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Abstract 

 

Natural disasters represent an exogenous shock to local labor markets. Generally, the need 

for reconstruction creates a boom in the construction sector that can lead to wage surge for 

reconstruction labor. Based on 9,009 catastrophe regions in the United States we segregate the 

catastrophe induced wage effect from the business cycle development and find a wage surge 

of up to 50%. Furthermore, we find that local labor market characteristics like the GDP per 

worker in the local construction industry and wage differentials between the center of the 

catastrophe and adjacent regions have significant impact on the wage surge. 
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1 Introduction 

In recent decades the frequency and severity of natural disasters increased dramatically 

(Kunreuther/Michel-Kerjan, 2009). This development is accompanied by an increase in 

catastrophe related economic losses and is assumed to continue if effective disaster mitigation 

efforts are omitted (Pielke, 2005; Pielke et al., 2008). Due to the massive destruction of 

physical assets the basis for economic losses are generally reconstruction costs. The need for 

reconstruction together with the financial influx from disaster relief and insurance payouts 

create a reconstruction boom (Guimaraes at al., 1993). Thus, some economic sectors 

experience even positive effects, e.g., retail and construction. Against this background, we 

analyze the impact of the catastrophe induced exogenous shock to the local labor market for 

reconstruction services. To this end, we answer the following research questions: (i) Under 

which economic conditions do catastrophes lead to wage surge? (ii) What are the 

determinants for the magnitude of wage surge? Our results should be beneficial for various 

market participants. For example, governments have to deal with rising economic damages 

and a deep understanding of wage surge is necessary to apply appropriate price regulations; 

insurance companies are confronted with inflating claim levels and should consider wage 

surge with respect to premium calculation; building contractors could use this information for 

future capacity planning. 

Our empirical analyses are based on catastrophe data provided by SHELDUS and pricing 

information in the construction sector available from Xactware. We analyze 9,009 natural 

catastrophe events in the United States between 2002 and 2010, and match these observations 

with pricing information in the construction sector. We find that the wage surge is more 

pronounced if regional wage differentials exist, i.e., a location which paid less than adjacent 

regions before the catastrophe will face a stronger wage increase because additional workers 

can only be attracted after the prevalent wage gap vanished. Moreover, wage increases are 

more pronounced if the local construction sector is in a growth stage and the GDP per worker 

in the construction sector is already high when a catastrophe occurs because, in such 

situations, there is only little idle capacity. The opposite effect can be observed if wages have 

already increased in the months prior to the catastrophe, which is due to saturation effects, and 

if regional unemployment rates are high so that the additional labor demand can be satisfied 

by unemployed. Finally, a higher number of insurance claims per event raises the wage surge, 

which indicates that the regulation policy of insurers is less restrictive if the total number of 

claims is large. 
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The remainder of this paper is structured as follows. In Section 2 we provide a review of 

the relevant literature and propose an approach to quantifying the wage surge. In addition, we 

present our hypotheses for the subsequent empirical analyses. Section 3 describes our 

measurement approach of wage surge and the set of explanatory variables. Afterwards we 

introduce our empirical strategy and the corresponding descriptive statistics. The following 

Section 4 contains our empirical analyses and related robustness checks. Section 5 concludes. 

 

2 Modeling of Wage Surge and Hypotheses Development 

2.1 Literature Review 

Ex ante it is not clear how local labor markets react to exogenous shocks. Thus, a growing 

number of studies deal with exogenous demand and supply shocks and their potential 

consequences. The main focus of these studies is on the evolution of (un-)employment or the 

overall economic activity. For example, Guimaraes et al. (1993) analyze the economic 

consequences of Hurricane Hugo, which struck South Carolina in 1989 and was the 

economically most devastating storm in the history of the United States. They find that in the 

short run disasters may have a positive effect on the local economy and one of the sectors that 

benefited most was construction. In contrast, Ewing et al. (2009) conduct an impact 

assessment of the May 3, 1999, Oklahoma tornado on the Oklahoma City metropolitan 

statistical area. They observe an increase in employment growth and improved labor market 

stability measured in terms of volatility of the employment growth rate in the period 

following the tornado. In addition, Ewing/Kruse (2005) examine the impact of hurricanes 

during the 1990s on the unemployment rate in Wilmington (North Carolina), an area 

susceptible to hurricanes and tropical storms, and find an adverse impact in the short run but a 

positive impact in the long run. However, exogenous shocks to labor markets may not only be 

caused by natural disasters. Card (1990) analyzes the impact of the Mariel boatlift1 on the 

Miami labor market. The massive labor force increase by 7% due to the mass immigration 

had no effect on wage rates. The studies most connected to our work are the ones of 

Belasen/Polachek (2008, 2009). Both studies investigate the effect of hurricanes in Florida on 

employment and earnings. Their studies are based on 19 hurricanes between 1988 and 2005 

and the corresponding demand shock to the local labor market. They determine the change in 

average growth rate of employment and earnings of affected and neighboring counties relative 

to unaffected counties within the first quarter being hit by a hurricane. Their analysis is 

                                                 
1 The Mariel boatlift was a mass immigration of Cubans towards the United States during the year 1980. 
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provided for the economy as a whole and five industrial sectors including construction. 

Nevertheless, these studies lack in providing an analysis of influencing factors of wage surge 

and an assessment of employment and earnings development in the quarters following the 

catastrophe. 

Finally, Olsen/Porter (2010) and Olsen/Porter (2011a) provide an overview of studies 

trying to estimate the total damages of catastrophe events, which should include wage surge. 

In this context, approaches to consider wage increases are based on simulation studies 

(Hallegatte et al., 2008) or focus primarily on physical variables, such as the wind speed of a 

hurricane, to predict cost changes of constructed baskets of repairs (Olsen/Porter, 2011b). 

However, it is virtually unknown how local wages in the construction sector react to 

natural disasters in the short to medium term, in which economic situations catastrophes lead 

to wage surge, and which economic conditions influence the magnitude of the wage increase. 

This is the focus of our study. 

2.2 Quantifying Wage Surge 

In the following, our objective is to analyze the consequences of wage surge and to define 

measures of wage surge. For this purpose, we examine catastrophe related payments for 

reconstruction, resulting from the demand quantities of building materials or services and 

their prices. As already mentioned, the present study focuses on wage payments for workers. 

We consider a discrete time model with points in time t = 0, 1, …, T, where t = 0 denotes the 

point in time of the occurrence of the catastrophe and T is the point in time of the last damage 

repair. In this context, x(t) denotes the (realized) demand quantity of workers at time t and p(t) 

stands for the corresponding wage level. Consequently, z(t) = x(t)·p(t) represents the wage 

payments at time t. In order to evaluate the wage payments, we consider exogenously given 

capital costs r and an information set  available at t = 0, which leads to the following market 

value of catastrophe related wage payments (with P(1,T)  (p(1), …, p(T)): 

 
T

t
t 1

E(x(t) p(t) | )
V(P(1,T) | )

(1 r)

 
 

 .2 (1) 

While the quantity x(t) is exogenously given by the physical catastrophe damages, the 

immense demand for workers can lead to a wage increase from a “normal” wage development 

Pno-cat(1,T) to a catastrophe induced wage development Pcat(1,T). Against this background, we 

are interested in the impact of the wage increase on the value of wage payments. In order to 

                                                 
2 E(Y|) denotes the expectation value of Y conditional on the information set . 
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quantify the impact of a catastrophe induced wage change, we use the following definition 

(with P(0)  (p(1) = p(0), …, p(T) = p(0) standing for no change in the wage development): 

 cat no catV(P (1,T) | ) V(P (1,T) | )

V(P(0) | ) V(P(0) | )
 

  
 

. (2) 

Since V(P(1, T) | ) / V(P(0) | ) 1    is the relative change of the market value when 

switching from the current wage level P(0) to any future wage level P(1,T), the difference  

measures the increase of the market value when switching the wage level from a no-

catastrophe to a catastrophe scenario. Thus,  measures only the impact of the catastrophe 

induced wage increase, excluding business cycle effects. Because the wage level at t = 0 is 

unaffected by the catastrophe, the difference simplifies to 

 
V( P(1,T) | )

V(P(0) | )

 



 (3) 

with 

 
T T

t t
t 1 t 1

E(x(t) p(t) | ) x(t)
V( P(1, T) | ) E p(t)

(1 r) (1 r) 

  
        

   (4) 

and 

 cat no catp(t) p (t) p (t)    (5) 

as the so-called absolute wage surge at time t. In order to analyze the impact of the wage 

surge on the difference  it is necessary to isolate p(t) from x(t) because the quantities x(t) 

are not representative for all concerned parties. Although the isolation of the wage surge is not 

immediately possible on the basis of formula (3), it is feasible to determine lower and upper 

bounds of . For this purpose, we assume that x(t) and p(t) are non-negatively correlated for 

all t as well as  tE x(t) / (1 r)   and  E p(t)   are non-negatively correlated over time.3 

Furthermore, we assume 
T t

t 1
(x(t) / (1 r) ) p(0)


    to be certain at t = 0.4 On this basis we 

get:5 

 
T

t {0,...,T}
t 1

1 p(t) p(t)
E | E max |

T p(0) p(0)


            
   

 . (6) 

If we define 

                                                 
3 The assumption seems to be plausible because an increased demand for workers should lead, on average, to an 

increase in wages. 
4 This assumption is based on the subsequent empirical analysis, where the value of total costs is an explanatory 

variable that is contained in our data set. 
5 The proof of the following inequalities is presented in the appendix. 
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 cat no cat

cat no cat

p (t) p (t)p(t)
(t)

p(0) p (0) p (0)





     (7) 

as the (relative) wage surge at time t, the lower bound in (6) represents the average wage 

surge and the upper bound stands for the maximum wage surge. In Section 3.1, we will make 

assumptions regarding the unknown parameters of these wage surge measures, and will 

describe the empirical implementation in detail. 

2.3 Affected Market Participants 

A deeper understanding of the wage surge is relevant for various market participants. In 

this section we briefly explain the influence of wage surge on affected market participants and 

their potential consequences. 

In case of natural catastrophes, governments have to deal with high economic damages. In 

this context the consideration and the comprehension of wage surge is relevant for 

governments to ensure adequate catastrophe precautions and appropriate price regulations in 

the construction sector. Such official regulatory procedures allow governments to directly 

manage the wage surge. Price regulations are e.g. conceivable to restrict price increases after a 

catastrophe, but might also lead to a longer reconstruction period because fewer workers from 

other regions can be attracted. However, such regulations are only reasonable if the 

government understands the influence of wage surge on the social welfare. Indeed, it is not 

immediately clear if the wage surge has a negative effect on the social welfare because higher 

wages imply higher supply and consequently a faster remedying of damage and a decrease in 

underproduction (Hallegatte et al., 2008; Hallegatte, 2008). In addition, wage surge influences 

catastrophe induced public spending, for example for reconstruction of public infrastructure, 

like schools or highways. These damages can be quite substantial. For example, Guimaraes et 

al. (1993) declare that 18,000 miles of highways in South Carolina were impaired by 

Hurricane Hugo in 1989. The impact of a resulting wage surge can be quantified with  as 

defined in equation (3), where p describes an index composed of necessary building services 

for reconstruction of public infrastructure. 

While governments focus on economic damages, insurance companies have to deal with 

inflating claim levels due to rising reconstruction costs for insured and damaged properties. 

Against this background, it is worthwhile to note that reconstruction labor is generally the key 

driver of increasing reconstruction costs as opposed to building materials (Olsen/Porter, 

2011b). Thus, from an insurer’s perspective,  quantifies the effect of wage surge regarding 

catastrophe-induced insurance payments, and p describes an index composed of necessary 

building services used for reconstruction purposes. Insurance companies should consider a 
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wage surge when calculating insurance premiums and determining the required economic 

capital. Similarly, regarding regulatory capital backing standards, wage surge should be 

considered as well because in case of tail events, like natural disasters, the consideration of 

wage surge may decide whether the insurance company remains solvent or not. 

For investors of insurance companies, estimates of catastrophe related claims payments 

and, thus, wage surge are relevant to assess the price reactions of insurance stocks after 

catastrophes. This effect regarding the market value of insurance companies V(insurance) is 

negative: 
(insurance)V

0





. However, investors have to consider that the market value does not 

only react with a decline due to claims payments, but there can be an opposing effect due to 

new premium income because of an increasing risk sensitivity of the population. As a 

consequence, the market value of insurance companies can even increase after catastrophes 

(Gangopadhyay et al., 2010; Lamb, 1995; Marlett et al., 2000; Shelor et al., 1992). 

Issuers and investors of catastrophe-linked securities have to quantify the price 

sensitivity of these securities owing to the occurrence of natural disasters including wage 

surge. Particularly for Cat Bonds with indemnity trigger, the payoff directly depends on the 

insured losses due to the catastrophe, so that wage surge is relevant for investors of these 

securities. As wage surge leads to a higher likelihood that the respective layer is affected, the 

market value of Cat Bonds V(CAT) is decreasing: 
(C AT)V

0





. 

Last but not least, a wage surge is relevant for building companies because they have to 

estimate future demand which in turn depends on the price level to plan future capacities and 

profits in situations of catastrophe-induced reconstruction. Especially regarding recruitments, 

a detailed knowledge of the magnitude and duration of the wage surge is of crucial 

importance. In contrast to all other mentioned parties above, building companies can manage 

the quantity x(t) by increasing their capacity; only the total market-wide quantity of damages 

are exogenously given but the quantity x(t) of an individual building company is endogenous. 

Assuming that a building company is price taker, x(t) should be determined based on the 

following optimization problem: 
T

cat cat
t

x ( t ),t 1,...,T t 1

p (t) c (t)
arg max V(P(1,T) ) V x(t)

(1 r) 

  
      

 , where 

ccat denominates the expenses in case of a catastrophe. 

Thus, for all of these market participants, appropriately assessing wage surge should be 

useful. 
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2.4 Hypotheses 

Next, we will present our hypotheses which will be tested in the empirical analyses in 

Section 4. If the economy in the construction sector is growing, the demand for labor can arise 

fast but the labor supply reacts rather slowly, so that disposable capacities vanish. This leads 

to a lower potential to further increase the labor force and, as a consequence, a wage increase. 

Based on a simulation study Hallegatte et al. (2008) show that the wage surge for the 2004 

and 2005 hurricane seasons would have been much lower if the economy had been in a 

recession as was the case for Hurricane Andrew in 1992. In a nutshell we expect: 

Growth Hypothesis (H1): 

In a stage of growth for the economy, wage surge levels are higher. 

 

An already high workload per employee in the construction sector prior to the catastrophe 

is associated with an overall good order situation. As a consequence, building contractors will 

only accept additional orders if the available labor capacity can be adapted to the change in 

demand. An adaption of labor force to the change in demand is possible by two ways. Either, 

workers are stimulated to work overtime which is associated with a premium, or building 

contractors can try to lure away workers from surrounding regions which is generally only 

possible if an attractive wage is offered to indemnify those workers for the cost of living away 

from home or temporally transfer their residence. Either way wages increase. Thus, we 

expect: 

Workload Hypothesis (H2): 

A higher workload per employee in the construction sector increases the wage surge. 

 

If the unemployment rate in the catastrophe region is high, additional idle capacities are 

available. Therefore, unemployed can at least partially satisfy the additional labor demand in 

the construction sector due to the catastrophe. As a consequence, wage increases are less 

pronounced. Hence, we expect: 

Unemployment Hypothesis (H3): 

Higher unemployment rates in the catastrophe region lessen wage surge. 

 

Obviously, it will be harder for catastrophe affected regions to attract additional labor force 

if the wage level in the catastrophe region is below adjacent regions. Generally, additional 

labor force from adjacent regions can be attracted only after the predominant wage gap 

vanished. This likely results in wage increases. In line with this argument, Morris (2005) 
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supposes that the wage increases after Hurricane Katrina may be partly induced by wage 

differentials. Especially the regions hardest hit paid less and, therefore, wage increases were 

likely. Thus, we hypothesize the following: 

Wage Differential Hypothesis (H4): 

A predominant wage differential between the catastrophe affected and surrounding regions 

lead to higher wage surge levels. 

 

If the wage level is already high due to a construction boom or a reconstruction backlog 

from previous catastrophe events, this might lessen further wage increases due to saturation 

effects. First, workers from adjacent regions might commute to work in order to participate 

from an attractive wage level in the catastrophe region. If wages increase further, workers 

from regions more far away might be attracted that transfer at least temporally their residence. 

This second group is significantly larger than the first one. Thus, the potential work force is 

increasing above average with the preexisting wage level in the catastrophe affected region 

and, therefore, a new equilibrium state will be realized. Hallegatte et al. (2008) observe a 

similar effect regarding structural losses. Their simulated wage surge increases with rising 

structural losses but the slope decreases if losses increase further. Against this background, we 

expect: 

Saturation Hypothesis (H5): 

Higher wage levels in the construction sector lessen wage surge due to saturation effects. 

 

An increasing number of insurance claims per event can lead to a less thorough 

investigation of claims. This might be due to two possible reasons. On the one hand, there 

might be pressure of local authorities to settle claims quickly. As a consequence, insurance 

companies might either install untrained claim adjusters or each claim adjuster has to spend 

less time for each assessment. Both lead to a poorer damage assessment and, finally, inflating 

claim levels (Thomas, 1976). On the other hand, insurance companies might be classified by 

insured and media according to the way they settle claims, which might have a significant 

impact on their future premium income (Olsen/Porter, 2010). Thus, insurance companies 

might settle claims that are not directly attributable to the catastrophe itself due to fraud. To 

provide some anecdotal evidence, RMS (2000) finds that insurance companies did not verify 

claims below a predefined level in the aftermath of the 1999 windstorms Lothar and Martin in 

France. Although a part of damaged properties might be repaired even without insurance, 

reconstruction is generally distributed over a longer time period and, therefore, the demand 
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shock is less pronounced. In addition, Guimaraes et al. (1993) note that insurance payouts 

seem to motivate homeowners to expand and improve damaged properties, creating an 

additional labor demand. Against this background, we hypothesize the following: 

Insurance Hypothesis (H6): 

A larger number of insurance claims per event lead to higher wage surge levels. 

 

3 Data and Empirical Strategy 

Subsequently, we explain the measurement of wage surge and our empirical strategy. 

Lastly, we present relevant exogenous variables and descriptive statistics of our data set. 

3.1 Catastrophe Events and Wage Surge 

We measure wage surge on the basis of catastrophe events in the United States that are 

prone to wage surge. For this purpose, we use catastrophe data provided by SHELDUS 

(Spatial Hazard Events and Losses Database for the United States).6 SHELDUS contains 

county level data for all natural catastrophes in the United States since 1960 that caused at 

least one fatality and/or any economic damage.7 The main data sources are the National 

Climatic Data Center (Storm Data and Unusual Weather Phenomena), the National 

Geophysical Data Center, and the Storm Prediction Center. All damage values therein are 

expressed in US dollars at the time the events took place (current value) and are converted 

into 2005 US dollars using the United States’ Consumer Price Index (CPI) to allow a 

comparison of the values. Moreover, SHELDUS contains only direct damages, thus, indirect 

damages, like business interruption losses, are not contained in reported damage values. As 

small catastrophe events are unlikely to produce the increasing labor demand that creates 

wage surge, we restrict our sample to observations with damage values above the 80% 

quantile of the empirical damage distribution (12.16 million US-$), i.e., we only include the 

20% most destructive observations in our analysis. 

One problem for the measurement of wage surge is that the price level in the no-

catastrophe scenario pno-cat(t) is not observable. However, it is possible to estimate the wage 

level at time t in the no-catastrophe scenario using the assumption 

                                                 
6 SHELDUS: The Spatial Hazard Events and Losses Database for the United States – http://www.sheldus.org – 

University of South Carolina – Columbia – United States. 
7 Between 1993 and 1995, SHELDUS contains only events with at least one fatality or a property or crop 

damage of a minimum 50,000 US dollars. 



 10 

 
(A) (A) (B) (B)
no cat no cat no cat no cat

(A) (B)
no cat no cat

p (t) p (0) p (t) p (0)
,

p (0) p (0)
   

 

 
  (8) 

where (A) denotes a catastrophe affected region and (B) a non-affected region. In this context, 

region (B) is similar to (A) in all respects except for the exogenous event, which is a natural 

catastrophe in our case. This is basically the standard assumption of the difference-in-

differences approach (Ashenfelter/Card, 1985). Thus, the wage level in region (A) at time t in 

the no-catastrophe scenario can be calculated in the following manner: 

 
(B) (B)

(A ) (A )no cat no cat
no cat no cat(B)

no cat

p (t) p (0)
p (t) 1 p (0).

p (0)
 

 


 
   
 

 (9) 

Against this background, we rewrite equation (7) as follows: 

 
(A) (A) (A) (B)
cat no cat cat no cat
(A) (A) (A) (B)
cat no cat cat no cat

p (t) p (t) p (t) p (t)
wage surge (t) = ,

p (0) p (0) p (0) p (0)
 

 

    (10) 

and obtain our measures for the (relative) average and maximum wage surge: 

 

(A) (A)T
cat no cat

(A)
t 1 no cat

(A) (B)T
cat no cat
(A) (B)

t 1 cat no cat

p (t) p (t)1
average wage surge = 

T p (0)

p (t) p (t)1
,

T p (0) p (0)



 



 



 
  

 




 (11) 

 
(A ) (B)
cat no cat

t {1,...,T} (A ) (B)
cat no cat

p (t) p (t)
maximum wage surge = max  .

p (0) p (0)





 
 

 
 (12) 

Unfortunately some of the parameters in equations (11) and (12) cannot directly be 

observed. This is the case for the point in time T of the last damage repair, and the 

composition of the labor price index p(t), that is not known in advance and depends on the 

type of catastrophe. Moreover, it is unclear which region (B) should be chosen so that the 

difference in differences assumption from equation (8) holds. 

As the date of the last damage repair is not known publicly, we test different reasonable 

values. For example, Belasen/Polachek (2008) and Belasen/Polachek (2009) state that even 

damages from the largest catastrophes in the past were repaired within 2 years. In line with 

this finding, Guimaraes et al. (1993) observe that often normal maintenance is combined with 

catastrophe related reconstruction in the first quarters following a catastrophe and, as a 

consequence, leads to a boost of reconstruction activity in the catastrophe region. This can 

lead to a negative shock two years later. In addition, McCarty/Smith (2005) conducted an 

analysis of the 2004 hurricane season in Florida and found that one year later only 35% of 

damaged homes were repaired in full and in 16% of the cases reconstruction did not even 

start. Thus, a time period of one year and a corresponding value of T = 1 seems to be too short 
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for our purposes. Nevertheless, Gron (1994) and Harrington (1997) declare that catastrophe 

claims are usually considered to be short tailed. Furthermore, Gron (1994) states that during 

the time period 1977 to 1986, 95% of homeowner’s claims in the United States were paid 

within 3 years. In addition, with rising time horizons T a growing number of alternative 

catastrophes might occur within the calculation period of our wage surge measures. Thus, our 

results for longer time horizons are probably more heavily superimposed by wage increases 

resulting from alternative events. Against this background, we apply three different values of 

T, with T = 2 being our reference period, and T = 1 and T = 3 being lower and upper bounds 

in the upcoming empirical analyses. 

Moreover, we require a wage index p(t) representing the bulk of building services needed 

for reconstruction after natural catastrophes on a regional scale to measure wage surge. 

Xactware, a member of Verisk Analytics, Inc., offers a retail labor index for 467 economic 

areas in the United States and Canada. Xactware is the leading data provider for United States 

insuring companies and offers data on a quarterly basis from 2002 – 2008 and with a monthly 

frequency since 2009 (Xactware, 2012). The composition of the retail labor index is quite 

similar to building services chosen by AIR (2009) for reconstruction after storm losses. A 

detailed composition of the retail labor index is provided in Table 1. 

 

[Table 1] 

 

Obviously, not every catastrophe region specified by SHELDUS is contained in Xactware. 

As we prefer to measure the wage surge in the center of each catastrophe region, we compute 

the closest Xactware localization available together with the distance between both 

localizations. To this end, we retrieve the geographic coordinates for each catastrophe region 

specified by SHELDUS and all available localizations in Xactware in WGS84 (World 

Geodetic System, dating from 1984 and last revised in 2004). Next, we compute for each 

catastrophe region in SHELDUS the distances to all available Xactware localizations (shortest 

distance between two points on the surface of a sphere). Finally, we retrieve the retail labor 

time series for the Xactware localization with the shortest calculated distance. 

To segregate the relative wage increase due to a catastrophe from alternative influencing 

factors, we apply equation (10). Thus, we first calculate the relative change of wages in the 

catastrophe affected region (A), i.e.,
(A) (A)
cat cat

(A)
cat

p (t) p (0)

p (0)


 where t = 0 refers to the point in time of 

the occurrence of the catastrophe. As the wage evolution over time is affected by the general 
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economic trend and cyclical variations, we have to isolate the catastrophe induced change in 

wage form other possible influencing factors. Therefore, we normalize the actual time series 

with respect to the wage evolution in the case no catastrophe had occurred (the 

counterfactual). Against this background, we choose the aggregated time series for the United 

States as a proxy for the hypothetical relative change in wage in the no-catastrophe scenario 

(B) (B)
no cat no cat

(B)
no cat

p (t) p (0)

p (0)
 




 based on the assumption that the two abovementioned effects are both 

contained in the nationwide index. Of course, this choice is questionable but the task to 

identify an alternative county (B) being similar to the catastrophe region (A) in as many 

respect as possible is problematic for two reasons.8 First, it is reasonable to assume that the 

counties most similar to (A) are located nearby. Unfortunately, these counties are usually 

affected by the same catastrophe event, too. Second, the prerequisite for a county to be non-

catastrophic is that neither in the county itself nor in the greater area a catastrophe occurred in 

the time period from two years before to two years after the event.9 As a consequence, 

according to our dataset nearly all regions are catastrophe affected. Thus, the choice of the 

nationwide index seems plausible, as the effects of single catastrophes on the aggregate 

nationwide index can be regarded as negligible. Afterwards, we calculate the difference 

between both relative changes and assume that the gap between both is completely 

attributable to wage surge. Finally, we calculate the average and maximum wage surge for 

time periods of T = 1, 2, and 3 years based on equations (11) and (12). An exemplary 

calculation of this procedure with respect to the landfall of Hurricane Frances in West Palm 

Beach (Florida) in Q3 2004 is shown in Figure 1. 

 

[Figure 1] 

 

3.2 Wage Surge Drivers 

Direct damage values are reported by SHELDUS on a county level. Because different 

counties specified by SHELDUS as catastrophe regions regarding the same event may be 

mapped to the identical Xactware localization and all of our economic variables are related to 

                                                 
8 Nevertheless, this task could be conducted with the help of a propensity score matching. For further 

information about this statistical matching technique see Rosenbaum/Rubin (1983). 
9 In the following section, we will identify a radius of 300 km to be adequate to define the greater area in which 

alternative catastrophes influence the wage evolution of the center. 
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this Xactware localization, we apply a reassessment algorithm that combines these 

observations into one single new observation. The new direct damage value is the sum of all 

combined original damage values. For our upcoming empirical analyses we define our direct 

damage variable as the sum of the damage in the catastrophe localization specified by 

Xactware and direct damages in a given radius of 300 km around this localization. Regarding 

the choice of the radius we also tested alternative radii of 150, 450, and 600 km. As a 

selection criterion we used the adjusted R2 of models containing the direct damage variable 

and direct damages of previous and subsequent catastrophes within each potential radius 

together with year fixed effects.10 To control for the effect of direct damages on wage surge, 

we included our damage variable and its corresponding quadratic.11 

To control for the effect of alternative catastrophes with close temporal and spatial 

proximity, we additionally calculate direct damages in a given radius of 300 km around each 

catastrophe region for different time intervals. We consider catastrophes up to 3 years before 

or after the end date of each catastrophe, depending on the chosen time horizon T. Because 

the availability of labor price data in Xactware starts in 2002, our sample of catastrophe 

events spans the time period of 2002-2010. 

As an important influencing factor on wage surge we include the state of the economy in 

the construction sector and obtain a variable to test the Growth Hypothesis (H1). To this end, 

we use data from the Bureau of Economic Analysis (BEA), which provides yearly data 

regarding the real GDP in the construction sector on the metropolitan statistical area (MSA) 

and state level. Obviously, the catastrophe affects the GDP at least in the year the catastrophe 

takes place. Thus, we compute the relative change in GDP between two and one year before 

the catastrophe, and use MSA data for localizations at the MSA level whereas using state data 

for counties in our sample.12 

To test our Workload Hypothesis (H2) we calculate the real GDP per worker in the 

construction sector. Again, information regarding the real GDP in the construction sector stem 

from the BEA, whereas the number of workers in the construction sector is provided by the 

Bureau of Labor Statistics’ (BLS) Quarterly Census of Employment and Wages (QCEW) 

program. All figures are either on the MSA or state level and refer to the realized ratio in the 

                                                 
10 The results of this preliminary cross sectional regression analysis are available upon request. 
11 We also tested a linear specification and a version where we used a categorical damage variable with 10 

different categories to describe the variation in our wage surge measure. Comparing these three models the 

combined linear and quadratic term model was the best with respect to the obtained adjusted R2. As further 

control variables we only included year fixed effects and damage values for alternative catastrophes. 
12 All remaining observations at the county level are not part of any MSA in the United States. 
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preceding year. The rationale behind this construction is that figures for the current year might 

be distorted by the catastrophe. 

To capture the effect of available idle capacities on wage surge, we additionally include the 

overall unemployment rate in the localizations specified by Xactware, and, hence, can inspect 

our Unemployment Hypothesis (H3). Thus, the unemployment rates are measured on the 

county or MSA level and refer to the realized value directly before the occurrence of the 

catastrophe. To this end, monthly unemployment data are provided by the Federal Reserve 

Economic Data (FRED) database maintained by the Federal Reserve Bank of St. Louis. 

Wage differentials are measured using an approach comparable to the procedure described 

in Murphy/Hofler (1984). Based on the identified radius of 300 km we compute the average 

wage level of all Xactware localizations within a radius of 300 km. Then, we divide this 

average wage level by the wage level in the catastrophe region and, finally, subtract one. 

Thus, our measure for prevalent wage differentials describes the relative average increase in 

the wage level between the center of the catastrophe region and adjacent regions, measured in 

units of the catastrophe affected region, and, therefore, is suitable to verify the Wage 

Differential Hypothesis (H4). 

To measure saturation effects and subsequently test our Saturation Hypothesis (H5) we 

include the relative wage change in the foregoing 18 months. In so doing we are convinced to 

capture the effect of preceding wage increases on wage surge. As preceding wage increases 

might be triggered by alternative catastrophes in the past, we choose a time period long 

enough to cover the initial price jump of a potential hurricane event in the preceding hurricane 

season. Otherwise it would be possible that we only capture the already high wage level and 

see no further wage increase. 

Information regarding insurance claims is provided by Property Claims Services (PCS). 

PCS is a unit of Insurance Services Office (ISO) and the only data provider for insured 

catastrophic losses in the United States. PCS provides information on the number of claims in 

different lines of business including personal and commercial. Moreover, their estimates are 

accepted as triggers in Cat Bonds. All of these data are available on the state level and are 

assigned to each observation in our sample which is reported either on the MSA or county 

level. To test our Insurance Hypothesis (H6) we calculate the sum of the number of claims in 

commercial and personal lines of business. 

Finally, we also include the distance in km between the catastrophe localization specified 

by SHELDUS and the assigned localization of economic variables as specified by Xactware. 

In the case that more than one catastrophe region of an event is mapped to the same Xactware 
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localization, we use the mean value of the calculated distances. Based on the assumption that 

the wage surge in the center of the catastrophe region as specified by SHELDUS should be 

more pronounced compared to adjacent regions, the effect of the mapping distance on wage 

surge should be negative. 

An overview together with a brief description of our explanatory variables is provided in 

Table 2. 

 

[Table 2] 

 

3.3 Empirical Strategy 

The aim of the upcoming empirical analyses in Section 4 is twofold. First, we want to 

determine influencing factors of the occurrence of a substantial wage surge. Second, given 

such an observation we want to quantify the magnitude of the effect. In order to estimate the 

occurrence of substantial wage surge, we first have to provide a formal definition what we 

mean by substantial. Next, we will describe our approach to categorize each observation in 

our sample. To this end, we calculate for each localization specified by Xactware (county or 

MSA) and each point in time the average and maximum wage surge for different time periods 

of T = 1, 2, and 3 years irrespective of whether a catastrophe occurred in any combination of 

space and time. On the one hand, the subset of observations with high wage increases is of 

particular importance. On the other hand, it is reasonable to assume that observations with 

small wage increases are disproportionally affected by noise resulting from measuring 

problems. These might be a direct result of the fact that the nationwide wage evolution is not 

a perfect proxy for the unobservable wage evolution in the no-catastrophe scenario as opposed 

to the assumption in the implementation of the difference in differences approach. Against 

this background, we will only further investigate observation with high wage increases. The 

necessary threshold to classify an observation to have a substantial wage surge is based upon 

the empirical distribution of our wage surge variables. Thus, in a second step, we calculate the 

mean μ and standard deviation σ for each empirical distribution of a wage surge measure. To 

this end, we include combinations of space and time that do not correspond to a catastrophe. 

In this case, a wage surge different from zero is due to measurement problems. We explicitly 

do not focus on non-catastrophic observations only because it is not clear which observations 

are completely non-catastrophic. As we assume that alternative catastrophes within a radius of 

300 km in a time period from up to 3 years before to 3 years after the event affect the wage 

evolution of the county or MSA under observation, almost all observations are at least 
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indirectly affected by a catastrophe. The respective statistical parameters can be found in 

Table 3. 

 

[Table 3] 

 

Finally, we define a wage surge of a given catastrophe region to be substantial if the 

respective wage surge is larger than μ + σ:13 

 wage surge

1, if wage surge  μ + σ;
1  = 

0, otherwise.





 (13) 

The first task is conducted with the help of a discrete choice model. To this end, we specify 

the probability of observing a substantial wage surge, given the set of covariates X described 

in Section 3.2, as our dependent variable: P(1wage surge = 1|X = x) = g(x’β). As a link function 

g(·) we use the logistic function g(z) = ez/(1+ez), i.e., we subsequently conduct a logit 

analysis. In this case, the estimation of the coefficient vector β is straightforward with 

maximum likelihood estimation. Based on the subset of observations with substantial wage 

surge, we additionally conduct a cross sectional regression analysis with robust standard 

errors to investigate the influence of the set of covariates X on the magnitude of wage surge. 

Thus, we use a specification of the form: wage surge = f(X). 

3.4 Descriptive Statistics 

Descriptive statistics of our dataset are provided in Tables 4 to 7. To provide an overview 

of the full sample which spans the time period 2002–2010, we report the distribution of 

catastrophes over years along with the type of catastrophe in Table 4. The number of 

observations is quite uniformly distributed across years except for the year 2008. While losses 

in this year were non extraordinary large, the number of events was the highest since 1998 

(Insurance Information Institute, 2009). In addition, Panel B shows the types of disaster which 

are in 77% of the cases storms and in 21% floods. Against this background, we will 

additionally split the sample in the upcoming empirical analyses into subsamples of storm and 

non-storm events. 

In Table 5 summary statistics are presented for each of our measures for wage surge. Panel 

A refers to the full sample of observations used in the upcoming logit analysis in Section 4.1. 

The mean wage surge varies between 0.4% and 0.8% and is highly right skewed. By 

                                                 
13 For all six wage surge measures the applied threshold μ + σ corresponds fairly close to the 90%-quantile of the 

respective wage surge distribution. 
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definition, the maximum wage surge is larger than the corresponding average wage surge. In 

Panel B the sample is restricted to observations with a substantial wage surge as defined in 

Section 3.3. This subsample is used in the following cross sectional regression analysis. 

Obviously the average wage surge is more pronounced in this case with values ranging from 

6.0% to 10.4%. Again, the distribution is right skewed. Finally, the mean values for the 

maximum wage surge increase from Panel A to B and now vary from 9.2% to 18.0%. 

Table 6 presents summary statistics for our set of explanatory variables. We included only 

observations with a damage value larger than the 80% quantile of the empirical damage 

distribution for the years 2002-2010. Thus, 9,009 out of originally 45,049 observations remain 

in the full sample. The distribution of our damage variable is right skewed with a mean value 

of 0.46 billion US-$, a median of 0.05 billion US-$, and a maximum of 71.51 billion US-$. 

Regarding subsequent and previous damages resulting from alternative catastrophes, we 

calculate direct damage values for time intervals of half a year up to 2 years before or after the 

considered event and choose a time interval of 1 year for the remaining time horizon of 2 to 3 

years before or after the event. The number of observations of subsequent damages in the time 

interval 2 to 3 years after a catastrophe differs from the rest as we excluded all observations in 

the year 2010 in this case. The reason is that our database of catastrophe events in the United 

States ends in 2012, and, therefore, we do not have the data available to calculate the 

subsequent damages for catastrophes occurring in 2010. Furthermore, nearly all observations 

sustain another catastrophe in a radius of 300 km during each of these time periods. 

Moreover, the variable GDP change is negative in more than 75% of the cases. This indicates 

that in most cases the economy has been in a recession and the construction sector possibly 

had idle capacities. A maximum wage change of 52.70% corresponds to the landfall of 

Hurricane Wilma in Melbourne (Florida) in October 2005. In this case, the current wage level 

is probably already highly driven by wage surge, as in the preceding 18 months Hurricanes 

Charley, Frances, and Jeanne occurred in Florida. The number of claims is only reported for 

storm events. This is due to the fact that damages due to floods in the United States are mainly 

insured by the National Flood Insurance Program (NFIP) and not by private companies. As a 

result insured damages to properties resulting from floods are not covered by PCS. Regarding 

the mapping distance, which measures the distance between the catastrophe localization and 

the localization of the assigned economic variables, we discover a mean value of 45.91 km. 

Thus, in most of the cases we can find a good matching. The maximum value of 629 km 

refers to a catastrophe event in Alaska. If we would exclude all catastrophe events in Alaska, 

the maximum would substantially decrease to 267 km. 
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Finally, Table 7 presents pairwise correlations between the economic variables and the 

average wage surge for the 2 year time period.14 Based on this univariate analysis, it can be 

noted that the correlation coefficients between almost all economic explanatory variables and 

the average wage surge have the expected sign based on the hypotheses in Section 2.4. The 

only exception in this regard is the positive correlation between wage change and the average 

wage surge that contradicts our Saturation Hypotheses (H5). Nevertheless, the coefficient is 

close to zero in this case and the wrong algebraic sign might result from an omitted variable 

bias. Thus, in the next section we will analyze, whether or not these findings do still hold in a 

multivariate setting. 

 

[Table 4] 

[Table 5] 

[Table 6] 

[Table 7] 

 

4 Results 

4.1 Under which Conditions do Catastrophes Lead to Wage Surge? 

Next, we will analyze which catastrophe specific and macroeconomic factors influence the 

occurrence of a substantial wage surge, i.e., we will test the hypotheses from Section 2.4. As 

already described in Section 3.3 a wage surge is defined to be substantial if its value lies at 

least one standard deviation above the mean wage surge of its empirical distribution. To 

exclude conceivably non catastrophic events, we only incorporated the 20% most devastating 

catastrophes in terms of direct damage during the time period 2002-2010. 

Table 8a provides a group comparison of observations with substantial versus non-

substantial wage surge. Results are provided for a group classification based on the average 

and maximum wage surge in a period of two years after the catastrophe. We report mean 

values for our set of explanatory variables for both groups together with the pairwise mean 

difference. Based on these results, we can confirm all of the hypotheses from Section 2.4 

except the Saturation Hypothesis (H5). All pairwise differences have the expected sign and 

are highly statistically significant. An exception in this respect is only the variable wage 

change, which measures wage increases in a period of 18 months prior to the catastrophe. In 

                                                 
14 The pairwise correlations regarding the maximum wage surge for the 2 year time period are comparable to the 

average wage surge. Details are available upon request. 
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both settings the group of observations with substantial wage surge exhibit a higher preceding 

wage increase which contradicts our Saturation Hypothesis (H5). 

 

[Table 8a] 

 

In addition, Table 8b provides results for the logit analysis based on the remaining 7,688 

observations. Results for the average wage surge in a 2-year period after the catastrophe are 

provided in columns (A.1) to (A.3) and results for the corresponding maximum can be found 

in the following three columns (A.4) to (A.6). In addition, we investigate three different 

samples for each measure of wage surge: the full sample of observations (columns (A.1) and 

(A.4)), the subset of storm events (columns (A.2) and (A.5)), and the subsample of non-storm 

events only (columns (A.3) and (A.6)). 

 

[Table 8b] 

 

First, we will focus on the results for the average wage surge. Regarding the influence of 

damage we observe a statistically significant positive effect. This effect is particularly high 

for the subsample of non-storm events. If the damage increases by one standard deviation 

from µ  0.5·σ to µ + 0.5·σ, the probability of observing a substantial wage surge increases by 

13.5%.15 

Both of our variables describing the state of the economy in the construction sector, GDP 

change and GDP per worker, are significant on the full sample and the subsample of storm 

events. Thus, both, a growing economy and a predominant higher workload in the 

construction sector have the hypothesized impact on the occurrence of substantial wage surge. 

However, for non-storm events the coefficients have the expected sign but the results are not 

significant. Therefore, we can confirm our Growth Hypothesis (H1) and Workload Hypothesis 

(H2) for the full sample and the subsample of storm events. 

In contrast, an increase of the unemployment rate by one standard deviation dampens the 

probability of substantial wage increases by 1% - 3% depending on the sample. Moreover, 

this effect is statistically significant which confirms our Unemployment Hypothesis (H3). 

To test our Wage Differential Hypothesis (H4) we include the variable wage differential. 

We find that the coefficient is indeed positive and highly statistically significant. If wage 

                                                 
15 In the following, the impact of changing the explanatory variable by one standard deviation always refers to an 

increase of the considered variable from µ  0.5·σ to µ + 0.5·σ, and the other variables are at their means. 
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differentials increase by one standard deviation the probability of a substantial wage surge 

rises by around 3%. To measure saturation effects we include the variable wage change, 

which measures the relative wage increase in the preceding period of 18 months prior to the 

catastrophe. This effect is negative for all samples. Nonetheless, the effect is only significant 

for the subsample of non-storm events. Thus, we find only weak evidence for the Saturation 

Hypothesis (H5) based on the logit analysis. 

As information regarding insured losses and the associated number of claims is only 

available for storm events, the variable number of claims is only contained in columns (A.2) 

and (A.5). Nonetheless, the number of claims has a significant positive effect on the 

probability of observing wage increases. Thus, the Insurance Hypothesis (H6) can be 

confirmed. It should be noticed that we observe this effect for a given damage, so that the 

coefficient of the number of claims does not reflect the indirect impact of a high damage. This 

result rather suggests a higher chance that insurance claims are settled if the total number of 

claims is high. This might be due to one of the two following reasons. On the one hand, the 

process of damage assessment might deteriorate due to pressure on insurance companies to 

settle claims quickly. On the other hand, the claims settlement behavior of insurers is 

observed in detail by insured and media in case of tail events, like natural catastrophes. A 

potential classification of insurers could have significant impact on future premium income, 

so that insurers might relax their claims settlement process, and, consequently, settle claims 

that are not attributable to the catastrophe itself. 

When focusing on the analyses of the maximum wage surge, it can be noticed that for the 

subset of non-storm events the number of observations is lower compared to the number of 

observations for the average wage surge in column (A.3). This is due to the fact that none of 

the observations in 2009 have a substantial wage surge and this is fully captured by year fixed 

effects. 

In summary, the results between the average and maximum wage surge vary only slightly 

in terms of absolute size and statistical significance. For example, the adjusted McFadden R2 

is quite similar with values ranging from 17.3% to 21.2% across all specifications. 

Furthermore, our results support the hypotheses H3, H4, and H6. Though, hypotheses H1 and 

H2 are confirmed for the full sample and the subsample of storm events, and hypothesis H5 

can be confirmed for the set of non-storm events. 

4.2 What are the Determinants for the Magnitude of Wage Surge? 

Next, we analyze the influence of our set of explanatory variables on the magnitude of 

wage surge. For this purpose, we consider the subset of observations with a substantial wage 
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surge. Thus, we exclude all observations with wage surge being less than µ + σ. We analyze 

the impact of influencing factors using OLS regressions with robust standard errors. Again, in 

Table 9, columns (B.1) to (B.3) refer to the average wage surge in a time horizon of two years 

after the catastrophe, whereas columns (B.4) to (B.6) refer to the maximum wage surge. 

Moreover, we analyze three different samples: the full sample (columns (B.1) and (B.4)), the 

subset of storm observations (columns (B.2) and (B.5)), and the subset of non-storm 

observations only (columns (B.3) and (B.6)). 

 

[Table 9] 

 

First, we have a look at columns (B.1) to (B.3) which refer to the average wage surge in a 

time period of two years after the catastrophe. We find in each setting a concave relationship 

between our damage variable and the wage surge as the damage variable is positive and the 

damage squared is negative, with both coefficients being highly significant. Therefore, 

increasing damages lead to higher wage surge but the slope decreases as damages become 

even larger. 

The effect of the state of the economy in the construction sector on wage surge is highly 

significant for the full sample and the subset of storm events. In addition, this effect is quite 

substantial. A one percentage point increase in the GDP of the construction sector in the 

preceding year leads to a 0.12 respectively 0.13 percentage point increase in wage surge. 

Thus, the wage surge is more pronounced if the economy is in a growth stage and the 

construction sector probably has less idle capacities. Hence, our Growth Hypothesis (H1) is 

confirmed. 

In line with this finding, we find the effect of the workload in the construction sector 

indeed to be positive. A one standard deviation increase of the GDP per worker leads to a 0.7 

to 0.9 percentage point increase in wage surge, and, therefore, acknowledges our Workload 

Hypothesis (H2). 

To test our Unemployment Hypothesis (H3), we include the overall regional unemployment 

rate immediately before the occurrence of the catastrophe in our analyses. The negative effect 

on wage increases can be confirmed for the full sample and the subset of non-storm events. 

Hence, in these cases the additional labor demand can at least partially satisfied by 

unemployed which dampens catastrophe induced wage increases. 
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In contrast, the effect of predominant wage differentials is significant for all samples. A ten 

percentage points more pronounced wage differential leads to a 0.65 to 0.96 percentage point 

increase in the average wage surge. This confirms our Wage Differential Hypothesis (H4). 

In Section 2.4 we argued that there could be saturation effects due to wage increases in the 

preceding period of 18 months. We find that this effect is only significant for the full sample 

with respect to the average wage surge, which is in line with our Saturation Hypothesis (H5). 

However, for all other settings the effect is insignificant. 

The effect of the number of insurance claims on wage surge is insignificant in all settings, 

so we cannot confirm the Insurance Hypothesis (H6). 

If we analyze the maximum wage surge presented in columns (B.4) to (B.6), we find that 

most of the effects are quite similar with respect to the significance of the regression 

coefficients of our explanatory variables. Though, in most of the cases the absolute size of the 

coefficients is larger for the maximum wage surge. Nevertheless, there are some differences. 

The effect of preceding wage changes is insignificant in every setting for the maximum wage 

surge. In line with this finding, a higher unemployment rate has no significant restraining 

effect on wage surge too, irrespective of the considered sample. In contrast, the effect of 

predominant wage differentials is more pronounced. A ten percentage point increase in our 

wage differential measure leads to a 1.03 to 1.07 percentage points increase in wage surge. 

In summary, no huge differences between the samples and wage surge measures (average 

versus maximum) can be observed. Moreover, the adjusted R2 of up to 71% shows that most 

of the variation in our wage surge measures can be explained by the set of explanatory 

variables. Finally, our results support the hypotheses H1, H2, and H4, whereas hypothesis H3 

and H5 can only be confirmed for the average wage surge. Finally, our Insurance Hypothesis 

(H6) cannot be confirmed for both wage surge measures. This leads to the conclusion that the 

number of insurance claims can only help to explain the occurrence of a substantial wage 

surge but not its magnitude. 

4.3 Robustness Checks 

In Sections (4.1) and (4.2) we analyzed the effect of catastrophe specific and 

macroeconomic variables on the average and maximum wage surge in the following time 

period of two years. As already stated in Section 3.1, we believe that a time period of two 

years is reasonable, but as a robustness check we will also provide analyses for the average 

and maximum wage surge in time periods of one and three years after a catastrophe for the 

full sample of observations. For example, Gron (1994) finds that approximately 95% of 

homeowners’ claims in the United States are paid within 3 years. Thus, at least all insured 
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damages to properties should be repaired within a time horizon of 3 years. Against this 

background, we assume that a time horizon of 3 years is a good choice for an upper bound. In 

this case, one additional year is required to calculate our endogenous variable. As a 

consequence the number of observations is reduced to 6,810 instead of 7,688 for the 2-year 

period in the logit analysis. For the same reason, the sample increases to 8,788 when 

analyzing the 1-year wage surge. Table 10 provides an overview of the results regarding the 

average wage surge. 

 

[Table 10] 

 

First, according to columns (C.1) and (C.2), we observe that the effect of damage is 

decreasing with the time horizon used to measure the wage surge, i.e., a one standard 

deviation increase in our damage variable leads to a positive change in the probability of 

observing a substantial wage surge, but with increasing values of T this effect decreases from 

5.7% (T = 1) to 2.0% (T = 2) and finally 1.6% (T = 3). An opposite effect can be noticed 

regarding the influence of predominant wage differentials. In this case, the change in 

probability for a one standard deviation increase in wage differentials is more pronounced for 

longer time horizons. This time the probability of a substantial wage surge increases from 

1.9% to 3.5% and finally reaches a value of 4.7% for the 3-year time horizon. 

Regarding the analysis of the magnitude of the average wage surge most effects are similar 

to the results for the average wage surge for the full sample reported in Table 9. One minor 

difference is that the influence of a rising economy and prevalent wage differentials in the 

construction sector are highly significantly positive in all settings, but the economic effect is 

more pronounced for the 3-year time period. Furthermore, the effect of preceding wage 

increases on the average wage surge is insignificant in the 3-year time period. Finally, the 

adjusted R2 is increasing with the time horizon used to measure the average wage surge. The 

lowest value can be observed for the 1 year setting (48%) and the highest for the 3 year 

setting (67%). 

 

In line with the procedure for the average wage surge, we present the same analyses for the 

maximum wage surge in time periods of one and three years after the catastrophes in Table 

11. 

 

[Table 11] 
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Regarding the results of the logit analyses, which are presented in columns (D.1) and 

(D.2), it can be stated that the findings for the maximum wage surge are similar to the ones 

for the average wage surge. Again, the effect of damage on wage surge is the highest for the 

1-year time period. In contrast, the effect of prevalent wage differentials on the probability of 

observing a substantial wage surge is more pronounced for the 3-year time period. Lastly, the 

adjusted McFadden R2 increases from 20.3% (T = 1) to 21.2% (T = 2) and finally reaches a 

value of 28.1% (T = 3). 

The results regarding the influence of catastrophe specific and macroeconomic factors on 

the magnitude of the maximum wage surge are provided in columns (D.3) and (D.4). In 

comparison with the full model for the 2-year time period in Table 9, most results are 

comparable. The relationship between damage and the maximum wage surge is concave for 

all considered time horizons. Furthermore, the effect of the unemployment rate is insignificant 

in all settings. In line with the findings for the average wage surge the positive effect of 

prevalent wage differentials is increasing with the time horizon T used for the calculation of 

the maximum wage surge. The effect of a percentage point increase in the measured wage 

differential increases from 0.07 percentage points (T = 1) to 0.10 percentage points (T = 2) 

and finally reaches a value of 0.20 percentage points (T = 3). The opposite effect can be 

observed regarding the prevailing workload in the construction sector. Last but not least, the 

effect of wage increases in the preceding period of 18 months prior to the catastrophe is only 

significantly negative for the 1-year time horizon. 

 

5 Conclusions and Implications 

In this paper we provide an analysis of increasing wages of skilled reconstruction labor in 

the aftermath of natural catastrophes in the United States. Our contribution is twofold. First, 

we identify catastrophe specific and macroeconomic conditions that lead to a substantial wage 

surge. Second, given this subset of observations with a substantial wage surge we quantify its 

magnitude and determinants. We believe that our results are beneficial for several market 

participants, including governments, insurance companies and their investors, building 

contractors, as well as issuers and investors of catastrophe linked securities, like, e.g., Cat 

Bonds. According to the results of our empirical analyses, almost all factors influencing the 

occurrence of a substantial wage surge are also able to quantify the magnitude. The results for 

the hypotheses analyzed in this work are summarized in Table 12. To be more specific, we 

identify a positive relationship between the GDP of the construction sector and wage surge. 
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An increase of one percentage point in GDP prior to the catastrophe leads to a 0.12 percentage 

point increase in wage surge. In line with this finding, a higher workload in the construction 

sector pushes wages upward, too. A restraining effect can be observed for regions with higher 

unemployment rates. Thus, it seems that at least part of the additional labor demand can be 

satisfied by unemployed. In contrast, prevalent regional wage differentials have the opposite 

effect. In concrete terms, a ten percentage point more pronounced wage differential leads to a 

0.7 percentage point increase in the average wage surge. Moreover, preceding wage increases 

in a time period of 18 months prior to the catastrophe event dampen further wage increases 

due to saturation effects. In contrast, a higher number of insurance claims per event only 

influences the probability of occurrence of a substantial wage surge but is not able to describe 

its magnitude. All of our results are confirmed by several robustness checks. Moreover, the 

adjusted R2 with values up to 71% shows that our considered economic mechanisms are able 

to explain the variation in wage surge to large extent. To sum up, our models are able to 

identify and quantify significant wage increases in the aftermath of natural disasters. 

 

[Table 12] 
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Table 1: Composition of the retail labor index 

Composition  

Carpenter – Finish, Trim/Cabinet Heating/A.C. Mechanic 

Carpenter – General Framer Insulation Installer 

Carpenter – Mechanic General Laborer 

Cleaning Technician Mason Brick/Stone 

Floor Cleaning Technician Plasterer 

Concrete Mason Plumber 

Drywall Installer/Finisher Painter 

Electrician Roofer 

Equipment Operator Tile/Cultured Marble Installer 

Flooring Installer  
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Table 2: Description of explanatory variables 

Variable Definition 

Damage Direct damage of the catastrophe region (in US-$ billion). 

Damage2 Squared direct damage of the catastrophe region (in US-$ billion). 

Subsequent damage (a; b] Direct damage of subsequent catastrophes in the same region that occurred in 
temporal proximity (in US-$ billion); (a, b] denominates the time period in 
years with respect to the considered event. 

Previous damage [a; b) Direct damage of previous catastrophes in the same region that occurred in 
temporal proximity (in US-$ billion); [a, b) denominates the time period in 
years with respect to the considered event. 

GDP change Real GDP growth of the construction sector in the affected MSA/state (in %). 

GDP per worker Real GDP per employee in the construction sector in the affected MSA/state 
(in thousands). 

Unemployment rate Unemployment rate in the affected county/MSA (in %). 

Wage differential Wage differential between the surrounding regions and the center of the 
catastrophe (in % of the wage level of the center). 

Wage change Relative change of wage in the construction sector during the 18 months 
before the catastrophe (in %). 

Number of claims Number of insurance claims (in thousands). 

Mapping distance Distance between the catastrophe (data from SHELDUS) and the assigned 
localization of economic variables (data from Xactware) (in km). 
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Table 3: Distribution of wage surge 

The table shows mean and standard deviation of the average and maximum wage surge measures for different 

time horizons. The calculation is based on each possible combination of Xactware localization and point in time 

irrespective of whether a catastrophe occurred or not. 

 
Mean Std. Dev. Obs. 

Average wage surge: 1 year (in %) 0.0427 2.1027 58,906 

Average wage surge: 2 years (in %) 0.0964 3.2380 53,746 

Average wage surge: 3 years (in %) 0.1596 4.2656 48,586 

Maximum wage surge: 1 year (in %) 1.4833 2.8062 58,906 

Maximum wage surge: 2 years (in %) 2.6142 4.4516 53,746 

Maximum wage surge: 3 years (in %) 3.6980 5.9492 48,586 
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Table 4: Summary statistics - composition of the data set 

Obs. Percentage 

Panel A: Year 

 2002 810 8.99 

 2003 1,225 13.60 

 2004 970 10.77 

 2005 824 9.15 

 2006 957 10.62 

 2007 748 8.30 

 2008 1,438 15.96 

 2009 1,081 12.00 

 2010 956 10.61 

Panel B: Type of disaster   

 Flood 1,879 20.86 

 Storm 6,973 77.40 

 Wildfire 80 0.89 

 Others 77 0.85 
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Table 5: Summary statistics – Wage surge 

The table shows descriptive statistics of the average and maximum wage surge for different time periods after 

the catastrophes. In Panel A, data for the set of catastrophe events with damage values above the corresponding 

80%-quantile of the empirical damage distribution is reported. Panel B focuses on the subset of catastrophe 

events with a substantial wage surge, i.e., a wage surge lying at least one standard deviation above the mean 

wage surge. 

 
Obs. Mean Std. Dev. Min. q25 q50 q75 Max. 

Panel A: Wage surge (in %) 

Avg. wage surge: 1 year 9,009 0.4108 3.110 -6.914 -0.8896 -0.1708 0.8297 40.03 

Avg. wage surge: 2 years 8,053 0.5690 4.171 -9.557 -1.453 -0.1304 1.448 44.74 

Avg. wage surge: 3 years 6,972 0.8284 5.117 -11.47 -2.001 -0.0473 2.300 46.14 

Max. wage surge: 1 year 9,009 1.775 3.714 0 0 0.5363 2.009 50.05 

Max. wage surge: 2 years 8,053 3.146 5.221 0 0.0035 1.442 3.891 50.05 

Max. wage surge: 3 years 6,972 4.408 6.509 0 0.1991 2.290 5.684 63.34 

Panel B: Substantial wage surge (in %) 

Avg. wage surge: 1 year 1,075 6.029 5.940 2.159 2.853 3.882 6.016 40.03 

Avg. wage surge: 2 years 1,047 7.997 6.861 3.342 4.099 5.501 8.306 44.74 

Avg. wage surge: 3 years 891 10.36 7.486 4.453 5.907 7.707 11.43 46.14 

Max. wage surge: 1 year 1,033 9.156 7.084 4.300 5.164 6.676 9.553 50.05 

Max. wage surge: 2 years 1,018 13.63 8.184 7.076 8.565 10.17 15.57 50.05 

Max. wage surge: 3 years 877 17.97 8.932 9.657 11.39 15.07 20.74 63.34 
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Table 6: Summary statistics – Wage surge drivers 

The sample comprises 9,009 catastrophe events with a damage value above the corresponding 80%-quantile of 

the empirical damage distribution. The table shows descriptive statistics of our set of independent variables, 

which is defined in Table 2. 

 Obs. Mean Std. Dev. Min. q25 q50 q75 Max. 

Damage (US-$ billions) 9,009 0.4584 3.514 0.0122 0.0222 0.0525 0.1438 71.51 

Subsequent damage (0; 0.5] 9,009 0.6170 4.679 0 0.0262 0.0737 0.2434 76.24 

Subsequent damage (0.5; 1] 9,009 0.5792 4.537 0 0.0224 0.0715 0.2195 76.31 

Subsequent damage (1; 1.5] 9,009 0.4301 1.324 0 0.0262 0.0783 0.2729 15.63 

Subsequent damage (1.5; 2] 9,009 0.3761 2.437 0 0.0195 0.0591 0.1911 74.67 

Subsequent damage (2; 3] 8,053 1.727 8.395 0 0.0976 0.2797 0.6842 76.39 

Previous damage [0.5; 0) 9,009 0.4837 3.469 0 0.0208 0.0637 0.1964 73.23 

Previous damage [1; 0.5) 9,009 0.3973 2.474 0 0.0234 0.0689 0.2363 73.21 

Previous damage [1.5; 1) 9,009 0.5908 4.212 0 0.0228 0.0741 0.2064 76.31 

Previous damage [2; 1.5) 9,009 0.2165 1.168 0 0.0210 0.0582 0.1736 72.09 

Previous damage [3; 2) 9,009 0.7768 2.989 0.0001 0.0868 0.1911 0.4724 72.92 

GDP change (in %) 9,009 -4.372 6.902 -40.92 -8.108 -4.035 -0.6329 30.82 

GDP per worker (thousands) 9,002 76.12 14.44 45.26 64.81 74.57 84.85 140.9 

Unemployment rate (in %) 9,009 5.978 2.201 1.6 4.5 5.5 6.9 24.9 

Wage differential (in %) 8,809 0.6984 6.516 -27.94 -3.939 0.6986 5.014 28.75 

Wage change (in %) 8,992 7.795 5.933 -6.518 4.028 6.755 10.36 52.70 

Number of claims (thousands) 6,973 1.813 11.55 0 0 0.0060 0.2820 372.6 

Mapping distance (km) 9,009 45.91 29.45 0 27.99 42.35 59.60 629.0 
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Table 8a: Group comparison of substantial and non-substantial wage surge 

The table reports the mean differences between the groups of substantial and non-substantial wage surge for 

several explanatory variables. In any setting the wage surge is calculated in a period of two years after the 

catastrophe. The other variables are defined in Table 2. We report t-statistics in parentheses. The symbols †, *, 

**, *** indicate statistical significance at the 10%, 5%, 1%, and 0.1% level, respectively. 

 
  Average Wage Surge  Maximum Wage Surge 
  Mean 

(substantial) 
Mean 

(non-substantial) 
Pairwise

difference 
 Mean 

(substantial) 
Mean 

(non-substantial) 
Pairwise

difference 
Damage  2.057 0.2700 1.787***  1.724 0.3242 1.400*** 
    (14.41)    (11.13) 
GDP change  -1.342 -3.570 2.228***  -1.803 -3.496 1.693*** 
    (11.13)    (8.36) 
GDP per worker  81.03 76.40 4.626***  82.16 76.25 5.916*** 
    (9.64)    (12.29) 
Unemployment rate  5.202 5.697 -0.4949***  5.150 5.703 -0.553*** 
    (-7.91)    (-8.77) 
Wage differential  2.495 0.4661 2.029***  2.278 0.5067 1.771*** 
    (9.41)    (8.09) 
Wage change  9.122 8.591 0.5309**  8.940 8.620 0.321† 
    (2.80)    (1.68) 
Number of claims  6.538 1.239 5.299***  5.453 1.397 4.056*** 
    (11.51)    (8.74) 
Mapping distance  44.06 46.12 -2.059*  43.38 46.22 -2.832** 
    (-2.12)    (-2.89) 
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Table 8b: Wage surge for different samples – logit model 

The table reports results of logistic regressions regarding influencing factors of the occurrence of a substantial 

wage surge. Wage surge is computed as the average/maximum increase of the retail labor index in a 2-year 

period after the catastrophe and the effect is assumed to be substantial if its value lies at least one standard 

deviation above the mean value of the empirical wage surge distribution. The other variables are defined in 

Table 2. We report z-values in parentheses. The symbols †, *, **, *** indicate statistical significance at the 10%, 

5%, 1%, and 0.1% level, respectively. 

 
  Average Wage Surge (2 years)  Maximum Wage Surge (2 years) 
  Full Storm Non-Storm  Full Storm Non-Storm 
  (A.1) (A.2) (A.3)  (A.4) (A.5) (A.6) 
Damage  0.0657*** 0.0402*** 0.3027***  0.0464*** 0.0319*** 0.0544** 
  (4.81) (3.62) (3.96)  (6.02) (3.42) (3.16) 
GDP change  0.0253*** 0.0313*** 0.0118  0.0114† 0.0142† 0.0067 
  (3.76) (3.85) (0.97)  (1.67) (1.70) (0.56) 
GDP per worker  0.0172*** 0.0209*** 0.0015  0.0157*** 0.0172*** 0.0073 
  (5.42) (5.62) (0.25)  (4.77) (4.43) (1.11) 
Unemployment rate  -0.1053*** -0.0922** -0.1347*  -0.1638*** -0.1457*** -0.2176*** 
  (-3.79) (-2.85) (-2.56)  (-5.48) (-4.18) (-3.86) 
Wage differential  0.0666*** 0.0710*** 0.0498***  0.0626*** 0.0608*** 0.0626*** 
  (10.26) (9.18) (3.92)  (9.17) (7.47) (4.68) 
Wage change  -0.0114 -0.0141 -0.0501*  -0.0097 -0.0169 -0.0111 
  (-1.38) (-1.44) (-2.37)  (-1.08) (-1.62) (-0.50) 
Number of claims   0.0166***    0.0105**  
   (3.74)    (2.93)  
Mapping distance  -0.0001 0.0028† -0.0081*  -0.0019 -0.0006 -0.0046 
  (-0.07) (1.66) (-2.43)  (-1.19) (-0.32) (-1.36) 
Constant  -3.1916*** -3.8585*** -0.4073  -2.4990*** -2.7276*** -1.2979 
  (-8.53) (-8.79) (-0.55)  (-6.50) (-6.19) (-1.60) 
Prev. and subs. damages  yes yes yes  yes yes yes 
Year fixed effects  yes yes yes  yes yes yes 
Observations  7,688 5,974 1,714  7,688 5,974 1,482 
Adj. McFadden R2  0.188 0.192 0.207  0.212 0.212 0.173 
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Table 9: Wage surge for different samples – OLS model 

The table reports results of OLS regressions regarding influencing factors of the average and maximum wage 

surge. The data set comprises catastrophe events with a wage surge of at least one standard deviation above the 

mean value of the empirical wage surge distribution. Wage surge is computed as the average/maximum increase 

of the retail labor index in a 2-year period after the catastrophe. The other variables are defined in Table 2. We 

report t-statistics in parentheses. The symbols †, *, **, *** indicate statistical significance at the 10%, 5%, 1%, 

and 0.1% level, respectively. 

 
  Average Wage Surge (2 years)  Maximum Wage Surge (2 years) 
  Full Storm Non-Storm  Full Storm Non-Storm 
  (B.1) (B.2) (B.3)  (B.4) (B.5) (B.6) 
Damage  1.0537*** 1.0366*** 0.8337*  1.3519*** 1.2739*** 1.2603** 
  (6.69) (5.82) (2.37)  (8.33) (7.09) (2.96) 
Damage2  -0.0149*** -0.0151*** -0.0115*  -0.0191*** -0.0183*** -0.0177** 
  (-6.69) (-6.07) (-2.29)  (-8.09) (-7.03) (-2.85) 
GDP change  0.1161** 0.1346*** 0.0972  0.1484*** 0.1444*** 0.1746* 
  (3.28) (3.53) (1.21)  (4.88) (4.57) (2.09) 
GDP per worker  0.0582*** 0.0514*** 0.0613**  0.0648*** 0.0649*** 0.0532* 
  (5.69) (4.26) (2.87)  (5.80) (4.94) (2.30) 
Unemployment rate  -0.2061† -0.0983 -0.6307*  -0.0830 -0.0152 -0.4178 
  (-1.68) (-0.73) (-2.51)  (-0.59) (-0.10) (-1.30) 
Wage differential  0.0712*** 0.0649** 0.0960*  0.1031*** 0.1070*** 0.1039* 
  (3.93) (3.20) (2.22)  (4.99) (4.53) (2.14) 
Wage change  -0.0598† -0.0630 -0.0098  -0.0278 -0.0402 0.0178 
  (-1.69) (-1.53) (-0.14)  (-0.74) (-0.90) (0.22) 
Number of claims   0.0102    0.0088  
   (1.21)    (0.95)  
Mapping distance  -0.0073 -0.0055 -0.0154  -0.0031 -0.0042 -0.0062 
  (-1.57) (-1.12) (-1.29)  (-0.57) (-0.68) (-0.52) 
Constant  2.9557* 2.8897* 5.0112†  5.4189*** 5.2655*** 7.6541** 
  (2.43) (2.14) (1.83)  (4.11) (3.55) (2.65) 
Prev. and subs. damages  yes yes yes  yes yes yes 
Year fixed effects  yes yes yes  yes yes yes 
Observations  1,006 740 266  978 724 254 
Adj. R2  0.621 0.672 0.444  0.676 0.710 0.547 
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Table 10: Average wage surge for alternative specifications 

The table reports results of logistic and OLS regressions regarding influencing factors of the average wage surge 

in a period of 1 year after the catastrophe (models (C.1) and (C.3)) and a period of 3 years after the catastrophe 

(models (C.2) and (C.4)). The other variables are defined in Table 2. We report z-values/t-statistics in 

parentheses. The symbols †, *, **, *** indicate statistical significance at the 10%, 5%, 1%, and 0.1% level, 

respectively. 

 
  Logit  OLS 
  1 year 3 years  1 year 3 years 
  (C.1) (C.2)  (C.3) (C.4) 
Damage  0.2046*** 0.0519***  1.0802*** 1.2451*** 
  (3.58) (6.90)  (8.65) (8.31) 
Damage2     -0.0149*** -0.0175*** 
     (-8.45) (-7.98) 
GDP change  0.0254*** 0.0391***  0.0965** 0.1597*** 
  (4.25) (5.27)  (2.79) (4.26) 
GDP per worker  0.0070* 0.0213***  0.0847*** 0.0519*** 
  (2.21) (5.73)  (7.57) (4.71) 
Unemployment rate  -0.0533* -0.2001***  -0.1677 -0.0576 
  (-2.24) (-5.65)  (-1.48) (-0.45) 
Wage differential  0.0369*** 0.0944***  0.0701*** 0.0989*** 
  (5.87) (12.99)  (3.57) (5.22) 
Wage change  -0.0075 -0.0138  -0.1691*** -0.0452 
  (-0.96) (-1.52)  (-6.21) (-1.08) 
Mapping distance  0.0002 -0.0009  -0.0236*** -0.0042 
  (0.13) (-0.56)  (-4.89) (-0.78) 
Constant  -2.5473*** -3.3131***  1.0345 4.6698*** 
  (-7.10) (-7.73)  (0.91) (3.45) 
Prev. and subs. damages  yes yes  yes yes 
Year fixed effects  yes yes  yes yes 
Observations  8,788 6,810  1,055 872 
Adj. McFadden R2 / Adj. R2  0.195 0.236  0.475 0.671 
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Table 11: Maximum wage surge for alternative specifications 

The table reports results of logistic and OLS regressions regarding influencing factors of the maximum wage 

surge in a period of 1 year after the catastrophe (models (D.1) and (D.3)) and a period of 3 years after the 

catastrophe (models (D.2) and (D.4)). The other variables are defined in Table 2. We report z-values/t-statistics 

in parentheses. The symbols †, *, **, *** indicate statistical significance at the 10%, 5%, 1%, and 0.1% level, 

respectively. 

 
  Logit  OLS 
  1 year 3 years  1 year 3 years 
  (D.1) (D.2)  (D.3) (D.4) 
Damage  0.1242* 0.0469***  1.2805*** 1.0591*** 
  (2.03) (6.49)  (7.96) (6.52) 
Damage2     -0.0178*** -0.0149*** 
     (-7.81) (-6.21) 
GDP change  0.0223*** 0.0302***  0.1715*** 0.2014*** 
  (3.39) (3.69)  (4.11) (5.53) 
GDP per worker  0.0148*** 0.0219***  0.0757*** 0.0574*** 
  (4.54) (5.62)  (5.59) (4.96) 
Unemployment rate  -0.0172 -0.1472***  -0.2117 -0.0476 
  (-0.71) (-4.25)  (-1.50) (-0.40) 
Wage differential  0.0563*** 0.0853***  0.0734** 0.2042*** 
  (8.71) (11.28)  (3.15) (7.30) 
Wage change  0.0011 -0.0097  -0.1659*** -0.0794 
  (0.13) (-1.02)  (-4.68) (-1.44) 
Mapping distance  -0.0005 -0.0002  -0.0247*** -0.0010 
  (-0.35) (-0.11)  (-4.29) (-0.15) 
Constant  -3.4725*** -2.6845***  4.6496** 10.3543*** 
  (-9.53) (-5.96)  (3.22) (7.62) 
Prev. and subs. damages  yes yes  yes yes 
Year fixed effects  yes yes  yes yes 
Observations  8,788 6,810  1,010 864 
Adj. McFadden R2 / Adj. R2  0.203 0.281  0.453 0.666 
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Table 12: Summary of results 

This table summarizes the hypotheses and results regarding the positive or negative dependence of wage surge. 

 

Hypothesis Variable Expected sign 
Results 

Occurrence Magnitude 
H1: Growth hypothesis GDP change + () 
H2: Workload hypothesis GDP per worker +  
H3: Unemployment hypothesis Unemployment rate   () 
H4: Wage differential hypothesis Wage differential +  
H5: Saturation hypothesis Wage change  () () 
H6: Insurance hypothesis Number of claims +   
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Figure 1: Wage Surge Measurement 

In this figure our measurement of wage surge is depicted. We compute the percentage increase of the retail labor 

price index in West Palm Beach (pcat) and the entire US (pno-cat) starting directly before the landfall of Hurricane 

Frances in West Palm Beach in Q3 2004. In a second step, we calculate the difference between both time series 

of percentage increases according to Equation (10). Finally, we calculate the average/maximum value over 

differing time periods of 1, 2, and 3 years. 
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Appendix: Proof of inequality (6) 

On one hand, x(t) and p(t) are assumed to be non-negatively correlated for each point in 

time t, i.e.: 

 
     t t

E x(t) p(t) E x(t)
E p(t)

(1 r) (1 r)

   
   

 
 for all t  {1, …, T}. (14) 

On the other hand,  tE x(t) / (1 r)   and  E p(t)   are assumed to be non-negatively 

correlated over time implying 

    
T T T

t t
t 1 t 1 t 1

1 x(t) 1 x(t) 1
E E p(t) E E p(t) .

T (1 r) T (1 r) T  

   
                  
    (15) 

On the basis of (4) the inequalities (14) and (15) imply that a lower bound can be determined 

as follows: 

 

 

 

T T

t
t 1 t 1

T

t 1

x(t) 1
V( P(1, T) | ) E E p(t)

(1 r) T

1
E p(t)

V( P(1,T) | ) T
.

V(P(0) | ) p(0)

 



 
         

  
 

 


 


 (16) 

 

Using the abbreviation max
t {0,...,T}

p max p(t)


    leads to 

 
 

T T

maxt t
t 1 t 1

T T
maxmax

t t
t 1 t 1

x(t) x(t)
V( P(1,T) | ) E p(t) E p

(1 r) (1 r)

E ppx(t) p(0) x(t) p(0)
E .

(1 r) p(0) (1 r) p(0)

 

 

   
              

   
       

 

 
 (17) 

The latter equality results from the assumption 
T t

t 1
x(t) p(0) / (1 r)


   . Because against 

this background we also get 
T t

t 1
V(P(0) | ) x(t) p(0) / (1 r)


    , (17) is equivalent to 

 
 maxE pV( P(1,T) | )

,
V(P(0) | ) p(0)

  



 (18) 

which provides an upper bound and completes the proof. 


