)). They cannot explain a
relationship between distribution factors and consumption, holding relative wealth constant.
Finding a relationship between z and consumption conditional on ω would simply re-open
the basic question of this paper: is there is a class of inefficient models against which the
collective model is identified?

However, distribution factors typically add little explanatory power to models of household
consumption, and from an economic point of view, they are only of indirect interest. So
it is still reasonable to ask if there are testable implications of efficiency - and efficiency
alone - in an environment where the relationship between the intrahousehold distribution of
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wealth and consumption can be perfectly observed. That is, suppose the demand system
h : W −→ Rm+1

++ were known over some open domain W ⊂ R++ × (0, 1), and satisfied

m∑
i=0

hi(y, ω) = 1 (82)

for all (y, ω) ∈W . Would it be possible to reject efficiency on the basis of that knowledge? If
some information about the distribution of consumption is available, and preferences satisfy
a certain asymmetry in income effects, it is indeed possible.

Suppose we can classify some of the household’s expenditures as being either public, ex-
clusively consumed by A, or exclusively consumed by B. In particular, suppose that the
econometrician knows that good i = 0 is public, that good 1 is privately consumed by A
alone, and good 2 is privately consumed by B alone. This is not a complete disaggregation
of consumption, but it is more information than is typically used in the literature.

Assume that the preferences of both parties for the private goods are separable from the
public good, so that uA and uB are of the form

uA(q0, qA) = uA(q0, vA(qA)) (83)

uB(q0, qB) = uA(q0, vB(qB)) (84)

and that the functions vA and vB are homogenous of degree one. Also assume that the
assignable private goods 1 and 2 satisfy an Inada condition, so

lim
q1→0+

∂uA
∂qA1

(q0, qA) = +∞ (85)

lim
q2→0+

∂uB
∂qB2

(q0, qB) = +∞. (86)

Further, assume that for all efficient allocations (q∗∗0 , q∗∗A , q
∗∗
B ),

∂

∂vA

(
∂uA/∂q0
∂uA/∂vA

(q∗∗0 , vA(q∗∗A ))

)
6= ∂

∂vB

(
∂uB/∂q0
∂uB/∂vB

(q∗∗0 , vB(q∗∗B ))

)
. (87)

Finally, I will restrict the set of collective models by assuming that for all y, the Pareto
weight function µ(y, ω) is surjective. That is, for any µ̃ ∈ (0, 1), there is some ω̃ ∈ (0, 1) such
that µ(y, ω̃) = µ̃.

With these restrictions on preferences and the set of collective models, a large-support con-
dition on ω will be enough to identify inefficiency. Let y be given and recall that the physical
units of the goods are chosen such that all prices are unity. Then we have

Proposition 8. Suppose A and B’s preferences for the private goods are separable from the
public good, their preferences for the private goods are homogenous of degree one, and their
preferences for the assignable goods satisfy the Inada conditions (85)-(86). Suppose also that
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the support of the conditional distribution of ω at y is the full unit interval: inf{ω : (y, ω) ∈
W} = 0, and sup{ω : (y, ω) ∈W} = 1. Let

ω̃ = arg minh0(y, ω) (88)

Then for any collective model such that µ(y, ω) is surjective at y,

min{h1(y, ω̃), h2(y, ω̃)} = 0. (89)

Proof. See Appendix A.

Importantly, the condition (89) is both testable and not true of Cournot models. Figure 1
illustrates the logic of this result: in noncooperative households, the lowest level of public
consumption occurs when the distribution of income ω is relatively equal, meaning that
neither agent’s private consumption will be zero. However, in cooperative households, the
lowest level of public consumption occurs when the partner who cares least about the public
good has all the bargaining power, meaning that one agent’s private consumption has to be
zero.

Proposition 9. Suppose A and B’s preferences for the private goods are separable from the
public good, their preferences for the private goods are homogenous of degree one, and their
preferences for the assignable goods satisfy the Inada conditions (85)-(86). Suppose also that
the support of the conditional distribution of ω at y is the full unit interval: inf{ω : (y, ω) ∈
W} = 0, and sup{ω : (y, ω) ∈W} = 1. Let

ω̃ = arg minh0(y, ω) (90)

Then for any Cournot model,

min{h1(y, ω̃), h2(y, ω̃)} > 0. (91)

Proof. See Appendix A.

6.3 Preference Restrictions

Relatedly, we could restrict the preferences of the household members. In data without price
variation, assumptions about preferences can help fill in missing information about substi-
tution effects. If we were willing to go so far as to fully specify both members’ preferences,
we could directly compute the efficient and the equilibrium allocations. Testing a collective
model against a Cournot one would then reduce to the question of which model provides a
better fit to the consumption data.

In fact, the identification problem discussed here is as much the fault of the complete lack of
restrictions on preferences as it is the fault of limited data on individual consumption and
wealth.

[Chiappori & Ekeland, 2009] show, in a similar setting to mine, that household-level data
with price variation cannot identify the preferences of a household’s members even within

26



the class of collective models. In view of those results, the failure of identification I establish
should not be surprising. Without restricting the permissible class of preferences for the
household’s members beyond some weak nonsatiation and convexity requirements, both effi-
cient and inefficient models of the family are very “high-dimensional” objects, and restricting
the information available by considering only data without price variation should only make
the identification problem worse.
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7 Conclusion

None of my arguments have been empirical, so the results presented in this paper do not
mean that families are actually inefficient. On theoretical grounds, in fact, one might be
skeptical of the idea that inefficiencies can persist in the sort of long-term partnership that is
family life. But the inefficiency arising from the underprovision of public goods consists only
of relative waste. In particular, a Cournot equilibrium is inefficient relative to a first-best
allocation within an existing marriage. So even in an inefficient equilibrium, each partner is
better off than under autarky, and so it can be individually rational to tolerate some free-
riding. If the sort of inefficiencies described in this paper persist, the ultimate fault may lie
in the marriage market, perhaps due to search costs or other frictions.

Instead of looking for testable implications of intrafamily efficiency, it may be more fruitful
to look for the implications of inefficiency. If we take the view that the provision of public
goods, such as children or housing, is an important economic function of families, then
determining whether families are efficient requires more information about preferences for
those goods than economists have thus far brought to bear on this question.

A Proofs of Propositions

A.1 Proofs for Section 3

Proof of Proposition 2. Let qA0(y(1− ω)|p) solve

qA0 = qB0(y(1− ω) + qA0) (92)

and similarly let qB0(yω|p) solve

qB0 = qA0(yω + qB0) (93)

If B’s contribution to the public good, qB0, is greater than qB0(yω|p), A will not contribute,
and similarly qA0 ≥ qA0(y(1− ω)|p) implies that B’s best response is to free-ride by setting
qB0 = 0.

Define ω∗(p, y) and ω∗(p, y) as the unique solutions to

qB0((1− ω∗)y|p) = qB0(yω|p) (94)

qA0(ω∗y|p) = qA0(y(1− ω)|p) (95)

Now, if ω is such that A does not contribute, then

qB0((1− ω)y|p) ≥ qB0(yω|p) (96)

but since qB0((1− ω)y|p) is decreasing in ω and qB0(yω|p) is increasing in ω, we must have
ω ≤ ω∗. Similar reasoning implies that B does not contribute - qB0 = 0 - exactly when A is
sufficiently rich: ω ≥ ω∗. Finally, ω∗ < ω∗ because otherwise there would exist ω ∈ [ω∗, ω∗],
but for such an ω, neither A nor B would contribute to the public good, and that cannot be an
equilibrium. But this contradicts Theorem 2 of [Bergstrom et al. , 1986], which establishes
that in this game, an equilibrium always exists.
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A.2 Proofs for Section 5

Proposition 2 shows that in equilibria where only one partner - say A - contributes to the
public good, aggregate consumption of the public good is simply q∗A0, and aggregate con-
sumption of all the m private goods is q∗Aj + q∗Bj , for all j 6= 0. To prove Proposition 6, I
reverse-engineer that equilibrium outcome locally by finding a good i - say it is good 0 - and
a scalar a ∈ (0, 1) and defining ω(y, z) by the relation h0(y, z) = aω(y, z), so A’s Engel curve
for the “public” good is linear by construction.

Then, I decompose the consumption of the remaining m goods as

hj(y, z) = qAj(ω(y, z)) + qBj(1− ω(y, z)) (97)

for 2m weakly positive, weakly increasing functions qAj and qBj such that “adding-up” holds:

aω(y, z) +

m∑
j=1

qAj(ω(y, z)) = ω(y, z) (98)

m∑
j=1

qBj(1− ω(y, z)) = 1− ω(y, z) (99)

Finally, I construct preferences uA, uB such that A and B’s Engel curves are exactly qAj and
qBj for all the “private” goods 1 ≤ j ≤ m, and such that B does not contribute in equi-
librium. This is always possible, I show, if B’s preference for the public good is weak enough.

Lemma 1. Let h : R2 −→ Rm+1 be given by

h(y, s) =


h00 h01
h10 h11

...
hm0 hm1

×
[
y
s

]
. (100)

Suppose also that for all i, hi0 > 0, hi1 6= 0, and

1 =

m∑
i=0

hi0 (101)

0 =

m∑
i=0

hi1. (102)

Then there is an integer i, 0 ≤ i ≤ m, a scalar a ∈ (0, 1), and a smooth function ω : R2 −→ R
such that (by permuting indices such that i = 0),

h(y, s) =


a 0
δA1 δB1
...
δAm δBm

×
[

yω(y, s)
y(1− ω(y, s))

]
(103)
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for all (y, s) ∈ R2. Furthermore, the constants δAj , δ
B
j can be chosen to be nonnegative and

such that

m∑
j 6=i

δAj = 1− a (104)

m∑
j 6=i

δBj = 1. (105)

Proof of Lemma 1. Since all hj1 are nonzero, partition {0, 1 . . .m} into

J + = {j : hj1 > 0} (106)

J− = {j : hj1 < 0}. (107)

Both J + and J− are nonempty, because
∑m
j=0 hj1 = 0. Let

i ∈ arg min

{
hj0
hj1

: j ∈ J +

}
. (108)

and define, for all j 6= i,

δBj = hj0 − hi0
hj1
hi1

(109)

δAj = δBj + a
hj1
hi1

= hj0 + (a− hi0)
hj1
hi1

(110)

for an a ∈ (0, 1) that is, for now, unspecified. By construction, δBj ≥ 0 for all j ∈ J +, and

clearly δBj ≥ 0 for j ∈ J−. This implies that if j ∈ J +, then δAj ≥ 0 whenever a ≥ 0. Now,
suppose that for all j ∈ J−

a ≤ hi0 − hj0
hi1
hj1

= hi0 + hj0

∣∣∣∣hi1hj1

∣∣∣∣ (111)

If so, then for all j ∈ J−,

δAj = hj0 + (a− hi0)
hj1
hi1

= hj0 − (a− hi0)

∣∣∣∣hj1hi1

∣∣∣∣ ≥ 0. (112)

So, let a be such that

0 < a < min

{
1, hi0 + hi1 · min

j∈J−

∣∣∣∣hj0hj1

∣∣∣∣} (113)
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Define

ω(y, s) =
1

ay
hi(y, s). (114)

For any j 6= i,

hj(y, s) = y · hj0 + s · hj1

= y · hj0 + hj1 ·
1

hi1
[ayω(y, s)− y · hi0]

= y ·
{[
hj0 − hi0 ·

hj1
hi1

]
+

[
a
hj1
hi1

]
ω(y, s)

}
= y ·

{[
hj0 − hi0 ·

hj1
hi1

]
· [(1− ω(y, s)) + ω(y, s)] +

[
a
hj1
hi1

]
ω(y, s)

}
= δAj · yω(y, s) + δBj · y(1− ω(y, s)). (115)

Corollary 2. Let h(y, s) be as in Lemma 1 above. If y > 0, a can be chosen such that
ω(y, 0) ∈ (0, 1).

Proof. If we choose a such that

0 < hi0 < a < min

{
1, hi0 + hi1 · min

j∈J−

∣∣∣∣hj0hj1

∣∣∣∣} (116)

then

ω(y, 0) =
1

ay
hi(y, 0)

=
hi0
a

< 1. (117)

Proof of Proposition 6. Let h ∈ HL(U, V |p) ∩HND(U, V |p) ∩HDFP (U, V |p) be given by

h(y, z) =


h00 h01 . . . h0K
h10 h11 . . . h1K

...
. . .

hm0 hm1 . . . hmK

×

y
z1
...
zK

 . (118)

Because h is nondegenerate, hik 6= 0 for all goods i. And because distribution factors have no
natural scale, is without loss of economic generality to assume z = 0. h satisfies adding-up,
so for any y,

m∑
i=0

hi(y, z) =

(
m∑
i=0

hi0

)
y

= y (119)
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which means
∑m
i=1 hi0 = 1. Then because budget shares are strictly positive, hi(y, z)/y =

hi0 > 0. But again by adding up,

m∑
i=0

hi(0, z) =

m∑
i=1

K∑
k=1

hikzk

= 0. (120)

By considering z = (1, 0, . . . 0), we see that
∑m
i=0 hi1 = 0.

Next, let

s(z) =

K∑
k=1

hik
hi1

zk. (121)

Because h satisfies distribution factor proportionality, the ratio hik/hi1 does not depend on
the choice of good i, so s is well-defined.

For all goods i, and all (y, z) ∈ (U × V )|p, then,

hi(y, z) = y · hi0 + hi1

K∑
k=1

hik
hi1

zk

= y · hi0 + hi1 · s(z). (122)

By Lemma 1, we can express the demand system h as

h0(y, z) = a · yω(y, s(z)) (123)

and for all j 6= 0,

hj(y, z) = δAj · yω(y, s(z)) + δBj · y(1− ω(y, s(z))). (124)

By Corollary 2, we can choose a such that ω(y, s(z)) ∈ (0, 1). Let

G =
{

(y, z) ∈ (U × V )|p : ω(y, z) ∈ (0, 1)
}
. (125)

G is open, because ω is continuous. Let

y
A

= inf
(y,z)∈G

yω(y, z) (126)

y
B

= inf
(y,z)∈G

y(1− ω(y, z)) (127)

ω = inf
(y,z)∈G

ω(y, z) (128)

yA = sup
(y,z)∈G

yω(y, z) (129)

yB = sup
(y,z)∈G

y(1− ω(y, z)) (130)

ω = sup
(y,z)∈G

ω(y, z) (131)
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and define

DAB = (ay
A
, ayA) (132)

DA =

m∏
j=1

(δAj · yA, δ
A
j · yA) (133)

DB =

m∏
j=1

(δBj · yB , δ
B
j · yB). (134)

If any of the δAj or δBj are zero, we may replace (δAj · yA, δ
A
j · yA) = ∅ with (0,∞), so that

DA and DB remain open and convex. Finally, let

uA(q0, qA) = a log(q0) +

m∑
j=1

δAj log(qAj) (135)

uB(q0, qB) = b log(q0) + (1− b) ·
m∑
j=1

δBj log(qBj) (136)

for some b > 0 such that

b <
a · ω

(1− ω) + a · ω
(137)

so that for all (y, z) ∈ G,

ω(y, z) ≥ ω

>
b

a+ (1− a)b
(138)

which implies

b[(1− ω(y, z)) + aω(y, z)] < aω(y, z) (139)

so that B will not contribute in equilibrium. Thus, h meets Definition 8, and is consistent
with a Cournot model.

Proof of Proposition 7. As in the proof of Proposition 6, decompose h as

h0(y, z) = a · yω(y, s(z)) (140)

and for all j 6= 0,

hj(y, z) = δAj · yω(y, s(z)) + δBj · y(1− ω(y, s(z))). (141)

but let

uA(q0, qA) = a log(q0) +

m∑
j=1

δAj log(qAj) (142)

uB(q0, qB) =

m∑
j=1

δBj log(qBj). (143)

Then h meets Definition 7, and is consistent with a collective model with no public goods.
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A.3 Proofs for Section 6

Proof of Proposition 8. Since (p, y) is fixed, I suppress the dependence of all functions on
those variables. The demand system is a set of m + 1 functions hi : (0, 1) −→ (0, 1) such
that

∑m
i=0 hi(ω) = 1 for all ω ∈ (0, 1).

If h is generated by a collective model, then h(ω) = h∗∗(µ(ω)) for some function µ(ω), where

h∗∗(µ) = arg maxµ · uA(q0, vA(qA)) + (1− µ) · uB(q0, vB(qB))

s.t. q0 +

m∑
i=0

(qAi + qBi) ≤ y. (144)

Suppose h∗∗0 (µ) were strictly monotone in µ. Note that because µ(·) is surjective and the
support of ω is the entire unit interval [0, 1], supω∈(0,1) µ(ω) = 1 and infω∈(0,1) µ(ω) = 0.

Then, letting µ̃ = (h∗∗0 )−1(h0(ω̃)), we have µ̃ ∈ {0, 1}. That is, the minimum consumption
of the public good occurs when one partner has no bargaining power at all. But then that
partner must have zero private consumption, too, so

min{h1(y, ω̃), h2(y, ω̃)} = 0. (145)

To show that the collective demand for the public good h∗∗0 (µ) is monotone in µ, let

qA = arg max vA(qA) s.t.

m∑
i=1

qAi ≤ 1 (146)

vA = vA(qA) (147)

qB = arg max vB(qB) s.t.

m∑
i=1

qBi ≤ 1 (148)

vB = vB(qB) (149)

The separability assumptions on uA and uB and homogeneity assumptions on vA and vB
mean that the set of efficient private consumption vectors q∗∗A , q

∗∗
B lies in a subspace of Rm

of dimension at most two: that is, any efficient allocation (q∗∗0 , q∗∗A , q
∗∗
B ) must be of the form

(q∗∗0 , x∗∗A · qA(1), xB · qB(1)), where q∗∗0 + x∗∗A + x∗∗B = y.

I will show that d
dµh

∗∗
0 (µ) 6= 0 for all µ, which by continuity will imply that h∗∗0 is monotone.

Suppose there were some µ such that d
dµh

∗∗
0 (µ) = 0, and let (q∗∗0 , x∗∗A · qA, x∗∗B · qB) be the

efficient allocation corresponding to µ. Thus,

∂uA/∂q0
∂uA/∂vA

(q∗∗0 , x∗∗A vA) · 1

vA
+
∂uB/∂q0
∂uB/∂vB

(q∗∗0 , x∗∗B vB) · 1

vB
= 1. (150)

Then for a small change dx in the allocation of private expenditures, (q∗∗0 , (x∗∗A +dx)·qA, (x∗∗B −
dx) · qB) would be efficient, and we would also have

∂uA/∂q0
∂uA/∂vA

(q∗∗0 , (x∗∗A + dx)vA) · 1

vA
+
∂uB/∂q0
∂uB/∂vB

(q∗∗0 , (x∗∗B − dx)vB) · 1

vB
= 1. (151)
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Subtracting (150) from (151) and letting dx→ 0, we have that d
dµh

∗∗
0 (µ) = 0 implies that

∂

∂vA

(
∂uA/∂q0
∂uA/∂vA

(q∗∗0 , vA(q∗∗A ))

)
=

∂

∂vB

(
∂uB/∂q0
∂uB/∂vB

(q∗∗0 , vB(q∗∗B ))

)
(152)

which contradicts (87).

Proof of Proposition 9. By Proposition 2, the minimum expenditure on the public good
occurs at ω̃ ∈ (ω∗, ω

∗), but 0 < ω∗ < ω∗ < 1. If the distribution of income is interior, neither
A nor B will have zero private consumption, so

min{h1(y, ω̃), h2(y, ω̃)} > 0. (153)

B Efficiency Loss in a CES Cournot Model

B.1 Defining the Efficiency Loss

Let (q∗0 , q
∗
A, q
∗
B) be the equilibrium allocation for the Cournot model. Define the equilibrium

utilities

u∗A(ω|p, y) = uA(q∗0(ω|p, y), q∗A(ω|p, y)) (154)

u∗B(ω|p, y) = uB(q∗0(ω|p, y), q∗B(ω|p, y)) (155)

Consider a social planner’s cost-minimization problem, given a profile of utilities (uA, uB)

c∗∗(uA, uB |p) = min
(q0,qA,qB)

q0 + p(qA + qB) (156)

s.t. uA(q0, qA) ≥ uA
uB(q0, qB) ≥ uB

What I will call the “efficiency loss,” d, is the relative difference between the social planner’s
minimized cost of achieving the utilities that agents enjoy in equilibrium, and the total
resources in the household:

d(ω|p, y) = 1− c∗∗(u∗A(ω|p, y), u∗B(ω|p, y))|p)
y

(157)

One way to interpret d is as the compensating variation associated with an exogenous move
to the Lindahl prices that give A and B their equilibrium utilities (or, more poetically, a
move to Coasian bargaining). Stated differently, it is A and B’s aggregate willingness to pay
to hire a social planner.7

7When both partners have homothetic preferences, it can be shown that c∗∗(u∗A(ω|p, y), u∗B(ω)|p, y) is
homogenous of degree one in (uA, uB), and thus the efficiency loss d is homogenous of degree zero in
(yA, yB) = (yω, y(1− ω)). In that situation, there is no loss of generality in setting yA + yB = 1. Moreover,
the envelope theorem and Roy’s identity imply that c∗∗(u∗A(ω|p, y), u∗B(ω|p, y)) is locally constant in p (ex-
cept when variations in p, for constant y, changes the set of equilibrium contributors to the public good), so
that d depends only on the relative endowment ω, but not on prices p.
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In the following section, I provide explicit formulae for a quadratic approximation to d(ω|p, y)
when both agents have constant-elasticity-of-substitution (CES) preferences.

B.2 A “Harberger Triangle” for the Cournot Model

Let us rewrite the problem (156) in one dimension: define q̂A(q0, u
∗
A(ω|p, y)) and q̂B(q0, u

∗
B(ω|p, y))

implicitly by

u∗A(ω|p, y) = uA(q0, q̂A) (158)

u∗B(ω|p, y) = uB(q0, q̂B) (159)

and let

c(q0) = q0 + p(q̂A(q0, u
∗
A(ω|p, y)) + q̂B(q0, u

∗
B(ω|p, y))) (160)

Let q∗∗0 be the socially optimal quantity of the public good, i.e. the value of q0 that minimizes
(160). Obviously, c(q∗0(ω|p, y)) = y, and

c(q∗∗0 ) = c∗∗(u∗A(ω|p, y), u∗B(ω|p, y)|p))
= y(1− d(ω|p, y)) (161)

In general, d(ω|p, y) must be calculated numerically. However, a useful shortcut is to take
a quadratic approximation to the social planner’s cost function (160) about q∗∗0 . Doing so
leads to the following version of a Harberger triangle:

Proposition 10. The equilibrium efficiency loss is

d(ω|p, y)− 1

2

[c′(q∗0)]2

(yA + yB)c′′(q∗0)
= O

(
(q∗0 − q∗∗0 )2

)
. (162)

It remains to calculate the first and second derivatives c′(q∗0) and c′′(q∗0). As a shorthand,
let

MRS(q∗0 , u
∗
A) =

∂uA/∂q0
∂uA/∂qA1

(q∗0 , q
∗
A1) (163)

be A’s marginal willingness to pay for the public good at the Cournot equilibrium. Then
the the numerator in (162) is

c′(q∗0) = 1 + p

(
∂q̂A
∂q0

+
∂q̂B
∂q0

)
= 1− p (MRS(q∗0 , u

∗
A) +MRS(q∗0 , u

∗
B)) (164)

By construction, the first derivative c′ is the difference between the relative price of the public
good and the sum of A and B’s marginal rates of substitution, i.e. the marginal social will-
ingness to pay for the public good. The efficiency loss is therefore approximately quadratic
in the marginal distortion in equilibrium, echoing the familiar analysis of the deadweight
loss of taxation.
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When both partners have constant-elasticity of substitution (CES) preferences, i.e.

uA(q0, qA1) = (aqρA0 + (1− a)qρAA1)
1/ρA (165)

uB(q0, qB1) = (bqρB0 + (1− b)qρBB1)
1/ρB (166)

the first derivative c′(q∗0) in (164) becomes

c′(q∗0) = 1− p

[(
a

1− a

)(
q∗0
q∗A

)ρA−1
+

(
b

1− b

)(
q∗0
q∗B

)ρB−1]
(167)

Obtaining the denominator c′′(q∗0) takes more work, but is not complicated. Note that A’s
marginal willingness to pay for q0 is exactly

MRS(q∗0 , u
∗
A) =

1

p̂(q∗0 , u
∗
A)

(168)

where p̂(q0, u) is A’s inverse Hicksian demand for q0. Then

c′′(q∗0) = −p
[

1

[p̂(q∗0 , u
∗
A)]2

∂p̂(q∗0 , u
∗
A)

∂q0
+

1

[p̂(q∗0 , u
∗
B)]2

∂p̂(q∗0 , u
∗
B)

∂q0

]
(169)

Assembling the components of (169), we have A’s Hicksian demand given by

qH0 (p, u) = u · aσA ·
[
aσA + (1− a)σAp1−σA

] σA
1−σA (170)

where, as usual, we let σA = (1− ρA)−1 and σB = (1− ρB)−1 denote A and B’s elasticities
of substitution between the private and public goods.

Then,

p̂(q0, u
∗
A) =

(
a

1− a

) σA
1−σA

[
1

a
(u∗A)

σA−1

σA q
1−σA
σA

0 − 1

] 1
1−σA

(171)

Differentiating, we obtain (after some algebra)

∂p̂(q0, u
∗
A)

∂q0
=

1

σAq0

[
p̂(q0, u

∗
A) +

(
a

1− a

)σA
p̂(q0, u

∗
A)σA

]
(172)

Repeating the analogous calculations for B and substituting in (169), we finally arrive at

c′′(q∗0) =
p

q∗0

{
1

σA

(
MRSA(q∗0 , u

∗
A) +

[
a

1− a

]σA
MRSA(q∗0 , u

∗
A)2−σA

)
+

1

σB

(
MRSB(q∗0 , u

∗
B) +

[
b

1− b

]σB
MRSB(q∗0 , u

∗
B)2−σB

)}
(173)
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Example 5. Suppose both partners have Cobb-Douglas preferences as in Examples 3 and
1 above, and also as before let the aggregate endowment y be unity. In Figure 3, I illustrate
the approximate efficiency loss as a function of the distribution of endowments, ω.

The efficiency loss tends to be highest when the distribution of wealth, ω, is fairly equal.
This is because when one partner free-rides and does not contribute to the public good,
their willingness to pay for q0 must be strictly lower than its relative price. However, when
ω ∈ (ω∗, ω

∗), both A and B contribute to the public good. Thus, both A and B’s marginal
willingness to pay for q0 is equal to its relative price, and the gap between the social marginal
cost of q0 and the social willingness to pay - the right-hand side of (49) - is maximal. 4

Figure 3: Efficiency losses, d(ω|p, y), under Cobb-Douglas preferences. Share parameters are
a = 0.7 and b = 0.4. The relative prices of the private goods are p1 = p2 = 1, and total
household wealth is y = 1.

B.3 Dependence of Efficiency Loss on Preferences

Of course, the efficiency loss d(ω|p, y) depends on the preferences of the two agents as well.
In Figures 4 and 5 I illustrate this dependence for the share parameters (a, b) and the sub-
stitution elasticities (σA, σB) separately.

With the numerical values I have chosen, efficiency losses tend to be somewhat small (peaking
at about 4% of household wealth), but it is possible to drive the maximum loss up to over
10% of household wealth by making the public and private good very substitutable - with
σA and σB equal to 2.5 or higher - and making the share parameters a and b close to 50%.
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Figure 4: Efficiency losses, d(ω|p, y), as a function of agents’ preferences, a and b. The
agents’ substitution elasticities σA and σB are fixed at 1.0. Relative prices and the aggregate
endowment are fixed at p = 1 and y = 1. A’s relative endowment, ω, is fixed at 0.5.
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Figure 5: Efficiency losses, d(ω|p, y), as a function of agents’ preferences, σA and σB . The
agents’ share parameters are fixed at a = 0.7 and b = 0.4. Relative prices and the aggregate
endowment are fixed at p = 1 and y = 1. A’s relative endowment, ω, is fixed at 0.5.
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C Implications of Efficiency With Price Variation

None of the following is original; it is simply a repetition of material from [Browning & Chiappori, 1998],
included for completeness only.

Definition 9. Let g ∈ G(U, V ) be an extended aggregate demand system, and let (p, y, z) ∈
U × V . If the “pseudo-Slutsky” matrix S(p, y, z), with (i, j)-th entry

sij(p, y, z) =
∂gi
∂pj

+ gj ·
∂gi
∂y

(174)

can be written as

S(p, y, z) = Σ(p, y, z) +R(p, y, z) (175)

for some negative semidefinite matrix Σ and some matrix R with rank(R) ≤ 1, then we
say that g is negative semidefinite plus rank one at (p, y, z), or, as a shorthand, g is SR1 at
(p, y, z).

Proposition 11. If the extended aggregate demand system g is induced by a collective model
θ ∈ Θ(U, V ), then g is SR1 at all (p, y, z) ∈ U × V .

Proof. Since g is induced by a collective model θ = (I, uA, uB , µ), we can write

g(p, y, z) = g∗∗(p, y, µ(p, y, z)|θ) (176)

Differentiating (176) for any good i, we have

∂gi
∂pj

=
∂g∗∗i
∂pj

+
∂g∗∗i
∂µ
· ∂µ
∂pj

(177)

∂gi
∂y

=
∂g∗∗i
∂y

+
∂g∗∗i
∂µ
· ∂µ
∂y

(178)

(179)

so that

sij(p, y, z) =
∂gi
∂pj

+ gj ·
∂gi
∂y

=
∂g∗∗i
∂pj

+
∂g∗∗i
∂µ
· ∂µ
∂pj

+ g∗∗j

[
∂g∗∗i
∂y

+
∂g∗∗i
∂µ
· ∂µ
∂y

]
=

{
∂g∗∗i
∂pj

+ g∗∗j ·
∂g∗∗i
∂y

}
+
∂g∗∗i
∂µ
·
{
∂µ

∂pj
+ g∗∗j ·

∂µ

∂y

}
(180)

The first term in the final line of (180) is the (i, j)-th entry in the Slutsky matrix of the de-
mand function g∗∗(p, y, µ(p, y, z)), holding µ fixed. If it were possible to observe demands by
varying (p, y) without also varying the Pareto weight µ, the result would be the constrained
maximizer of the concave function µ · uA + [1− µ]uB . Thus, the matrix Σ with such entries
is negative semidefinite.

43



The second term in (180) is the the (i, j)-th entry in the matrix

R =


∂g∗∗0
∂µ
∂g∗∗1
∂µ
...

∂g∗∗m
∂µ

×
[
∂µ
∂p0

+ g∗∗0
∂µ
∂y ,

∂µ
∂p1

+ g∗∗1
∂µ
∂y , . . . ∂µ

∂pm
+ g∗∗m

∂µ
∂y

]
(181)

Since R is the outer product of two vectors, rank(R) ≤ 1.
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