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Abstract

I present evidence that peer networks exert a strong influence on students’
school choices, consistent with a model where students are risk-averse and thus
prefer familiar schools. The allocation mechanism used by Mexico City’s public
high school choice system generates exogenous variation in older siblings’ school
assignment. The average effects of older sibling admission on the probabilities
of choosing both the sibling’s school and distinct but observably similar schools
are large and positive, even when the siblings are too far apart in age to attend
school together. This change in stated preferences affects admissions outcomes,
including assignment to elite schools.
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1 Introduction
Many education systems allow students and their families some degree of choice

in which school they will attend.1 A key rationale for choice policies is that they
allow students to leverage private information about student-school match quality—
the interaction between school attributes and student preferences—by choosing the
school that best caters to their own preferences and constraints. Students have incom-
plete information about schools, however, which may have profound effects on choice
behavior. As a recent example, Hoxby and Avery (2012) observe that low-income
high-achievers in the United States rarely apply to selective colleges, a phenomenon
that they attribute partially to incomplete information about how well selective col-
leges would suit them.

If we think of the student as a Bayesian learner, then he uses information about a
particular school in two ways. First, new information allows him to update his expec-
tation of match quality with that school. This channel has been studied extensively
in the school choice literature, reviewed below. Second, and thus far unstudied, is
that information makes the student’s belief about match quality more precise. If stu-
dents are risk-averse, the uncertainty-reducing value of information makes students
more likely to choose schools about which they are well-informed. A simple model
of Bayesian learning about experience goods, following Roberts and Urban (1988)
and Erdem and Keane (1996) and presented formally in the appendix, predicts that
the expected effect of the first channel is zero for students with unbiased prior beliefs
about match quality.2 In contrast, the expected effect of the second channel is strictly
positive because new information always increases the precision with which match
quality is known. Thus new information about a school, in expectation, increases
the probability with which students choose it. Furthermore, if that information is
generalizable to observably similar schools, then demand is expected to rise for those
schools as well.

If the quantity of information that a student has about each school is an important
1Recent work in economics analyzing school systems with formal choice mechanisms includes

Abdulkadiroglu et al. (2012) and Dobbie and Fryer (2011) for the United States, Clark (2010) for
the United Kingdom, Ajayi (2012) for Ghana, Lucas and Mbiti (2012) for Kenya, de Hoop (2012)
for Malawi, Jackson (2010) for Trinidad and Tobago, Pop-Eleches and Urquiola (2013) for Romania,
Lai et al. (2011) and Zhang (2012) for China, and Dustan et al. (2015) for Mexico, among others.

2Other studies relating to experience goods have used similar models, for example Johnson and
Myatt (2006) and Crawford and Shum (2005).

1



determinant of choice, then the student’s social network may be a crucial determi-
nant of choice behavior because peers provide information about some schools but
not others. Students learn about schools from older peers who attend them. Con-
sequently, beliefs about match quality should be systematically more precise where
the peer network is denser. This implies (on average) stronger preferences for schools
attended by older peers, even if peers do not have a direct positive effect on match
quality. Hoxby and Avery’s (2012) observation regarding the application behavior of
low-income high-achievers may be partially explained by a dependence of choice on
information from peer networks, as they find that such students often “have only a
negligible probability of meeting a... schoolmate from an older cohort who herself
attended a selective college” (p. 2).

This paper shows that school-specific information originating from the peer network—
specifically, older siblings—significantly affects school choice behavior and, as a con-
sequence, admissions outcomes. I analyze the relationship between older sibling
school assignment and younger sibling choice and admission outcomes using detailed
student-level data for nearly a million students from fourteen years of Mexico City’s
public high school choice system. The assignment mechanism generates exogenous
variation in the school assignment of older siblings, overcoming the well-known prob-
lems with causally interpreting correlated behavior in peer groups (Manski 1993 and
1995). This unified choice-based allocation system determines assignment priority
solely on the basis of an exam score. A sharp regression discontinuity design is thus
employed: given a group of older siblings who want to attend a certain school, some
score barely high enough to be admitted and others score barely too low and must
attend another school. This variation in assignment near the admission cutoff is used
to identify the effects of older sibling assignment in both reduced form and discrete
choice models of school choice.

The empirical results show that students prefer schools attended by their older
siblings. Using the estimates from the discrete choice model, I find that students are
willing to increase their round-trip commute by an average of eight kilometers per day
in order to attend a school to which the older sibling was admitted, which is valued
at $936 over the course of high school. This effect is not driven by the obvious expla-
nation that it is convenient or beneficial for the family to have two children attending
the same school. Older sibling admission to a particular high school increases the
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revealed preference for that school even when the siblings are far enough apart in age
that the older sibling no longer attends high school. Furthermore, having an older
sibling admitted to a school increases revealed preference for other campuses belong-
ing to that school’s subsystem, within which individual schools throughout the city
share many attributes such as curriculum and vocational orientation. This suggests
that students generalize the knowledge obtained about a peer’s school when evaluat-
ing other schools within the same subsystem. There is also evidence, although not
strictly causal, that revealed preference for a school increases much more when the
older sibling experiences a positive academic outcome there. Taken together, these
results support the view that students prefer schools about which they have more
information and use information from their peer network to update beliefs about
match quality.

The altered school choices induced by sibling admission lead to significant changes
in the admissions outcomes of the younger sibling. Students are more likely to be
admitted to their older siblings’ assigned schools, as well as to a school within the
same subsystem. Among the students least likely to apply to the set of Mexico City’s
elite public high schools, sibling admission to an elite school substantially increases
the probability of both applying and gaining admission to elite schools, suggesting a
role for information in encouraging qualified students to apply to high-quality schools.

Existing empirical literature on school choice under incomplete information does
not incorporate risk aversion into student preferences. Hastings et al. (2009) provide
a model of school choice where students trade off academic quality with attributes
such as proximity. In their model, risk-neutral students optimize with respect to
expected quality without regard for the precision of this belief. Empirical studies on
the effect of information provision on school choice do not model risk aversion, either,
because information is enriched for all schools simultaneously and thus does not
induce between-school variation in the amount of information available to students.
Hastings and Weinstein (2008), for example, demonstrate that providing information
on test score aggregates to low-income families in the United States increased the
likelihood of choosing high-performing schools. Related studies by Koning and van
de Wiel (2010) in the Netherlands and Friesen et al. (2012) in Canada come to similar
conclusions, while Mizala and Urquiola (2013) find no effect of publishing a quality
measure in Chile.
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Research quantifying the causal effects of peers on school choice is scarce, per-
haps because it is difficult to isolate exogenous variation in the schools attended by a
student’s peer network. The sociology and education literatures have instead studied
the effect of social learning on school choice in a qualitative framework. Most no-
tably, Ball and Vincent (1998) find that, for primary schools in the United Kingdom,
parents use their social networks (the “grapevine”) to obtain specific, detailed infor-
mation about schools and their likely fit for their own children. Ceja (2006) finds
qualitative evidence that older siblings are an important source of information for
Chicana students as they apply to college in the United States. The economics lit-
erature has carefully documented correlations, as in Hoxby and Avery (2012) and in
Goodman et al. (2014), who find a correlation between college enrollment decisions
of siblings in the United States. Closely related to this topic is Joensen and Nielsen
(2015), who find that a shock to Danish teens’ decision to enroll in advanced high
school math and science coursework increased the probability that younger siblings
did the same.

The remainder of the paper proceeds as follows. Section 2 describes the public
high school choice system in Mexico City, showing that it provides a good context in
which to empirically examine school choice under incomplete information. Section 3
explains the data. Section 4 gives the reduced form regression discontinuity method
and results, while Section 5 lays out the discrete choice model and corresponding
results. Section 6 provides validity checks for the empirical design and Section 7
concludes with policy recommendations.

2 High school choice in Mexico City
2.1 The COMIPEMS assignment mechanism

Prior to 1996, the nine major public high school subsystems in Mexico City con-
trolled their own independent admissions processes.3 Students applied to schools in
one or more of these subsystems, waited to learn where they had been admitted,
and then withdrew from all schools except their most-preferred one. In an effort to
increase both the efficiency and transparency of this process, the subsystems formed
the Comisión Metropolitana de Instituciones Públicas de Educación Media Superior
(COMIPEMS) in 1996. Each year, COMIPEMS runs a unified, competitive admis-

3The discussion in this section draws on Dustan et al. (2015).
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sions process that assigns students across Mexico City’s public high schools on the
basis of students’ preferences and the results of a standardized exam.

The COMIPEMS admissions process is as follows.4 In late January, students in
ninth grade—the final year of middle school—receive informational materials about
the admissions process. These materials include a list of all of their “educational
options,” which in most cases are schools but can also be specific tracks within schools,
such as specific vocational education tracks in a technical school. Students then
fill out a registration form, demographic survey, and list of up to 20 educational
options, ranked in order of their preference. These forms must be submitted in late
February or early March, depending on the student’s family name. In June of that
year, students take a standardized exam consisting of 128 multiple-choice questions,
covering both subject-specific material from the public school curriculum and more
general mathematical reasoning and language areas.

In July, the assignment process is carried out by the Centro Nacional de Evalu-
ación para la Educación Superior (CENEVAL).5 First, the school subsystems report
the maximum number of seats available to incoming students. Second, all students
who did not successfully complete middle school or scored below 31 of 128 points are
discarded. Third, all remaining students are ordered by their exam score, from high-
est to lowest. Fourth, a computer program proceeds sequentially down the ranked list
of students, assigning each student to his highest-ranked option that still has a seat
remaining.6 The process continues until all students are assigned, with the exception
of students who scored too low to enter any of their listed options. Later in July, the
assignment results are disseminated to students. Through 2011 this primarily hap-
pened in the form of a printed gazette sold at newsstands, although a system that
sends personalized results via text message has become more popular over time. At
that time, students who were eligible for assignment but were left unassigned during
the computerized process because they scored too low for any of their choices may

4The timing of each step is given for the 2011 competition.
5CENEVAL is independent of COMIPEMS and its constituent school subsystems. This process

is carried out by computer in the presence of representatives from all subsystems and external
auditors from a large international accountancy firm.

6In the instance that two or more students have the same score and highest-ranked available
option, but there are fewer remaining seats than the number of tied students, the assignment process
pauses and representatives from the corresponding subsystem must decide to either admit all tied
students or none of them.
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choose a schooling option from those with seats remaining.

2.2 Student decision-making under the COMIPEMS mechanism
Students have considerable information about basic school attributes when they

choose schools, but this information is generic rather than individually tailored. The
subsystem membership of each school is known with certainty, and each subsystem
has a well-formed public perception. There are two “elite,” university-affiliated sub-
systems: the Universidad Nacional Autónoma de México (UNAM) and the more
technically-focused Instituto Politécnico Nacional (IPN). These are universally un-
derstood to be highly competitive, relatively rigorous, prestigious high schools that
fill their student capacities before almost all non-elite options. Non-elite subsystems
include those with traditional academic curricula and technical subsystems provid-
ing academic coursework combined with vocational training for careers such as auto
repair and bookkeeping. Even within a subsystem, official information about school-
level academic quality is available. Past cutoff scores—the score of the student admit-
ted to the school’s final seat—for each school have been available on the COMIPEMS
web site since 2005, and this site is actually browsed by many students because it
allows them to easily complete most of the registration process online. Cutoff score
and the mean score of admitted students are almost perfectly correlated, so students
have access to an excellent proxy for mean peer ability. The combination of sub-
system reputations and information about peer quality ensures that students are at
least somewhat informed about general school attributes, though they may lack more
specific details that affect the idiosyncratic match between the student and school.

When asked about the choice process, administrators and students almost univer-
sally claim that it is the student, rather than the parents, who decide on the schools
they want to list and the order in which they are listed. Students often construct
their rankings in the following way, similar to how United States students choose
colleges (see Hoxby and Avery (2012), for example). First, they decide whether they
would like to attend a high school in either or both of the two elite subsystems. If a
student decides to apply within either or both subsystems, he lists some number of
elite schools as his top choices. There are 30 elite schools (16 IPN and 14 UNAM),
meaning that even within an elite subsystem, students face a wide variety of options.
Following the elite schools, if any, he lists various non-elite schools (from about 600
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options in most years), which offer a better chance of admission.7

Two aspects of the COMIPEMS assignment mechanism make the student’s rank-
ing quite informative about true preferences. First, the mechanism is equivalent to
the deferred acceptance algorithm proposed by Gale and Shapley (1962), so it in-
duces truth-telling by students.8 Under such mechanisms it is never optimal to list
a less-preferred school before a more-preferred school, regardless of the limit on how
many options can be listed. Second, the ability to rank up to twenty options means
that few students actually fill up their entire preference sheet; students generate a
satisfactory choice portfolio without confronting the space constraint.9 There is no
strategic disadvantage to choosing a school at which the student has a small ex ante
probability of admission, both because the number of options allowed is high and
because the assignment algorithm does not punish students for ranking unattainable
schools.

3 Data and sample construction
This section describes the Mexico City public high school admissions data and

the sample construction that forms the basis for the regression discontinuity design.

3.1 Data description
This paper uses administrative data compiled by COMIPEMS for fourteen ad-

missions cycles, from 1998 to 2011. For each student who registered for the exam, the
database contains basic demographic information including the student’s full name,
date of birth, phone number, address, and a unique middle school identifier along
with the grade point average attained there; the full list of up to 20 ranked school
preferences; a context survey, completed by the student, including information about
parental education, family composition, and other topics; and assignment results,
including the student’s exam score and the school assigned during the computerized
allocation process.

7Most students live within a reasonable commuting distance of many schools, as illustrated in
Appendix Figure A.1.

8See Dubins and Freedman (1981) and Roth (1982). This particular mechanism is referred to
as a student-proposing deferred acceptance mechanism, which is discussed in Abdulkadiroglu and
Sönmez (2010).

9Choosing the optimal portfolio of schools is a complex problem if listing choices is costly (e.g.
time cost or opportunity cost due to a limited number of allowed choices), as mentioned by Ajayi
(2012). Chade and Smith (2006) model a similar portfolio choice problem and derive its solution.
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The data do not contain any explicit information on peer network structure and,
since middle schools in Mexico City are quite large and neighborhoods are not geo-
graphically isolated, neither can be used to construct a useful proxy for the student’s
network. The data do, however, allow for the identification of siblings within a family,
which is useful for two reasons. First, the strength of the peer relationship is likely
to be strong compared to most classmates and neighbors. Second, the constant in-
teractions between siblings within the home make it probable that the student learns
a significant amount about the details of the school attended by his older sibling
and how that school might fit his own tastes. The analysis is limited to sibling pairs
where the older sibling attended a public middle school and the younger sibling was
taking the exam in the final year of middle school. If the older sibling is observed
taking the exam more than once, his first attempt is used.

To measure whether the older sibling graduated or dropped out of high school
(a proxy for whether the peer signal transmitted to the younger sibling was good or
bad), the COMIPEMS database is merged via national ID number (CURP) with a
database from the national 12th grade exam, called the ENLACE Media Superior.
This exam is only given to students who are on track to graduate at the end of the
academic year, so it is a good proxy for graduation.10 Unfortunately, this exam was
only administered starting in the spring of 2008, and the database used in this paper
contains results from 2008 to 2010, corresponding to students taking the COMIPEMS
exam in 2005-2007. Thus the part of the analysis using this graduation measure is
limited to younger siblings of these cohorts, which limits sample size. The larger
and more demanded of the two elite subsystems, the UNAM, does not administer
the ENLACE exam so graduation data is missing for students assigned there. This
further limits the sample size when the graduation measure is used.

The demographic information is used to match siblings with each other in the
following way. First, potential siblings are identified if they have the same paternal
and maternal family names and either 1) have the same phone number or 2) live in
the same postal code and attend the same middle school. From this pool of potential
matches, sibling pairs are discarded if 1) the students state that they have different
numbers of siblings; 2) the students do not report a birth order that makes them

10For more details on the ENLACE and how it relates to graduation, see Dustan et al. (2015).
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the closest siblings in the family (e.g. first- and second-born);11 3) the students were
born fewer than nine months apart or more than five years apart, the latter because
it is unlikely that consecutive births five or more years apart represent a true match;
or 4) the older student took the exam after the younger one. If one student matches
with two potential older siblings, the match based on the shared phone number is
used.

This matching process locates 455,375 sibling pairs in a population of 3,423,052
students. Columns 1 and 2 of Table 1 give a description of demographic, academic,
and school choice variables for the full sample of students and for the matched younger
siblings, respectively. The matched younger siblings are quite similar to the full
sample. The average student ranks 9 school choices, which is similar across samples.
Almost two thirds of students select a school in one of the two elite subsystems as
their first option, but only one in five are admitted to one. On average, students
choose a school almost 8 km away as their first option, measured as a straight line
from the center of the student’s home postal code to the school.12 Siblings are, on
average, 2.6 grade years apart and have fairly similar school preferences: 34% of
sibling pairs select the same school as their first choice. Only 45% took the ENLACE
exam, similar to the official graduation rate in Mexico City.

3.2 Overview of empirical strategy and sample definition
The COMIPEMS school assignment mechanism provides exogenous variation in

older siblings’ school assignment because, conditional on the older sibling’s ranking
of schools, his assignment depends solely on his exam score. This permits the use
of a sharp regression discontinuity (RD) design, similar to RD designs used in prior
work investigating the academic effects of school assignment in exam-based allocation
regimes.13 The basic idea behind this design is to define, for each school, the sample
of older siblings who were either marginally admitted or marginally rejected from
that school, and then compare the choices and outcomes of the younger siblings in
the marginally admitted and marginally rejected groups. The rest of this subsection

11This is done so that the estimated effect of older sibling of admission does not include an
indirect effect through the influence on a middle sibling’s behavior

12Postal codes are very geographically specific in Mexico City. Students in the sample belong to
more than 2,800 postal codes.

13See Pop-Eleches and Urquiola (2013), Abdulkadiroglu et al. (2012), Dobbie and Fryer (2011),
Clark (2010), Jackson (2010), de Hoop (2012), and Dustan al. (2015).
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gives the procedure for defining the “marginal” sample of older siblings for use in the
RD analysis.

The assignment process results in hard cutoff scores for each school that filled all
of its seats and thus had to reject some students; this cutoff is equal to the lowest
score among all admitted students. Define this cutoff as cj for school j. (The cutoff
score for a given school varies across years, but for notational simplicity in the present
discussion I assume there is only one year of data.) If school k is ranked before j on
student i’s preference list, including if j is unlisted, we write k ≻ j. Denote the
student’s exam score as si. Then marginal students for school j are those who:

1. listed school j as a choice, such that all schools preferred to j had a higher
cutoff score than j (otherwise assignment to j is impossible): cj < ck, ∀k ≻ j,
and

2. had a score sufficiently close to j’s cutoff score to be within a given bandwidth
w around the cutoff: −w ≤ si − cj < w.14

This marginal group includes students who were rejected from j (si < cj) and those
who scored high enough for admission (si ≥ cj). A student may belong to more than
one school’s sample of marginal students. Not all students scoring high enough for
admission are actually assigned to j; some score sufficiently high for admission to
some k ≻ j. Figure 1 plots the probability of being assigned to the cutoff school as a
function of si − cj and verifies that the jump in probability of admission to the cutoff
school at the cutoff score is exactly 1. This probability falls monotonically with score
to the right of the cutoff, as higher-scoring students are admitted to more-preferred
schools.

One more restriction is placed on the sample, not to fulfill the assumptions of RD
but to ease interpretation of the admission effect. Students who would be unassigned
to any school upon missing j’s cutoff by a point are omitted. Such students did not
list any school with a cutoff score equal to or less than cj. We do not know if the
unassigned students later chose a school from those that did not fill up or if they did
not enroll at all. Our focus is on the effect of a sibling being assigned to one school
or another, rather than getting into any school or going unassigned.

14The second inequality is strict because the score variable is discrete, so this definition includes
w score values too low to be admitted and w values high enough to be admitted.
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4 Reduced form regression discontinuity analysis
The reduced form analysis provides clear, easily-interpreted evidence about the

effects of sibling assignment on school choice and admission outcomes. Much of the
logic from this analysis will be applied when estimating the discrete choice model as
well.

4.1 Method
For all regressions in this paper, exam score is centered to be 0 at the school’s

cutoff score, which may be different in each year t: s̃ijt ≡ si − cjt. The basic RD
specification for a single school j in year t is:

yijt = δjtadmitijt + f1jt (̃sijt) + admitijtf2jt (̃sijt) + µjt + εijt

where yijt is the outcome of interest, admitijt is a dummy variable for whether
s̃ijt ≥ 0,15 f1jt (̃sijt) and f2jt (̃sijt) are polynomials in exam score approximating the
unobservables that vary with score, and εijt is an error term. In our case, yijt is an
outcome for the younger sibling, such as choosing school j as his first option, while
the explanatory variables are from the older sibling, since it is the admission outcome
of the latter that is hypothesized to affect the choices of the former. The parameter
δjt is the local average treatment effect of the older sibling’s admission to j in year t
on the younger sibling’s outcome for older siblings close to the cutoff, compared to
the counterfactual in which the older sibling is rejected from j and admitted to the
most-preferred school that would actually accept him.

There are many schools and many exam years, so it is necessary to combine the
information from all oversubscribed schools in order to make statements about the
average effect of admission. To do this, I stack the RD samples of all oversubscribed
school-years and estimate them jointly. It would be preferable to include different
functions f1jt and f2jt for each school or school-year, similar to Abdulkadiroglu et al.
(2012) who include different functions for each school. But the very large number
of schools makes this infeasible in most specifications, so I include only one set of
polynomials, as in Pop-Eleches and Urquiola (2013). Including cutoff school-year

15The variable admitijt is equal to 1 both for students actually assigned to j and students who
scored high enough to be admitted to a more-preferred school.
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fixed effects, the stacked specification is:

yijt = δadmitijt + f1 (̃sijt) + admitijtf2 (̃sijt) + µjt + εijt (1)

The parameter δ is now the local average treatment effect of admission across all
cutoff school-years.

Both local non-parametric and global parametric RD models are estimated. The
non-parametric model is a local linear regression that weights observations using
the edge kernel. Bandwidth selection is performed using the procedure proposed in
Imbens and Kalyanaraman (2012). Presented as a complement to the non-parametric
approach, the parametric model fits a fifth-order polynomial to the entire RD sample.
Lee and Card (2008) show that when the running variable is discrete, as is the case
here, standard errors should be clustered at the level of the running variable. This
results in relatively few clusters in the present application, which I address with two
approaches. First, I estimate standard errors accounting for clustering on both the
older sibling and running variable dimensions, using a t-distribution with (G − 1)
degrees of freedom for hypothesis testing, where G is the number of values of the
running variable in the regression.16 Second, I account for clustering with respect to
the running variable using the wild cluster bootstrap from Cameron et al. (2008),
implemented with Rademacher weights. Bootstrapped p-values for the coefficients
of interest under the null hypothesis of zero effect are reported. These bootstrapped
p-values are sometimes less conservative than those corresponding to the estimated
standard errors, so inference is always based on the most conservative p-value.

4.2 Average effect of older sibling admission on school choice
The RD estimates give consistent causal evidence that students are more likely

to apply to a school and to rank it highly if an older sibling was admitted there.
Table 2 presents the estimated effects, accompanied by graphical evidence in Figure
2. Column 1 shows that for the local linear regression using the optimal bandwidth,
older sibling admission to the cutoff school increases the probability of choosing the
school as first choice by 7.6 percentage points. This estimate is large compared to the
corresponding sample average of 17% choosing the cutoff school. Admission increases
the probability of choosing the cutoff school as any choice by 9.8 percentage points

16Cameron and Miller (2015) provide guidance on estimating variances with few clusters.
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(p.p.), compared to a sample mean of 59%. Effects on the probability of choosing
the school immediately below the cutoff (the school to which a student is admitted
if he misses admission to the cutoff school by one point) are similar: 4.7 p.p. for first
choice probability and 10.5 p.p. for choosing the school at all. Estimates from the
global specifications in columns 5 through 8 are almost identical to the local linear
regression results, as will be the case for most results in this paper.

The sibling admission effect is persistent across schools in both elite and non-elite
subsystems. Table 3 and corresponding Figure 3 divide the cutoff schools into elite
and non-elite groups. The admission effect on first choice probability for elite cutoff
schools is 11.3 p.p, while the effect on listing the cutoff school at all is 11.7 p.p.
The effect for non-elite cutoff school is presented in columns 3 and 4. In column 3,
the dependent variable is a dummy for whether the cutoff school was the younger
sibling’s first non-elite choice. This is because most students choose an elite school
as their first choice, so that most adjustment in non-elite revealed preferences takes
place lower in the choice list. The effect on first non-elite choice probability is 9.4
p.p., while the effect of choosing the cutoff school at all is 7.9 p.p.

The admission effect for most schools is positive. Figure 4 shows the distribution
of estimated admission coefficients, obtained by estimating the RD specification sep-
arately for each school. Panel A gives the distribution of admission effects on first
choice demand for elite schools only, which have large corresponding sample sizes
and thus fairly precise estimated effects. All but two of the 30 schools have positive
estimated effects of admission. Panel B gives the distribution of the effect on first
non-elite choice for non-elite cutoff schools. Here, estimation error overstates the
variance of the distribution substantially, such that the estimated effect of admission
is negative for 30% of schools. To account for the estimation error, I estimate the
true variance of the admission effects, following Aaronson et al. (2007).17 Perform-
ing this correction and assuming a normal distribution of admission coefficients, it is
estimated that 21% of non-elite schools have a negative admission effect. Hence it
appears that the expected utility-increasing channels dominate for most schools.18

17This is done by subtracting the average estimation error from the variance of the estimated

coefficients: E
[
δ̂′δ̂
]
− E

[(
δ − δ̂

)′ (
δ − δ̂

)]
.

18One explanation for this result is that most of the uncertainty about a school comes from
imprecise beliefs about idiosyncratic match quality rather than about the school’s average level of
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The effect of older siblings’ school assignment on demand does not appear to
be driven by a direct effect of sibling presence on match quality. The most obvious
channel through which sibling assignment could affect match quality is that attending
school together is convenient for the student or parent, for example in traveling to
and from school or attending the same school functions. But the estimated effect
of admission is nearly identical between siblings who are close enough in age to
attend high school at the same time (two or fewer years apart) and siblings who
are too far apart in age to attend contemporaneously. Table 4 shows this result.
The estimated difference in admission effects between these two groups is precisely
estimated to be close to zero: the point estimate of the differential is 0.6 p.p. with the
95% confidence interval bounded at 1.6 p.p. Thus it does not appear that students
choose their siblings’ schools simply because they want to attend the same school
contemporaneously.19

Furthermore, the effect of admission is not confined to demand for the older
sibling’s school, suggesting that students apply what they learn about one school to
others that are observably similar. Admission leads to the student ranking additional
schools from the same subsystem, other than the older sibling’s exact school. Table
5, accompanied by Figure 5, shows that this is the case. The sample definition
here is different than in the previous analysis because it only considers students who
would leave their subsystem if rejected from the cutoff school. The counterfactual
to admission to the cutoff school in this case is admission to a school in a different
subsystem. When the older sibling is admitted to the cutoff school, the younger
sibling ranks on average 0.23 more schools in the same subsystem, excluding the older
sibling’s school, compared to a sample mean of 2.1 schools. The estimated effects
are almost identical for the closely-spaced and far-apart sibling samples. Similar
results are found for the effect of rejection from the cutoff school on demand for

attributes. In the former case, a similar proportion of students receiving a signal from a particular
school would find out that it is better for them than expected and others would find out it is
worse, while in the latter case, the surprise to beliefs for students within one school would be highly
correlated and would thus result in negative demand effects for some schools.

19Furthermore, while I find statistically significant evidence of differential admission effects with
respect to whether the siblings are of the same sex (Appendix Table A.1), the differentials are small
(about 1 p.p.). If the effects were driven by the desire to attend school with a sibling, we might
expect to see a much stronger effect for same-sex sibling pairs. Instead, it seems that boys learn
from girls and vice versa.
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schools belonging to the subsystem of the school immediately below the cutoff. The
admission effect on subsystem demand and the persistence of admission effects for
students far apart in age cannot be explained by a direct effect of sibling presence on
match quality.

4.3 Effect on school assignment outcomes
Older sibling admission outcomes affect not only the stated preferences of younger

siblings, but also their realized school assignments. Table 6, accompanied by Figure
6, shows the admission effect on the younger sibling’s assignment. Admission to the
cutoff school nearly doubles the probability of the younger sibling’s assignment to the
same school, an effect of 4.2 p.p. A similar result holds for the school immediately
below the cutoff, with an admission effect of 4.1 p.p. Columns 3 and 4 limit the sample
to observations where the older sibling has schools in different subsystems above and
below the cutoff. Older sibling admission increases the probability of being assigned
to any school within the same subsystem by 4.6 p.p.

Perhaps most interesting is the effect that older sibling admission to elite high
schools has on younger sibling preference for, and assignment to, elite schools. Among
the students least likely to apply to elite schools, older sibling admission has a large
effect on both elite application and assignment rates. To show this, I first use a
probit model to estimate the determinants of elite first choice among younger siblings
of students who applied to elite schools and were rejected. Probit estimates are
in Appendix Table A.2.20 These estimates are then used to generate a predicted
probability of elite first choice for all younger siblings of students who were either
above or below the cutoff for elite admission. Table 7, Panel A shows estimates of
the sibling admission effect on students falling within bins of the predicted elite first
choice probability. Column 1 estimates a large 14.2 percentage point increase in the
probability of choosing an elite school among students with less than a 60% predicted
probability of doing so. As the predicted probability increases, the marginal effect of
older sibling admission falls dramatically. Panel B shows similar results for the total
number of elite schools selected. These results are consistent with the model: first,

20The most important predictor of elite preference is the proportion of the older sibling’s mid-
dle school cohort expressing elite preference, which is exogenous to the older sibling’s assignment
outcome. This measure captures the preferences, constraints, and peer network effects in the older
sibling’s cohort, which are relevant for most younger siblings as they often attend the same middle
school or live in the same neighborhoods as these students.
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students with high baseline probabilities of choosing elite schools should mechanically
have small marginal effects from sibling admission, and second, students with a low
baseline probability of admission may have the noisiest prior beliefs about elite schools
and thus change their behavior the most due to a new signal.

The consequent effect on elite assignment (Panel C) is almost 3.7 p.p. among
those least likely to choose an elite school, compared to an estimated zero effect for
those most likely to express elite preference. This represents an almost 23% increase
in the probability of admission, compared to the rate of elite admission among those
with older siblings missing elite assignment by one point (16%). This implies that
there exist many students who are capable of elite admission but only apply when
they are sufficiently exposed to elite schools through their peer network.

4.4 Effect of good versus bad surprises on school choice
A basic prediction of the social learning model is that a signal’s impact on ex-

pected utility (and thus demand) depends on the sign and magnitude of the surprise to
match quality. The sign and magnitude of surprises are unobserved by the econome-
trician, but one available proxy is an indicator for whether the older sibling graduates
from high school or not. The logic for using this proxy is as follows. One contributor
to dropout is a bad match between student and school. That is, there are students
who will drop out from some schools but not others. Siblings are often similar in
their preferences and abilities, so if the older sibling experiences a negative surprise
to match quality (proxied by dropout), this suggests to the younger sibling that the
school may not be a good match for him either.

Any estimates of differential admission effects with respect to dropout must be
treated as suggestive rather than rigorously causal, because dropout is not randomly
assigned (indeed, if it were, it would have no informational content for the student).
Consider the following equation that will be estimated:

yijt = δadmitijt + f1 (̃sijt) + admitijtf2 (̃sijt) + µjt+

graduateijt {αadmitijt + g1 (̃sijt) + admitijtg2 (̃sijt) + νjt}+ εijt,
(2)

where α̂ is equivalent to the result from estimating the simple RD equation sepa-
rately for graduates and dropouts and then taking the difference of the estimated δ̂

coefficients. If dropout were randomly assigned, then α̂ would give the additional av-
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erage effect of admission when the older sibling graduates. The problem arises when
cor (graduateijt × admitijt, εijt) ̸= 0, so that students who are differentially more or
less likely to drop out when admitted to the cutoff school are systematically more or
less likely to be emulated, or have family characteristics that affect the likelihood of
choosing the cutoff school.

The empirical analysis addresses the potential issue of endogenous heterogeneous
effects in three ways. First, it considers multiple samples and argues that the pattern
in the results is consistent with the social learning model in which positive surprises
affect demand for a school more positively than negative ones. Second, it controls for
the older sibling’s middle school grade point average, which is a significant predictor
of high school dropout, and its interactions with admission and exam score. Finally, it
may be that the sibling admission effect is heterogeneous with respect to the school’s
graduation rate or other school characteristics, not the sibling’s individual graduation
outcome. To control for this, separate admission coefficients are estimated for each
cutoff school so that the admission-graduation interaction term gives the estimated
heterogeneity due to sibling dropout conditional on cutoff school characteristics.

Keeping in mind the caveats associated with using graduation status to proxy for
a surprise to match quality, as well as the data limitations in using the graduation
data, Table 8 shows that the admission effect is heterogeneous with respect to older
sibling dropout. Sample size is a problem, due to the fact that graduation data only
exist for older siblings from the 2005-2007 cohorts and that graduation outcomes
are missing for students at the UNAM schools, which are highly-demanded as first
choices. This necessitates inclusion of all sibling pairs 1 to 5 years apart in age in
the estimation sample. A sibling one year below his older sibling still has most of an
academic year to learn about his sibling’s school, since school begins in the early fall
and preference listings are not due until February or March. Although graduation
has not occurred yet for the siblings who are 1 or 2 years apart, in Mexico City most
dropout occurs in the first year and it should be apparent early on whether match
quality was good or bad.

The effect of admission on same-school demand is higher when the older sibling
graduates. Panel A, column 1 gives the differential effect of admission on application
to the cutoff school with respect to graduation status. On average, admission has
a 2.3 p.p. higher impact on first choice preference for the cutoff school when the
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older sibling graduates.21 The differential effect is illustrated in Appendix Figure
A.2. Column 2 controls for an interaction between admission and older sibling GPA
while estimating each uninteracted admission coefficient separately. The estimated
differential effect declines slightly to 1.9 p.p.

In order to explore the issue of endogenous differential dropout, Panel B shows
estimates of the impact on the first non-elite choice of students whose siblings were
near the cutoff of a non-elite school. This, in part, addresses the possibility that
students whose older siblings are more able to graduate in the cutoff school are more
likely to choose better schools. In particular, we might worry that older siblings able
to graduate from elite schools are from families with high academic expectations who
push the younger sibling to apply as well. Focusing on the non-elite preferences of
students with siblings at non-elite cutoffs, we are likely to mitigate this confounding
factor to some degree. The differential effect here is large, 7.1 p.p. compared to
a sample mean of 19%. Adding controls in column 2, the estimates remain almost
identical.

The evidence for heterogeneity in the effect on demand for other schools in the
same subsystem is consistent with the model as well. Panel C shows the differen-
tial impact on the number of other schools selected in the cutoff school’s subsystem,
restricting the sample to cases where the older sibling is at the margin of a subsys-
tem. The point estimates for the differential effect are positive in the local linear
and global parametric specifications, and statistically significant in the specifications
that include controls and separate admission effects for each school. There is con-
siderable variability between specifications, however. Thus, between the same-school
and somewhat weaker subsystem effects, it appears that younger siblings react to sig-
nals from siblings with “good” and “bad” outcomes differently, learning about match
quality and updating their choice behavior accordingly.

5 Discrete choice model of school choice
In this section, the basic RD design is extended to a discrete choice model of school

choice. This approach follows from the social learning model where expected utilities
are affected by informative peer signals. It also allows for a natural parameterization

21The estimates imply a smaller average effect of admission than did previous tables. This is
because the UNAM cutoff schools are missing from the sample, and much of the admission effect
on first choice demand comes from the elite UNAM and IPN subsystems.

18



of the impact of a peer signal: the change in willingness to travel to that school or
another school in the same subsystem, which with further assumptions can then be
translated into a willingness to pay measure.

5.1 Method
The RD design is incorporated into a discrete choice model by estimating the

following equation, expressing expected utilities from each school as a function of
school characteristics and older sibling assignment (suppressing time subscripts):

U∗
ij = θcutij + δ (cutij × admiti) + f1 (̃si) cutij + f2 (̃si) (cutij × admiti)+

θbelowij + δ (belowij × admiti) + f
1
(̃si) belowij + f

2
(̃si) (belowij × admiti)+

γdistij + εij

(3)

where cutij = 1 when student i’s sibling is in school j’s cutoff sample and 0 otherwise,
admiti is a dummy for whether the older sibling meets the cutoff score, f1 and f2 are
linear functions of centered exam score, belowij is a dummy for whether the school
is immediately below the student’s cutoff school, and distij is the distance between
student and school. Allowing expected utility to be higher or lower for cutoff schools
and the school assigned for scores immediately below the cutoff (through θ and θ,
respectively), and for this expected utility to vary around the cutoff, δ and δ capture
only the discontinuous jumps in expected utility caused by the sibling crossing the
cutoff score and being admitted to the school above the cutoff instead of the school
immediately below.

Incorporating subsystems into the model is straightforward. For the M subsys-
tems, let X1

j , ...,XM
j be dummy variables equal to 1 if school j belongs to the corre-

sponding subsystem and 0 otherwise. Define cutsubij equal to 1 if j belongs to the
cutoff school’s subsystem and belowsubij equal to 1 if j belongs to the “below” school’s
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subsystem, 0 otherwise. Adding these variables into the RD specification, we have:

U∗
ij = θcutij + δ (cutij × admiti) + f1 (̃si) cutij + f2 (̃si) (cutij × admiti)+

θbelowij + δ (belowij × admiti) + f
1
(̃si) belowij + f

2
(̃si) (belowij × admiti)+

M∑
ℓ=2

Xℓ
j
(
πℓ + ηℓcutsubij + ηℓbelowsubij

)
+

cutsubij [ϕadmiti + h1 (̃si) + h2 (̃si) admiti] +

belowsubij
[
ϕadmiti + h1 (̃si) + h2 (̃si) admiti

]
+ γdistij + εij.

(4)

This specification allows marginal expected utilities to vary depending on whether
the cutoff school belongs to j’s subsystem, the older sibling’s centered exam score,
and whether the sibling exceeded the cutoff score (ϕ and ϕ, the coefficient of interest).
The corresponding underlined coefficients are all analogous except that they apply
to the subsystem of the school attended by the older sibling if he scores below the
cutoff.

If we assume that εij is distributed i.i.d. extreme value type I, then the param-
eters of this model can be estimated with a conditional logit, where the outcome
variable is selecting the school as the first choice. It is more appropriate to estimate
a nested logit where subsystems are the nests, so that idiosyncratic preferences may
be correlated within a subsystem and thus the restrictive independence of irrelevant
alternatives assumption need not apply across nests. The bandwidth for this nested
logit is set to 7 points on either side of the cutoff, selected because it corresponds
to the optimal bandwidth for the rectangular kernel in the reduced form first choice
specification found in column 1 of Table 2. This is somewhat arbitrary, but the
results are consistent for other choices of the bandwidth.

5.2 Results
The nested logit results have signs consistent with the reduced form estimates.

Table 9 provides selected estimated parameters from the nested logit specification in
equation 4. The mean COMIPEMS exam score of students admitted in the previous
year, as well as the proportion of the older sibling’s middle school cohort choosing
the school, are included as covariates.

Assignment to the cutoff school increases expected utility from that school and
reduces the expected utility from the school below the cutoff. We can interpret these
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effects as the average marginal effect of sibling admission on willingness to travel
(WTT) to that school by taking the ratio of the admission coefficient to the distance
coefficient. This calculation gives an increase in WTT of 2.9 km (0.346/0.118, SE =

0.15) for the school above the cutoff and 5.1 km (0.601/0.118, SE = 0.24) for the
school below the cutoff.22 This asymmetry may arise because the younger sibling has
a less precise prior on match quality for the school below the cutoff, so that the peer
signal will be weighted more heavily and thus the average change in expected utility
will be higher. This is plausible; the older sibling, whose information set is correlated
with that of his younger sibling, has already ranked this school as less preferred than
the school above the cutoff. One of the possible reasons for this is greater uncertainty
about match quality, in addition to differences in expected match quality.

When the older sibling is on the margin between one subsystem and another, ad-
mission to the subsystem above the cutoff increases WTT to all schools in that sub-
system by 2.6 km (0.306/0.118, SE = 0.20). Admission to the system below the cutoff
increases WTT to all schools in the below subsystem by 3.1 km (0.364/0.118, SE =

0.23).23

Column 2 restricts the sample to students 3 to 5 years apart, so that students do
not attend high school at the same time. The estimated effects of admission decline
slightly and remain strongly significant.

Evidence for heterogeneous effects of admission with respect to graduation is
provided in column 3, which estimates equation 4 fully interacted with the graduation
dummy variable. There is suggestive evidence for heterogeneous same-school and
subsystem effects. The coefficients of interest are those giving the differential effect
of admission by graduation status, labeled “Graduated × admission.” While the
differential effects of admission on WTT to the school and subsystem above the cutoff
are small and insignificant, the differential effect of admission for the school below the
cutoff is 3.6 km (0.417/0.116, SE = 1.29) higher when the sibling graduates and 2.5
km (0.287/0.116, SE = 1.14) higher for schools in the subsystem below the cutoff. To
address the data issues with the graduation proxy sample (three years of data, UNAM
high schools missing), column 4 estimates the effects of admission on first non-elite

22Standard errors for WTT effects are computed using the delta method.
23The total change in WTT for the cutoff school when the student is at the boundary of a

subsystem is obtained by summing the effect of admission to the school with the effect for admission
to the subsystem.
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choice for students near non-elite cutoffs. In this sample, the heterogeneous effects
of admission with respect to graduation are of the expected sign and statistically
significant, for schools and subsystems both above and below the cutoff.

Additional assumptions allow for interpretation of the effect sizes as measures
of marginal willingness to pay (WTP). Taking the average WTT effect between the
schools above and below the cutoff (2.9 km and 5.1 km, respectively), we have a 4
km average increase in WTT due to sibling admission. But students must travel
both to and from school, so this measure should be doubled to 8 km/day. Students
in Mexico have 195 instructional days per year, so the annualized effect on WTT
is 8 ∗ 195 = 1560 km/year. Translating this measure to travel time is difficult
because students travel using a combination of subway, private bus, driving, and
walking. Assuming that the average speed of travel over these modes during rush
hour in Mexico City is 10 km/hour, then students are willing to spend 1560/10 = 156
additional hours per year traveling as a result of sibling admission. According to the
National Survey of Occupation and Employment (ENOE), the average urban teen
wage is $2/hour. Taking this as the average valuation of time for students in the
estimation sample, the change in WTP due to sibling admission is $312/year. High
school is three years long in Mexico City, so the total effect on WTP is $936. This is
likely to be a conservative estimate because traveling farther may require paying an
additional bus fare of about $.50/day.

6 Validity checks
This section presents two standard checks for the validity of the RD design. The

first check is for whether the density of the running variable (centered COMIPEMS
score) suddenly increases or decreases when it crosses the cutoff, as suggested by
McCrary (2008). This might occur if the younger siblings of rejected students were
less likely to apply to high school, for example if rejected students were more likely
to drop out of school and younger siblings followed that example. Another, less likely
possibility is that admission induces behavior that makes it impossible to match
siblings to each other, such as changing their phone number or middle school. Figure
7, Panel A shows the density of centered COMIPEMS score for the RD sample of
older siblings (corresponding to column 1 of Table 2). There is no clear change
in density across the threshold, and indeed the density is nearly uniform over this
domain. Panel B gives a closer view of the density near the cutoff. Implementing
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McCrary’s formal test for a discontinuity in the density yields an estimated difference
in log height of only 0.0003 (SE = 0.007) at the cutoff.

The second check is to repeat the reduced form RD regressions, this time using
exogenous student characteristics as the dependent variables. Imbens and Lemieux
(2008) propose this as a way of verifying that exogenous characteristics do not sud-
denly change at the cutoff (which would call into question whether the endogenous
variable would be balanced in the absence of a treatment effect). In order to jointly
test that the admission coefficient is zero for all tested exogenous characteristics of
the older sibling, seemingly unrelated regression (Zellner (1962)) is used. Table 10
shows the results, failing to reject that the admission coefficients are equal to zero
(p = 0.52). The point estimates are quite precise as well, ruling out even fairly small
covariate imbalances. Thus both checks yield support for the validity of the RD
design.

7 Conclusion
Older siblings’ school assignments strongly affect students’ stated preferences and

admissions outcomes, a finding that speaks to the role that peer networks play in over-
coming incomplete information. What policy lessons can be taken from this result?
One lesson is that aggregate school-level information is not a perfect substitute for
the more subjective, individually-tailored information that students currently obtain
from their networks. Match quality for the average student may already be known
in the population, but idiosyncratic match quality is uncertain. Providing individ-
ualized information on match quality is not a trivial task for individual schools (as
in the case of colleges) or public school systems. One approach already being under-
taken at the tertiary level is to deploy the school’s alumni network to connect with
prospective students, providing them with personalized information through informal
meetings and repeated electronic communication. But, as pointed out in Hoxby and
Turner (2013), such labor-intensive interventions are expensive. Recruitment offices
also have a role to play if they can provide the kinds of individual-specific informa-
tion desired by students, but again, this may be expensive. Public school systems
face the challenge of providing individualized information about all member schools.
Furnishing printed material containing data beyond school-level aggregates is one
way to begin, as in Hoxby and Turner (2013) in the context of college choice where
information on net costs is the predominant barrier.
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The findings give mixed support for school assignment systems that rely heavily
on student choice. On one hand, it appears that the correlation observed by Hoxby
and Avery (2012) is indeed causal, at least in this context: students with a low con-
centration of peers attending a particular school or set of schools are less likely to
apply there, when under full information they might have applied. But this is also
an endorsement of allowing choice, because it acknowledges a key rationale for its
existence: students have access to a wealth of relevant individual-specific informa-
tion, some from their peer networks, that administrators likely do not know. School
choice allows students to put this information to work in the matching process. Cre-
ative policies that augment the information set of students in disadvantaged peer
networks may help to retain the positive features of choice systems while lowering
the informational barriers that reduce their effectiveness.
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Tables

Table 1: Summary statistics for full and sibling samples
(1) (2)

All students

Matched 
younger sibling 

sample

p-value for 
equality of 

means
Male 0.50 0.48 0.00

10.32 10.46 0.00

(3.57) (3.39)

2.23 2.33 0.00

(1.49) (1.28)

2.19 2.68 0.00

(1.38) (1.05)

4.81 4.90 0.00

(3.16) (3.17)

8.01 8.14 0.00

(0.83) (0.82)

9.24 8.92 0.00

(3.93) (3.57)

Elite school as first choice 0.61 0.64 0.00

Assigned to an elite school 0.20 0.21 0.00

COMIPEMS examination score 62.90 62.19 0.00

(19.20) (18.83)

7.73 7.82 0.00

(6.32) (6.15)

6.23 5.94 0.00

(5.47) (5.04)

Grade year difference between siblings 2.57

(1.28)

Siblings chose same first choice school 0.34

Graduated high school (for non-UNAM 
students in 2005-2007 cohorts)

0.39 0.45 0.00

Observations 3,423,052 455,375

Note. Standard deviations in parentheses. Statistics in column 2 are for all younger siblings in the 
matched sample, described in the text.

Number of schools ranked

Distance from student's home to first choice 
school (km)

Distance from student's home to first non-elite 
choice school (km)

Maximum of mother's and father's education 
(years)

Number of siblings

Birth order (1 is first-born)

Hours studied per week

Middle school grade point average (of 10)
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Table 4: Effect of older sibling admission on younger sibling’s preference for same
school, heterogeneity by age difference of siblings

(1) (2) (3) (4)

Specification

Dependent variable

Cutoff 
school is 

first choice

Cutoff 
school is 

any choice

Cutoff 
school is 

first choice

Cutoff 
school is 

any choice

Score ≥ cutoff 0.080*** 0.101*** 0.082*** 0.104***

(0.0036) (0.0040) (0.0039) (0.0047)

[0.00] [0.00] [0.00] [0.00]

(Score ≥ cutoff) × (Siblings 3+ years apart) -0.006 -0.005 -0.008 -0.008

(0.0052) (0.0059) (0.0057) (0.0068)

[0.47] [0.52] [0.25] [0.20]

Observations 340,255 393,423 1,084,137 1,139,075

Adjusted R-squared 0.163 0.253 0.140 0.228

Mean of dependent variable 0.167 0.588 0.153 0.553

Bandwidth 9.2 10.0 -- --

* p<0.10, ** p<0.05, *** p<0.01

Local linear Global

Note. Regressions include cutoff school-year fixed effects and polynomials in older sibling's centered
exam score, all interacted with the (Siblings 3+ years apart) dummy. Local linear model weights
observations using the edge kernel; global model uses the rectangular kernel. Standard errors
accounting for clustering at the older sibling and centered score levels are in parentheses. Stars for
statistical significance are based on t-tests using (G-1) degrees of freedom, where G is the number of
points of support of the centered score. Bootstrapped p-values accounting for clustering at the
centered score level are in brackets.
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Table 7: Effect of older sibling admission to an elite school on younger sibling
elite school choice

(1) (2) (3)

Baseline predicted probability of selecting elite 
school as first choice [0, .6] (.6, .8] (.8, 1]

Score ≥ cutoff 0.142*** 0.076*** 0.032***

(0.0180) (0.0094) (0.0061)

[0.00] [0.00] [0.00]

Observations 12,410 33,507 40,603

Adjusted R-squared 0.038 0.022 0.013

Mean of dependent variable 0.635 0.789 0.910

Bandwidth 19.3 16.2 13.9

(1) (2) (3)

Baseline predicted probability of selecting elite 
school as first choice [0, .6] (.6, .8] (.8, 1]

Score ≥ cutoff 0.649*** 0.378*** 0.211***

(0.0976) (0.0767) (0.0585)

[0.00] [0.00] [0.07]

Observations 12,869 27,705 50,432

Adjusted R-squared 0.046 0.047 0.057

Mean of dependent variable 2.705 3.999 5.516

Bandwidth 19.7 12.7 18.0

(1) (2) (3)

Baseline predicted probability of selecting elite 
school as first choice [0, .6] (.6, .8] (.8, 1]

Score ≥ cutoff 0.037** 0.035*** 0.004

(0.0143) (0.0093) (0.0089)

[0.06] [0.00] [0.57]

Observations 13,849 37,030 48,066

Adjusted R-squared 0.032 0.023 0.021

Mean of dependent variable 0.196 0.230 0.313

Bandwidth 21.7 18.4 17.4

* p<0.10, ** p<0.05, *** p<0.01

Note. Sample is composed of older siblings near the cutoff of an elite school who will be 
assigned to a non-elite school if they score below the cutoff. Columns partition this sample 
by the younger sibling's predicted probability of selecting an elite school as first choice, 
predicted on the sample of students with older siblings below the elite cutoff, using the 
probit model in Table A2. Regressions include cutoff school-year fixed effects and first-
order polynomials in older sibling's centered exam score. Observations are weighted using 
the edge kernel. Standard errors accounting for clustering at the older sibling and centered 
score levels are in parentheses. Stars for statistical significance are based on t-tests using 
(G-1) degrees of freedom, where G is the number of points of support of the centered score. 
Bootstrapped p-values accounting for clustering at the centered score level are in brackets.

Panel C. Effect on assignment to an elite school

Panel A. Effect on selecting an elite school as first choice

Panel B. Effect on total number of elite schools selected
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Table 8: Differential effect of older sibling admission on school choice by
graduation outcome

(1) (2) (3) (4)

Specification

Score ≥ cutoff 0.014*** (One per 0.020*** (One per

(0.0043) school) (0.0077) school)

[0.00] [0.01]

(Score ≥ cutoff) × (Older sibling graduated) 0.023*** 0.019*** 0.023* 0.025**

(0.0064) (0.0068) (0.0117) (0.0109)

[0.01] [0.00] [0.07] [0.03]

Observations 121,218 121,218 158,266 158,266

Adjusted R-squared 0.081 0.083 0.076 0.079

Mean of dependent variable 0.086 0.086 0.084 0.084

Bandwidth 23.7 23.7 -- --

(1) (2) (3) (4)

Specification

Score ≥ cutoff 0.043*** (One per 0.051*** (One per

(0.0100) school) (0.0134) school)

[0.00] [0.03]

(Score ≥ cutoff) × (Older sibling graduated) 0.071*** 0.073*** 0.067*** 0.081***

(0.0142) (0.0153) (0.0193) (0.0175)

[0.01] [0.00] [0.00] [0.01]

Observations 56,118 56,118 121,974 121,974

Adjusted R-squared 0.125 0.126 0.120 0.122

Mean of dependent variable 0.192 0.192 0.173 0.173

Bandwidth 11.7 11.7 -- --

(1) (2) (3) (4)

Specification

Score ≥ cutoff 0.202*** (One per 0.246*** (One per

(0.0480) school) (0.0816) school)

[0.00] [0.13]

(Score ≥ cutoff) × (Older sibling graduated) 0.116* 0.153** 0.074 0.189*

(0.0660) (0.0693) (0.1146) (0.1041)

[0.04] [0.01] [0.46] [0.05]

Observations 54,579 54,579 80,483 80,483

Adjusted R-squared 0.182 0.188 0.180 0.187

Mean of dependent variable 1.863 1.863 1.885 1.885

Bandwidth 20.5 20.5 -- --

Local linear Global

Note. Samples exclude all students at an UNAM school cutoff or who would attend an UNAM school
if rejected from the cutoff school, since the UNAM schools have no graduation data available. Sample
in Panel B is limited to sibling pairs where the older sibling is at the cutoff of a non-elite school.
Sample in Panel C is limited to sibling pairs where the older sibling would be admitted to a school in
a different subsystem upon rejection. Regressions include graduation-cutoff school-year fixed effects
and polynomials in older sibling's centered exam score interacted with the graduation dummy.
Columns 2 and 4 also include one admission coefficient per cutoff school, de-meaned older sibling's
GPA, a first-order piecewise polynomial in the interaction between older sibling's GPA and centered
test score, and the interaction between GPA and graduation. Local linear model weights observations
using the edge kernel; global model uses the rectangular kernel. Standard errors accounting for
clustering at the older sibling and centered score levels are in parentheses. Stars for statistical
significance are based on t-tests using (G-1) degrees of freedom, where G is the number of points of
support of the centered score. Bootstrapped p-values accounting for clustering at the centered score
level are in brackets.

* p<0.10, ** p<0.05, *** p<0.01

Panel C. Effect on number of other schools chosen in same subsystem

Panel B. Effect on first non-elite choice

Panel A. Effect on first choice

Local linear Global

Local linear Global
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Table 9: Nested logit estimates of school choice model
(1) (2) (3) (4)

Sample All siblings
Siblings 3-5 
years apart

Graduation 
proxy 

available

Graduation 
proxy 

available

Dependent variable First choice First choice First choice
First non-
elite choice

School above cutoff Constant 0.454*** 0.382*** 0.522*** 0.648***

(0.015) (0.021) (0.069) (0.049)
Score ≥ cutoff 0.346*** 0.332*** 0.186** 0.131**

(0.018) (0.026) (0.084) (0.059)
Graduated 0.065 -0.019

(0.087) (0.063)
Graduated × Score ≥ cutoff 0.003 0.181**

(0.106) (0.079)
School below cutoff Constant 0.766*** 0.646*** 0.684*** 0.752***

(0.020) (0.028) (0.083) (0.065)
Score ≥ cutoff -0.601*** -0.522*** -0.296*** -0.385***

(0.029) (0.041) (0.113) (0.088)
Graduated 0.147 0.196**

(0.101) (0.081)
Graduated × Score ≥ cutoff -0.417*** -0.262**

(0.149) (0.116)
Subsystem  of school Fixed effects YES YES YES YES
above cutoff Score ≥ cutoff 0.306*** 0.302*** 0.190** 0.059

(0.024) (0.036) (0.092) (0.079)

Graduated × fixed effects YES YES
Graduated × Score ≥ cutoff 0.080 0.253**

(0.123) (0.108)
Subsystem  of school Fixed effects YES YES YES YES
below cutoff Score ≥ cutoff -0.364*** -0.339*** -0.076 -0.071

(0.027) (0.040) (0.099) (0.082)

Graduated × fixed effects YES YES
Graduated × Score ≥ cutoff -0.287** -0.207*

(0.132) (0.113)
Distance to school Constant -0.118*** -0.116*** -0.116*** -0.130***

(0.001) (0.001) (0.002) (0.003)
Graduated 0.000 0.000

(0.001) (0.002)
Mean COMIPEMS 
score

Constant 0.034*** 0.033*** 0.030*** 0.040***
of school (0.000) (0.000) (0.001) (0.001)

Graduated -0.002*** -0.002***

(0.001) (0.001)
Proportion of older sib Constant 2.400*** 2.227*** 2.436*** 5.093***
MS cohort choosing (0.025) (0.035) (0.070) (0.206)
as first choice Graduated 0.350*** -0.484*

(0.080) (0.249)
Intra-nest correlation 0.483*** 0.467*** 0.455*** 0.450***
parameter (λ) (0.004) (0.006) (0.008) (0.010)

Students 263,431 121,202 46,861 36,349
Note. Results are from a nested logit model, with subsystem as the nest, for students within 7 points of the cutoff of
a school. Specifications include dummy variables for school subsystem and interactions of these dummy variables
with 1) an indicator for whether the school above the cutoff belongs to that subsystem and 2) an indicator for
whether the school below the cutoff belongs to that subsystem. Also included are first-order piecewise polynomials in 
school above cutoff, school below cutoff, subsystem above cutoff, and subsystem below cutoff. In columns 3 and 5,

every variable is interacted with the "graduated" dummy variable. Standard errors accounting for clustering at the
older sibling level are in parentheses.

*** p<0.01, ** p<0.05, * p<0.1.
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Figures

Figure 1: Verification of sharp discontinuity in admission probability due to assign-
ment rule
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Note. Variable on vertical axis is proportion of older siblings assigned to the cutoff school. Variable
on horizontal axis is older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding
cutoff score. Fitted lines are from a quadratic fit.

Figure 2: Effect of older sibling admission on younger sibling choice

.1
.1

5
.2

P
ro

po
rt

io
n 

ch
oo

si
ng

-20 -10 0 10 20
Centered score

A. Cutoff school as first choice

.5
.5

5
.6

.6
5

P
ro

po
rt

io
n 

ch
oo

si
ng

-20 -10 0 10 20
Centered score

B. Cutoff school as any choice

.0
2

.0
4

.0
6

.0
8

P
ro

po
rt

io
n 

ch
oo

si
ng

-20 -10 0 10 20
Centered score

C. School below cutoff
as first choice

.3
5

.4
.4

5
.5

.5
5

P
ro

po
rt

io
n 

ch
oo

si
ng

-20 -10 0 10 20
Centered score
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Note. Proportion on vertical axis pertains to the younger siblings. Variable on horizontal axis is
older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff score. Fitted
lines are from a quadratic fit.
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Figure 3: Effect of older sibling admission on younger sibling choice, disaggregated
by type of cutoff school
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Note. Proportion on vertical axis pertains to the younger sibling. Variable on horizontal axis is
older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff score. Fitted
lines are from a quadratic fit.

Figure 4: Distribution of estimated admission coefficients
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Note. Histograms are of estimated coefficients on older sibling admission, estimated from separate
local linear regressions for each cutoff school at the IK optimal bandwidth, where the dependent
variable is a dummy variable equal to 1 if the younger sibling chose the cutoff school as his first
choice. Panel A plots the coefficients for elite cutoff schools. Panel B plots the coefficients for
non-elite cutoff schools.
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Figure 5: Effect of older sibling admission on number of other schools chosen in cutoff
subsystem
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Note. Variable on vertical axis is number of schools selected by the younger sibling in the subsystem
to which the older sibling’s cutoff school belongs, excluding the cutoff school. Sample is limited to
older siblings for whom the school immediately below the cutoff belongs to a different subsystem
than the cutoff school, so that marginal rejection results in assignment to another subsystem.
Variable on horizontal axis is older sibling’s COMIPEMS exam score, centered to be 0 at the
corresponding cutoff score. Fitted lines are from a quadratic fit.

Figure 6: Effect of older sibling admission on younger sibling assignment outcomes
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Note. Proportion on vertical axis pertains to the admissions outcome of the younger sibling.
Variable on horizontal axis is older sibling’s COMIPEMS exam score, centered to be 0 at the
corresponding cutoff score. Fitted lines are from a quadratic fit.
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Figure 7: Density of centered COMIPEMS score
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Note. Histogram is of COMIPEMS score for students near a cutoff. Scores are centered so that
they are 0 at the cutoff score.
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Appendix: For Online Publication
Model of school choice

This section extends a model of school choice from Hastings et al. (2009) by incor-
porating incomplete information, risk aversion, and learning from peers. In my model,
the utility from attending each school is uncertain because of incomplete information
about student-school match quality. Risk-averse students revise their beliefs about
utilities by receiving informative signals about match quality from peers. The setup
is similar to models of consumer demand for experience goods, in particular Roberts
and Urban (1988) and Erdem and Keane (1996), where consumers are uncertain
about product quality and revise their beliefs due to word-of-mouth or informative
advertising. Students may also gain productive knowledge about schools from their
peers, which allows them to obtain higher utility from attending the peer’s school.
This latter advantage can be thought of in a similar way to the effect of learning on
technology adoption, as in Foster and Rosenzweig (1995).24 In this case, students are
unsure of how to use the school “technology” to build human capital but learn from
peers about how to do so optimally.

This model produces testable hypotheses about how students react to new in-
formation about specific schools. First, the model predicts that the average impact
of new information on same-school expected utility is positive. This is a prediction
about the average effect of new information over all students and schools in the
population, not a prediction that the average effect will be positive for each school.
Second, the model predicts that the impact of new information depends on how pos-
itive or negative the signal was. Finally, these effects are predicted to apply, to a
lesser degree, to other schools that are observably similar to the school about which
the information was received.

General setup
The student’s problem is to maximize expected utility by choosing one school to

attend from his choice set. Here I abstract from the problem of portfolio construction
and focus on the first choice. This is reasonable if one thinks that the first listed option
is the student’s most-preferred school, a modest assumption given the large number

24Foster, Andrew D., and Mark R. Rosenzweig. 1995. “Learning by Doing and Learning from
Others: Human Capital and Technical Change in Agriculture.” Journal of Political Economy 103(6):
1176-1209.
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of options that a student is allowed to list in order to diversify and choose safety
schools.

Student i’s utility from school j ∈ J is a function of student-school match quality:

Uij = U (Xijβi) = U
((

X̄j + X̃ij
)
βi
)

where match quality is expressed as the sum of student-school attributes in the vector
Xij weighted by the student-specific vector of preference parameters βi. The attribute
vector is decomposed into two terms: X̄j is the average level in the population and
X̃ij is the student-specific deviation from this level. An example of a student-school
attribute is academic fit, which is on average higher at some schools than others, but
also has a student-specific component that depends on how well the school caters to
the student’s particular learning style and ability level.

The student knows the relative weights βi he puts on each attribute. If he also
knows Xij, and if he is risk-neutral with respect to match quality, so that U (Xijβi) =

Xijβi, this model is nearly identical to the one in Hastings et al. (2009). In that case,
the student chooses school j if it provides the highest match quality out of all schools
in the choice set: Xijβi > Xikβi ∀k ̸= j ∈ J.25

Incomplete information about match quality
Incomplete information about match quality is modeled by making it so that the

student imperfectly observes student-school attributes. He does not observe X̄j or
X̃ij, but he knows the distributions from which each is drawn:

X̄j ∼ N
(
X̄0

j ,ΣX̄j

)
, X̃ij ∼ N

(
X̃

0
ij,ΣX̃ij

)
.

For simplicity of exposition, the covariance matrices ΣX̄j and ΣX̃ij
are assumed to be

diagonal, and X̄j and X̃ij are assumed to be mean independent. Thus Xij is distributed
normally with mean X0

ij = X̄0
j +X̃

0
ij and diagonal covariance matrix with (ℓ, ℓ)th entry

1/τ 0
ℓij.26

Because Xij is unknown, a risk-neutral student chooses j if it maximizes expected
match quality: E0 [Xijβi] > E0 [Xikβi] ∀k ̸= j ∈ J, where the 0 subscript indicates

25Hastings et al. (2009) do not explicitly model uncertainty, but they do say that uncertainty
about an attribute would lead to a lower effective weight being placed on it.

26I assume that for any two schools j and k, Xij and Xik are mean independent.
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that the expectation is formed solely on the basis of the match quality distributions.
Incomplete information about match quality (in particular, about mean quality X̄j)
is sufficient to predict the results from Hastings and Weinstein (2008), where giving
information about school-level average test scores to students increased the weight
that students placed on test scores when choosing schools.27

Risk aversion and returns to productive knowledge
I now introduce two channels through which information will positively affect

expected utility: returns to productive knowledge and risk aversion with respect to
match quality.

I parameterize the returns to productive knowledge in a simple way, adding a term
rj (nij) to the utility function, where nij is the level of i’s knowledge about school j.
The marginal return to knowledge is strictly positive so that r′j > 0. Examples of
productive knowledge are knowing which teachers are the best to take or being aware
of an after-school tutoring program.

Allowing the student to be risk-averse will address a troubling result from the risk-
neutral model. Risk neutrality implies that the relative precision with which match
quality is known does not affect choice. That is, presented with a choice between
two schools of equal expected match quality but where one’s match is known with
complete certainty and the other with uncertainty, the student will be indifferent
between them. A risk-averse student will prefer the school where match quality is
known with certainty.

To model risk aversion, I allow utility to be concave in match quality. Following
Roberts and Urban (1988), I use exponential utility:

Uij = −exp {−ρXijβi + rj (nij)}

where ρ, the coefficient of risk aversion, is assumed to be positive. Due to exponential
utility and the joint normal distribution of Xij, expected utility from school j in the
absence of additional information can be written in terms of the mean and variance
(or precision) of the prior distribution of match quality, as well as the return to

27Intuitively, students were choosing on the basis of both signal and noise about test scores, and
the information intervention allowed students to choose on the basis of a stronger signal.
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productive knowledge:28

U∗
0ij = E0 [Xijβi]−

ρ

2
Var (Xijβi) + rj

(
n0

ij
)

= X0
ijβi −

ρ

2

∑
ℓ

β2
ℓi

τ 0
ℓij

+ rj
(
n0

ij
)
.

(1)

where β2
ℓi/τ

0
ℓij is the variance of the distribution of match quality from attribute ℓ.

The student optimizes with respect to both the mean and variance of match quality,
so schools are now “penalized” when beliefs about them are noisier. He also values
productive knowledge. He chooses the school j that provides the highest expected
utility of all available schools: U∗

0ij > U∗
0ik ∀k ̸= j ∈ J.

Effect of peer information
When student i’s peer attends school j, he gives two pieces of information. First,

he provides productive knowledge about school j, so that the new level of knowledge
is higher: n1

ij > n0
ij. Second, the student improves on his prior belief about match

quality by receiving informative signals about student-school attributes Xij. This
information comes in the form of an unbiased, noisy signal about each attribute:

Pij = Xij + εij, εij ∼ N
(
0,ΣPij

)
,

where ΣPij is diagonal with entries 1/τP
ℓij. The signals received are about student-

school attributes for student i, not the peer.29 The idea is that social interactions
with the peer allow i to learn more about the school and infer something about how
much he will benefit from different aspects of it.

The student uses this new information to update his expected utility from attend-
ing school j. Because the prior and signal are both distributed normally and because
the covariance matrix for each is diagonal, the form of the posterior distribution of
each student-school attribute is simple:

28The full expression for expected utility is E0 [Uij] =

−exp
{
−ρ
(

X0
ijβi − ρ

2
∑

ℓ
β2
ℓi

τ0
ℓij

+ rj
(
n0ij
))}

, but since this is strictly monotonically increasing
in the terms in braces, this is equivalent to optimizing with respect to equation 1.

29This is in contrast with Roberts and Urban (1988), in which only quality for the peer is observed.
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X1
ℓij ∼ N

(
τ 0
ℓijX0

ℓij + τP
ℓijPℓij

τ 0
ℓij + τP

ℓij
,

1
τ 0
ℓij + τP

ℓij

)
The posterior distribution of each attribute is a precision-weighted average of the
prior and signal. The expected utility from j is now

U∗
1ij = X̂

1
ijβi −

ρ

2

∑
ℓ

β2
ℓi(

τ 0
ℓij + τP

ℓij

) + rj
(
n1

ij
)

(2)

where X̂
1
ij is the mean of the posterior distribution of X1

ij. To see how the peer signals
affected expected utility, compare equations 1 and 2:

U∗
1ij − U∗

0ij =
(

X̂
1
ij − X0

ij

)
βi +

ρ

2

∑
ℓ

β2
ℓiτ

P
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

) + (rj
(
n1

ij
)
− rj

(
n0

ij
))

(3)

The change in expected utility comes from three sources. The first term is the change
in expected match quality. This quantity may be positive or negative depending on
the content of the peer signal. Students may learn that the school is a better or
worse match for them than they had guessed. The second term is the change in
expected utility resulting from the lower variance in the posterior distribution of
match quality. This quantity is unambiguously positive. The increased knowledge
about match quality works in the school’s favor because the risk-averse student is
now more certain about how good the match is. The third term is the change in the
utility from productive knowledge, which is also positive.

This result gives rise to two testable hypotheses, derived at the end of this section:

Hypothesis 1: The expected effect of peer information on U∗
ij, taken over all students

i and schools j, is positive: Eij
[
U∗

1ij − U∗
0ij
]
> 0.

This is the key testable hypothesis of the model that distinguishes it from models
without channels through which information strictly increases expected utility. It says
that, on average, receiving peer information about a school increases the expected
utility from attending there. Intuitively, the signal is sometimes better than the
student’s prior belief and sometimes it is worse, but the average effect on expected
match quality is zero. On the other hand, the reduction in uncertainty about match
quality and the increase in productive knowledge always work in the school’s favor.
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Note that the expected effect may be positive for certain schools and negative for
others, because mean quality X̄j is drawn from a random distribution. This hypothesis
is about the expected effect over all schools.

Hypothesis 2: All else equal, the change in expected utility from j depends positively
on how favorable the peer signal about match quality from j was:

∂(U∗
1ij−U∗

0ij)
∂Pijβi

> 0.

This hypothesis simply says that when the student receives a relatively good (i.e.
high) signal about the match quality from a school, he is more likely to choose that
school than if he had received a relatively bad (low) signal.

Shared attributes across schools
Students may know that the level of an attribute is shared across schools. In

the empirical setting studied here, schools are divided into subsystems that share
important attributes such as curriculum and vocational orientation. In this case,
learning about one school in the subsystem also yields useful information about all
other schools in the same subsystem. (Likewise, productive knowledge about one
school might be applicable to other schools in the subsystem. I will not model this
because it is now obvious that this channel will operate identically to the learning
about shared attributes channel.) In order to model the shared attributes in a simple
way, we can maintain all prior assumptions of the model and additionally assume that
for school j in subsystem s, match quality is expressed as Xijsβi + µis, where µis ≡
µ̄s + µ̃is. The average component of subsystem match quality is distributed µ̄s ∼
N (µ̄0

s , σ
2
s ) and the student-specific component is distributed µ̃is ∼ N (µ̃0

is, η
2
is), and

1/τµis ≡ σ2
s +η2

is. In addition to the signal Pij about unshared attributes, the student
receives a signal about the shared attribute:

qis = µis + ξis, ξis ∼ N (0, 1/τ q
is) .

When the student receives a signal about school j in subsystem s, he can update his
expected utility from a different school k in the same subsystem:

U∗
1iks − U∗

0iks =
(
µ̂1

is − µ0
is
)
+

ρ

2
τ q

is

τµis (τ
µ
is + τ q

is)
(4)
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where µ̂1
is is the mean of the posterior distribution of the shared attribute and µ0

is is
the mean of the prior. This assumption of a shared attribute produces two additional
hypotheses, derived at the end of the section:

Hypothesis 3: The expected effect of peer information on the expected utility from
any other school in the same subsystem is positive: indexing the peer’s school by j
and fixing another school kj in j’s subsystem sj, Eij

[
U∗

1ikjsj
− U∗

0ikjsj

]
> 0.

On average, receiving a signal about a school increases the expected utility from
attending other schools in the same subsystem. The intuition is the same as for Hy-
pothesis 1. Surprises about the match quality from j’s subsystem are also surprises
about the match quality for all other schools in the subsystem. The surprises cancel
out when we average across all schools and students. There is always a reduction in
uncertainty about match quality from j’s subsystem, which increases expected utility
from attending schools in the subsystem.

Hypothesis 4: Suppose the student receives a peer signal about school j in subsys-
tem s. All else equal, the change in expected utility from school k in subsystem s
depends positively on how favorable the peer signal about subsystem match quality
was:

∂(U∗
1iks−U∗

0iks)
∂qis

> 0.

The more positive a surprise to the match quality for j’s subsystem, the larger is the
increase in expected utility from other schools in the same subsystem.

Proofs of model hypotheses
Hypothesis 1: Eij

[
U∗

1ij − U∗
0ij
]
> 0.

Proof: Equation 3 gives the expected change, over all students and schools, in ex-
pected utilities when a signal is received. The increase in productive knowledge rj

clearly increases expected utility, so I suppress the rj terms here. This expectation
is:

Eij
[
U∗

1ij − U∗
0ij
]
= Eij

[(
X̂

1
ij − X0

ij

)
βi +

ρ

2

∑
ℓ

β2
ℓiτ

P
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

)]

= Eij

[
X̂

1
ijβi

]
− Eij

[
X0

ijβi
]
+

ρ

2

∑
ℓ

Eij

[
τP
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

)] .
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From the definition of X̂
1
ij:

Eij

[
X̂

1
ijβi

]
= Eij

[∑
ℓ

βℓi
τ 0
ℓijX0

ℓij + τP
ℓijPℓij

τ 0
ℓij + τP

ℓij

]

=
∑
ℓ

{
Eij

[
τ 0
ℓij

τ 0
ℓij + τP

ℓij
βℓiX0

ℓij

]
+ Eij

[
τP
ℓij

τ 0
ℓij + τP

ℓij
βℓiPℓij

]}

=
∑
ℓ

{
Eij

[
τ 0
ℓij

τ 0
ℓij + τP

ℓij
βℓiX0

ℓij

]
+ Eij

[
τP
ℓij

τ 0
ℓij + τP

ℓij
βℓi (Xℓij + εℓij)

]}

=
∑
ℓ

{
Eij

[
τ 0
ℓij

τ 0
ℓij + τP

ℓij
βℓiX0

ℓij

]
+ Eij

[
τP
ℓij

τ 0
ℓij + τP

ℓij
βℓi (Xℓij)

]}

=
∑
ℓ

{
Eij

[
τ 0
ℓij

τ 0
ℓij + τP

ℓij
βℓiX0

ℓij

]
+ Eij

[
τP
ℓij

τ 0
ℓij + τP

ℓij
βℓiX0

ℓij

]}
=
∑
ℓ

Eij
[
βℓiX0

ℓij
]

= Eij
[
X0

ijβi
]
.

Substituting this result back into the original equation, we have:

Eij
[
U∗

1ij − U∗
0ij
]
= Eij

[
X̂

1
ijβi

]
− Eij

[
X0

ijβi
]
+

ρ

2

∑
ℓ

Eij

[
τP
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

)]

= Eij
[
X0

ijβi
]
− Eij

[
X0

ijβi
]
+

ρ

2

∑
ℓ

Eij

[
τP
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

)]

=
ρ

2

∑
ℓ

Eij

[
τP
ℓij

τ 0
ℓij

(
τ 0
ℓij + τP

ℓij

)] > 0

where the inequality holds because the τ and ρ terms are all positive by definition. ■

Hypothesis 2: All else equal,
∂(U∗

1ij−U∗
0ij)

∂Pijβi
> 0.
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Proof: Treating βi and X0
ij as fixed:

∂
(
U∗

1ij − U∗
0ij
)

∂Pijβi
=
∑
ℓ

∂
(
U∗

1ij − U∗
0ij
)

∂Pℓijβℓi
=
∑
ℓ

∂U∗
1ij

∂Pℓijβℓi

=
∑
ℓ

∂

∂Pℓijβℓi

(
βℓi

τ 0
ℓijX0

ℓij + τP
ℓijPℓij

τ 0
ℓij + τP

ℓij

)
=
∑
ℓ

τP
ℓij

τ 0
ℓij + τP

ℓij
> 0

where the inequality holds because the τ terms are positive. ■

Hypothesis 3: indexing the peer’s school by j and fixing another school kj in j’s sub-
system sj, Eij

[
U∗

1ikjsj
− U∗

0ikjsj

]
> 0.

Proof: This is almost identical to the proof for Hypothesis 1, except that the stu-
dent is only receiving information about the shared attribute µis. From equation 4,
again excluding the effect of productive knowledge, the expectation of the change in
expected utility from any other school in the same subsystem is:

Eij

[
U∗

1ikjsj
− U∗

0ikjsj

]
= Eij

[(
µ̂1

is − µ0
is
)]

+ Eij

[
ρ

2
τ q

is

τµis (τ
µ
is + τ q

is)

]
.

Using the steps from the proof of Hypothesis 1, we have that Eij [µ̂
1
is] = Eij [µ

0
is]. So:

Eij
[(
µ̂1

is − µ0
is
)]

+ Eij

[
ρ

2
τ q

is

τµis (τ
µ
is + τ q

is)

]
= Eij

[(
µ0

is − µ0
is
)]

+ Eij

[
ρ

2
τ q

is

τµis (τ
µ
is + τ q

is)

]
= Eij

[
ρ

2
τ q

is

τµis (τ
µ
is + τ q

is)

]
> 0

where the inequality holds because the τ and ρ terms are all positive. ■

Hypothesis 4: Suppose that schools j and k are in the same subsystem s. Then all
else equal,

∂(U∗
1iks−U∗

0iks)
∂qis

> 0.
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Proof: Treating µ0
is as fixed:

∂ (U∗
1iks − U∗

0iks)

∂qis
=

∂U∗
1iks

∂qis
=

∂µ̂1
is

∂qis
=

∂

∂qis

(
τµisµ

0
is + τ q

isqis

τµis + τ q
is

)
=

τ q
is

τµis + τ q
is
> 0

where the inequality holds because the τ terms are positive. ■
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Additional tables and figures

Table A.1: Differential effect of older sibling admission on school choice by sex pairing
of siblings

(1) (2) (3) (4) (5) (6)

Specification

Sample All cutoffs
Non-elite 
cutoffs

Students 
changing 

subsystem at 
cutoff All cutoffs

Non-elite 
cutoffs

Students 
changing 

subsystem at 
cutoff

Dependent variable
Cutoff school 
is first choice

Cutoff school 
is first non-
elite choice

Schools 
chosen in 

subsystem of 
cutoff school

Cutoff school 
is first choice

Cutoff school 
is first non-
elite choice

Schools 
chosen in 

subsystem of 
cutoff school

Score ≥ cutoff 0.069*** 0.084*** 0.251*** 0.074*** 0.089*** 0.241***

(0.0036) (0.0057) (0.0261) (0.0029) (0.0049) (0.0239)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

(Score ≥ cutoff) × (Same-sex sibling) 0.012** 0.016* -0.024 0.008*** 0.011*** 0.004

(0.0052) (0.0081) (0.0361) (0.0013) (0.0022) (0.0116)

[0.00] [0.01] [0.50] [0.00] [0.01] [0.54]

Observations 340,194 163,372 224,620 1,084,111 517,565 541,571

Adjusted R-squared 0.161 0.129 0.149 0.137 0.124 0.140

Mean of dependent variable 0.167 0.194 2.069 0.153 0.176 2.024

Bandwidth 9.2 9.0 12.0 -- -- --

Global

Note. Regressions include cutoff school-year fixed effects and polynomials in older sibling's centered exam score, all interacted 
with the same-sex sibling dummy. Samples in columns 3 and 6 are limited to older siblings for whom rejection from the cutoff 
school results in admission to a school in a different subsystem. Local linear model weights observations using the edge kernel; 
global model uses the rectangular kernel. Standard errors accounting for clustering at the older sibling and centered score levels 
are in parentheses. Stars for statistical significance are based on t-tests using (G-1) degrees of freedom, where G is the number 
of points of support of the centered score. Bootstrapped p-values accounting for clustering at the centered score level are in 
brackets.

* p<0.10, ** p<0.05, *** p<0.01

Local linear

51



Table A.2: Predictors of choosing elite school as first choice(1)

Specification Probit

Dependent variable
Elite first 

choice

Parental education (years) 0.011***

(0.0004)

Male -0.002

(0.0026)

0.451***

(0.0086)

log(Older sibling's middle school cohort size) 0.016***

(0.0021)

Distance from closest elite school (km) -0.002***

(0.0004)

Observations 98,395

Mean of dependent variable 0.760

* p<0.10, ** p<0.05, *** p<0.01

Note. Estimates are average marginal effects from a probit 
regression. Sample consists of students whose older siblings 
were below the cutoff of an elite school and were assigned to 
a non-elite school as a result. Specification also includes 
younger sibling exam year fixed effects. Standard errors 
accounting for clustering at the older sibling level are in 
parentheses.

Proportion of older sibling's middle school with 
elite first choice
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Figure A.1: Map of COMIPEMS zone of Mexico City
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Figure A.2: Effect of older sibling admission, by graduation outcome
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A. Cutoff school as first choice
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B. Non-elite cutoff schools:
Cutoff school as first non-elite choice
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C. Schools chosen in subsystem of cutoff school

Note. Vertical axis pertains to the choice of the younger sibling. Number of schools chosen in
Panel C excludes the cutoff school. Sample in Panel C is limited to older siblings for whom the
school immediately below the cutoff belongs to a different subsystem than the cutoff school, so
that marginal rejection results in assignment to another subsystem. “Graduation” is proxied by an
indicator of whether the older sibling took the 12th grade standardized exam. Variable on horizontal
axis is older sibling’s COMIPEMS exam score, centered to be 0 at the corresponding cutoff score.
Fitted lines are from a quadratic fit.
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