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Abstract

Dynastic models have long provided a framework for the study of equilibria with intergenerational transfers,

social mobility, and inequality. However with a few exceptions, there has been very little work on the estimations

of these models. With the advent of data sets like the PSID that tracks households over more than one generation

estimation of these models are now feasible. This paper explores the estimation of a class of life-cycle discrete

choice intergenerational models. It proposes a new semiparametric estimation technique that circumvents the

need for full solution of the dynamic programming problem. As is standard in this class of estimators, we

show that it is
√

N consistent and asymptotically normally distributed. We compare our estimator to a modified

version of the full solution maximum likelihood estimator in a Monte Carlo study. Our estimator performs

comparable to ML in finite sample but greatly reduces the computational cost. To demonstrate the applicability

of the estimator, a dynastic model of intergenerational transmission of human capital with unitary households is

estimated. (Preliminary and Incomplete)
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1 Introduction

The importance of parents’ altruism toward their children and children’s altruism towards their parents has long

been recognized as an important factor underlying economic behavior of individuals. Economic models that in-

corporate these intergenerational links are normally referred to as dynastic models. Many important economic

behavior and hence the welfare effect of many public policies critically depend on whether these intergenerational

links are explicitly modeled. For example, several papers have documented that the distribution of wealth is more

concentrated than that of the labor earnings and that it is characterized by a smaller of fraction of households

owning a larger fraction of total wealth over time. There are different models of intergenerational transfers ex-

plaining persistence in wealth and income across generations (for example, Loury 1981 model of transmission

of human capital and Laitner 1992 model of bequests) however, in these models fertility is exogenous. Becker

and Barro (1988) Barro and Becker (1989) develop dynastic models with endogenous fertility, however, in their

model endogenizing fertility leads to lack of persistence in earnings and wealth because wealthier households have

more children and therefore intergenerational transfers do not depend on wealth and income. In the data, there is

clearly persistence in income across generations. Since then dynastic models with endogenous fertility that capture

the intergenrational persistence of income and wealth have been analyzed extensively, but such models have not

been estimated mainly because of computational feasibility considerations. This paper develops an estimator for
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dynastic models of intergenerational transfers and estimates a model quantifying the different factors generating

persistence of income.

While the study of dynastic models have been wide spread in the economic literature these studies have been

largely theoretical or quantitative theory. However, the estimation of these models and the use of these estimated

models to conduct counterfactual policy analysis are nonexistent. There are two main reasons for this gap, the first

is the data limitation and the second is computational feasibility. Ideally, one would need data on the choices and

characteristics of multiple generations linked across time in order to estimate these dynastic models. The number of

generations needed for estimation can be reduced to two by analyzing the stationary equilibrium properties of these

models and recently data on the choices and characteristics of at least two generations have become available in the

Panel Survey of Income Dynamics (PSID) and other data sets. The standard estimation algorithm for these types of

model uses a nested fixed point algorithm. The major limitation of this estimation procedure is that it suffers from

the curse of dimensionality, i.e. as the number of states in the state space increases the number of computations

increases at a rate faster than linear. Dynastic models add an additional loop to this estimation procedure, i.e. a

nested fixed point squared. Therefore, this estimation procedure suffers from the curse of dimensionality squared.

This paper develops an estimation that partially overcomes this curse of dimensional by exploiting properties

of the stationary equilibrium. It provides a framework to estimate a rich class of dynastic models which includes

investment in children’s human capital, monetary transfers, unitary households, endogenous fertility and a life-

cycle within each generation. This is an extension of methods used in the literature for the estimation of standard

single agent model to the dynastic setting (see for example Hotz and Miller (1993) and Hotz et. al. (1994)). This

estimation technique makes this estimation and empirical assessment of proposed counterfactual policy reform

feasible. The paper compares the performance of the proposed estimator to a nested fixed point estimator using

simulations and provides estimation results from an application of intergenerational transmission of human capital.

There are several types of dynastic models that our framework incorporates. In some models fertility is endoge-

nous, as in Barro and Becker (1988, 1989), but cannot generates persistence of wealth across generations. Other

models capture intergenerational transfers and persistence in wealth across generations but fertility is exogenous

as in Laitner (1992) and Loury (1981). Alvarez (1999) combines the main features of the above mentioned mod-

els together by incorporating fertility decision into the Laitner (1981) and Loury (1992) intergenerational transfer

models. On the other hand, some models, as Laitner (1981), incorporate an elaborate finite life cycle model for

adults in each generation, while in other models there is one period of childhood and one period of adulthood.

The framework we study incorporates all these elements and develops a model in which altruistic parents make

discrete choices of birth, labor supply, and discrete and continuous investment in children. In particular, to accom-

modate many models in the literature, parents choose time with children and a continuous monetary investment

in the child every year over their life-cycle. The model can also be extended to include bequests. The model is

a partial equilibrium model, and as in most dynastic models and in the basic setup there is one decision maker in

a household, however, we show that it can be easily extended to a unitary household. The empirical application

presents estimates of a dynastic model of intergenerational transmission of human capital with unitary households.

There are two main estimators used in the literature to estimate dynamic discrete choice models: A full solu-

tion method using "nested fixed point" (NFXP) (see Wolpin (1984), Miller (1984), Pakes (1986) and Rust (1987)

early examples) and "conditional choice probability" (CCP) (see Hotz and Miller (1993), Altug and Miller (1998),

Aguirregabiria (1999)) estimators that do not require the solution to the fixed points. More recently Aguirregabiria

and Mira (2002) showed that an appropriately formed CCP based estimator, "nested pseudo likelihood" (NPL),

is asymptotically equivalent to a NFXP estimator. However even with a CCP estimator or a NPL estimator, esti-

mation of the intergenerational model requires dealing with further complications which are not present in single

agent dynamic discrete choice models. The first difficulty is the representation of the value functions of the prob-

lem. This difficulty is associated with the non-standard nature of the problem. An intergenerational model has

finite (T) periods in the life-cycle in each generation and infinitely many generations are linked by the altruistic

preferences. The problem in this framework does not fit into a finite horizon dynamic discrete choice model since
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in the last period T, there is a continuation value associated with the next generation’s problem which is linked to

current generation by the transfers and the discount factor. Therefore we need to find a representation for the next

generation’s continuation value if we want to treat the problem as a standard T period problem and solve by back-

wards induction1. In this paper we propose a new estimation procedure which enables us to derive representations

of the period value functions in terms of period primitives. In particular, we show that an appropriately defined

alternative representation of the continuation value enables us to derive the representations and one can apply a

CCP estimator to the intergenerational model.

2 Theoretical Framework

The theoretical framework is developed to allow for estimation of a rich group of dynastic models and allows for

addressing many relevant policy questions. This section develops a model of altruistic parents that make transfers

to their children. The transfers are discrete, and they can allow for time investment in children (time is discritized)

and modeling discrete labor supply choice allows for monetary investment with discrete levels. Section 4 then

extend the basic framework to allow for continuous choice of transfers. This will allow to use the framework to

analyze bequests or any continuous monetary transfers parents make to children. We incorporate two important

aspects of the problem: first fertility is endogenous. Endogenous fertility has important implications to intergener-

ational transfers, and the quantity-quality trade-offs parents makes when they choose transfers as well as number

of offsprings. Second, we include a life-cycle for each generations. Life-cycle is important to understanding fer-

tility behavior, and spacing of children, as well as timing of different types of investments. This section analyzes a

model with one genderless decision maker. We later extend this framework to a unitary household.2

We, build on previously developed dynastic models that analyze transfers and intergenerational transmission

of human capital. In some models, such as Loury (1981) and Becker and Tomes (1986), fertility is exogenous

while in others, such as Becker and Barro (1988) and Barro and Becker (1989), fertility is endogenous. The Barro-

Becker framework is extended in our model by incorporating a life-cycle behavior model, based on previous work

such as Heckman, Hotz and Walker (1985) and Hotz and Miller (1988) into an infinite horizon model of dynasties.

Our life cycle model includes individuals choices about time allocation decisions, investments in children, and

fertility. We formulate a partial equilibrium discrete choice model that incorporates life-cycle considerations of

individuals from each generation into the larger framework. Adults in each generation derive utility from their

own consumption, leisure, and from the utility of their adult offspring. The utility of adult offspring is determined

probabilistic by the educational outcome of childhood, which in turn is determined by parental time and monetary

inputs during early childhood, parental characteristics (such as education), and luck. Parents make decisions in

each period about fertility, labor supply, time spent with children, and monetary transfers. For simplicity, the only

intergenerational transfers are transfers of human capital, as in Loury (1981). However, the framework can include

any other choice of transfer which is discrete. We assume no borrowing or savings for simplicity.

In the model adults live for T periods. Each adult from generation g ∈ {0, ...∞} makes discrete choices about

labor supply, ht , time spent with children, dt , and birth, bt , in every period t = 1...T . For labor time individuals

choose no work, part time, or full time (ht ∈ (0, 1, 2) and for time spent with children individuals choose none,

low and high (dt ∈ (0, 1, 2).. The birth decision is binary (bt ∈ (0, 1). The individual does not make any choices

during childhood, when t = 0. All the discrete choices can be combined into one set of mutually exclusive discrete

choice, represented as k, such that k ∈ (0, 1...17). Let Ikt be an indicator for a particular choice k at age t ; Ikt

1Obviously we can always solve the problem by NFXP; if we assume the next generation’s period 0 value function is same as the current

generation’s value function in period 0. This is another way of saying the problem is stationary in the generations. In this case the solution

to the dynamic programming problem requires solving the fixed point problem for the period value functions. However as one can easily

anticipate we encounter the same computational burden of full solution. Therefore our specific interest is on CCP type estimators.
2Treatment of households with two decisions makers with separate utility functions, marriage and divorce is involved and is beyond the

scope of this paper. See Gayle, Golan and Soytas (2014) for more details on one such model.
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takes the value 1 if the k th choice is chosen at age t and 0 otherwise. These indicators are defined as follows:

I0t = I {ht = 0}I {dt = 0}I {bt = 0}, I1t = I {ht = 0}I {dt = 0}I {bt = 1}, ...,

I16t = I {ht = 1}I {dt = 2}I {bt = 1}, I17t = I {ht = 2}I {dt = 2}I {bt = 1} (1)

Since these indicators are mutually exclusive then
∑17

k=0 Ikt = 1. We define a vector, x, to include the time

invariant characteristics of education, skill, and race of the individual. Incorporating this vector, we further define

the a vector z to include all past discrete choices and as well as time invariant characteristics, such that zt =
({Ik1}

17
k=0 , ..., {Ikt−1}

17
k=0 , x).

We assume the utility function is the same for adults in all generations. An individual receives utility from

discrete choice and from consumption of a composite good, ct . The utility from consumption and leisure is assumed

to be additively separable because the discrete choice, Ikt , is a proxy for the leisure, and is additively separable from

consumption. The utility from Ikt is further decomposed in two additive components: a systematic component,

denoted by u1kt(zt), and an idiosyncratic component, denoted by εkt . The systematic component associated with

each discrete choice k represents an individual’s net instantaneous utility associated with the disutility from market

work, the disutility/utility from parental time investment, and the disutility/utility from birth. The idiosyncratic

component represents preference shock associated with each discrete choice k which is transitory in nature. To

capture this feature of εkt we assume that the vector (ε0t , .., ε17t) is independent and identically distributed across

the population and time, and is drawn from a population with a common distribution function, Fε(ε0t , .., ε17t).

The distribution function is assumed to be absolutely continuous with respect to the lebesgue measure and has a

continuously differentiable density.

Per-period utility from the composite consumption good is denoted u2t(ct , zt). We assume that u2t(ct , zt) is

concave in c, i.e. ∂u2t(ct , zt)/∂ct > 0 and ∂2u2t(ct , zt)/∂c2
t < 0. Implicit in this specification is intertemporally

separable utility from the consumption good, but not necessarily for the discrete choices, since u2t is a function of

zt , which is itself a function of past discrete choices, but is not a function of the lagged values of ct . Altruistic

preferences are introduced under the same assumption as the Barro-Becker model: Parents obtain utility from

their adult offsprings’ expected lifetime utility. Two separable discount factors capture the altruistic component

of the model. The first, β, is the standard rate of time preference parameter, and the second, λN 1−ν, is the

intergenerational discount factor, where N is the number of offspring an individual has over her lifetime. Here

λ (0 < λ < 1) should be understood as the individual’s weighting of his offsprings’ utility relative to her own

utility3. The individual discounts the utility of each additional child by a factor of 1−ν, where 0 < ν < 1 because

we assume diminishing marginal returns from offspring.4

We let wages, wt , be given by the earnings function wt(zt , ht), which depends on the individual’s time invari-

ant characteristics, choices that affect human capital accumulated with work experience, and the current level of

labor supply, ht . The choices and characteristics of parents are mapped onto offspring’s characteristics, x ′, via a

stochastic production function of several variables. The offspring’s characteristics are affected by parents’ time

invariant characteristics, parents’ monetary and time investments, and presence and timing of siblings. These vari-

ables are mapped into the child’s skill and educational outcome by the function M(x ′|z
T+1
). Since z

T+1
includes

all parents choices and characteristics and contains information on the choices of time inputs and monetary inputs.

Because z
T+1

also contains information on all birth decisions, it captures the number of siblings and their ages.

We assume there are four mutually exclusive outcomes of offspring’s characteristics: Less than high school (LH),

High school (HS), Some college (SC) and College (Coll). Therefore M(x ′|z
T+1
) is a mapping of parental inputs

and characteristics into a probability distribution over these four outcomes.

We normalize the price of consumption to 1. Raising children requires parental time, dt , and also market

expenditure. The per-period cost of expenditures from raising a child is denoted pcnt . Therefore the per period

3technically this definition is assuming he has one period left in his lifetime and only have one child.
4Note that this formulation can be written as an infinite discounted sum (over generations) of per-period utilities as in the Barro-Becker

formulation.
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budget constraint is given by:

wt ≥ ct + pcnt (2)

.The sequence of optimal choice for both discrete choice and consumption is denoted as I o
kt and co

t respectively.

We can thus denote the expected lifetime utility at time t = 0 of a person with characteristics x in generation g,

excluding the dynastic component, as:

UgT (x) = E0

[∑T

t=0 β
t [
∑17

k=0 I o
kt{u1kt(zt)+ εkt} + u2t(c

o
t , z

t
)]|x

]
(3)

The total discounted expected lifetime utility of an adult in generation g including the dynastic component is:

Ug(x) = UgT (x)+ β
TλN−νE0

[∑N

n=1 Ug+1,n(x
′
n)|x

]
, (4)

where Ug+1,n(x
′
n) is the expected utility of child n (n = 1, .., N ) with characteristics x ′. In this model individuals

are altruistic and derive utility from offsprings’ utility, subject to discount factors β,and λN 1−ν .

To simplify presentation of the model we assume that pcnt is proportional to individual’s current wages and

the number of children, but we allow this proportion to depend on state variables. This assumption allows us to

capture the differential expenditures on children made by individuals with different incomes and characteristics.

Practically this allows us to observe differences in social norms of child rearing among different socioeconomic

classes .5Explicitly we assume that

pcnt = αNc(zt)(N t+bt)wt(x, ht) (5)

and, incorporating the assumption that individuals can not borrow or save and equation (5) the budget constraint

becomes:

wt(x, ht) = ct + αNc(zt)(N t+bt)wt(x, ht) (6)

Solving for consumption from equation (6) and substituting for consumption in the utility equation, we can rewrite

the third component of the per-period utility function, specified as u2kt(zt), as a function of just zt :

u2kt(zt)=ut [wt(x, ht)− αNc(zt)(N t+bt)wt(x, ht), zt ] (7)

Note that the discrete choices now map into different levels of utility from consumption. Therefore we can get rid

of the consumption as choice and write the systematic contemporary utility associated with each discrete choice k

as:

ukt(zt) = u1kt(zt)+ u2kt(zt). (8)

Incorporating the budget constrain manipulation, we can rewrite the Equation (3) as:

UgT (x) = E0

[∑T

t=0 β
t
∑17

k=0 I o
kt [ukt(zt)+ εkt ]|x

]
. (9)

Discussion Alvarez (99) analyzes and generalizes the conditions under which dynastic models with endoge-

nous fertility lead to intergenerational persistence in income and wealth. Following his analysis, we show which

assumptions are relaxed in our model and lead to persistence in income. The first is constant cost per-child. In

our model the per-period cost of raising and transferring human capital is the costs described in Equations 5 and

6, as well as the opportunity costs of time input in children dt : w(x, 1 − dt − leisuret). Time input in children

as well as labor market time are models as discrete choice with three levels. This introduces non-linearities. Even

if we were able to capture the proportional increase in time with children as the number of children increases, the

non-linearity in labor supply decisions implies that the opportunity cost of time with children is not linear. Thus the

5In general, individuals can choose expenditures on children but we do not observe spending in our data used for estimation in this

proposal.
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cost of transfer of human capital per child are not constant. Furthermore, in contrast to standard dynastic models

and those analyzed in Alvarez (99) we incorporate dynamic elements of the life-cycle, that involve age effect and

experience. The opportunity cost of time with children therefore incorporate returns to experience, which are non-

linear. The non-linearities involved in labor supply are realistic, parents labor market time is often not proportional

to the number of children they have, and hours in the labor market, for a given wage rate are not always flexible

and depend on occupation and jobs. Furthermore, fertility decisions are made sequentially, and due to age effects,

the cost of a child vary over the life-cycle. The second condition is non-separability in preferences, aggregation

of the utilities from children and the feasible set. In our model, the latter is relaxed; that is, the separability of the

feasible set across generations. This is because the opportunity costs of the children depend on the their education

and labor market skill. However, education and labor market skills of children are linked with their parents’ skills

and education through the production function of education.

2.1 Optimal Discrete Choice

The individual then chooses the sequence of alternatives yielding the highest utility by following the decision rule

I (zt , εt) where εt is the vector (ε0t , ..., ε17t). The optimal decision rules are given by:

I o(zt , εt) = arg max
I

E I

[∑T

t=0 β
t{
∑17

k=0 Ikt [ukt(zt)+ εkt ]} + β
TλN−ν

∑N

n=1 Ug+1,n(x
′
n)|x

]
(10)

where the expectations are taken over the future realizations of z and ε induced by I o. In any period t < T , the

individual’ maximization problem can be decomposed into two parts: the utility received at t plus the discounted

future utility from behaving optimally in the future. Therefore we can write the value function of the problem,

which represents the expected present discounted value of life time utility from following I o, given zt and εt , as:

V (zt+1, εt+1) = max
I

E I

(∑T

t ′=t+1 β
t ′−t

∑17
k=0 Ikt ′[ukt ′(zt ′)+ εkt ′]+ β

T−t ′λN−ν
∑N

n=1 Ug+1,n(x
′
n)|zt , εt

)
(11)

By Bellman’s principle of optimality, the value function can be defined recursively as:

V (zt , εt) = max
I

[∑17
k=0 Ikt {ukt(zt)+ εkt + βE(V (zt+1, εt+1)|zt , Ikt = 1)}

]
=

∑17
k=0 I o

kt(zt , εt)[ukt(zt)+ εkt ]+ β
∑

zt+1

∫
V (zt+1, εt+1) f (εt+1)dεt+1 F(zt+1|zt , I o

kt = 1)](12)

where f (εt+1) is the continuously differentiable density of Fε(ε0t , .., ε17t), and F(zt+1|zt , Ikt = 1) is a transition

function for state variables which is conditional on choice k. In this simple version, the transitions of the state

variables are deterministic given the choices of labor market experience, time spent with children and number of

children.

Since εt is unobserved, we further define the ex ante (or integrated) value function, V (zt), as the continuation

value of being in state zt before εt is observed by the individual. Therefore V (zt) is given by integrating V (zt , εt)

over εt . Define the probability of choice k at age t by pk(zt) = E[I o
kt = 1|zt ], the ex ante value function can be

written as

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt)+ Eε[εkt |Ikt = 1, zt ]+ β

∑
zt+1

V (zt+1)F(zt+1|zt , Ikt = 1)
]

(13)

In this form V (zt) is now a function of the conditional choice probabilities, the expected value of the preference

shock, the per-period utility, the transition function, and the ex ante continuation value. All components expect the

conditional probability and the ex ante value function are primitives of the initial decision problem. By writing

the conditional choice probabilities as a function of just the primitives and the ex ante value function, we can

characterize the optimal solution of problem (i.e. the ex ante value function) as implicitly dependent on just the

primitives of the original problem.
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To create such a model we define the conditional value function, υk(zt), as the present discounted value (net

of εt ) of choosing k and behaving optimally from period t = 1 on:

υk(zt) = ukt(zt)+ β
∑

zt+1
V (zt+1)F(zt+1|zt , Ikt = 1) (14)

The conditional value function is the key component to the conditional choice probabilities. Equation(10) can now

be rewritten using the individual’s optimal decision rule at t to solve:

I o(zt , εt) = arg max
I

∑17
k=0 Ikt [υk(zt)+ εkt ] (15)

Therefore the probability of observing choice k, conditional on zt is pk(zt) and is found by integrating out εt from

the decision rule in Equation (15):

pk(zt) =

∫
I o(zt , εt) fε(εt)dεt =

∫ [∏
k 6=k′ 1{υk(zt)− υk′(zt) ≥ εkt−εtk′}

]
fε(εt)dεt (16)

Therefore pk(zt) is now entirely a function the primitives of the model (i.e. ukt(zt), β, F(zt+1|zt , Ikt = 1), and

fε(εt)) and the ex ante value function. Hence substituting equation (16) into Equation (46) gives a implicit equation

defining the ex ante value function as a function only the primitives of the model:

3 A Generic Estimator of the Life-Cycle Dynastic Discrete choice Model

We use a partial solution, multi-stage estimation procedure to accommodate the non-standard features of the model.

By assuming stationarity across generations and discrete state space in the dynamic programming problem we

obtain an analytic representation of the valuation function. The alternative valuation function depends on the

conditional choice probabilities (CCP), the transition function of the state variable, and the structural parameters of

the model. In the first stage we estimate the conditional choice probabilities and the transition function. The second

stage forms either moment conditions or likelihood functions to estimate the remaining structural parameters using

a Pseudo Maximum Likelihood (PML) or a Generalized Methods of Moment (GMM) respectively. For each

iteration in the estimation procedure the CCP is used generate valuation representation to form the terminal value in

the life-cycle problem, which can then be solved by backward induction to obtain the life-cycle valuation functions.

3.1 An Alternative Representation of the Problem

The alternative representation of the continuation value of the intergenerational problem is developed below. The

Hotz and Miller estimation technique for standard single agent problems is adapted to the dynastic problem using

the following representation.

Proposition 1 There exists an alternative representation for the ex-ante conditional value function at time t which

is a function of only the primitives of the problem and the conditional choice probability as:

υk(zt) = ukt(zt)+
∑T

t ′=t+1 β
t ′−t

∑17
s=0

∑
zt ′

ps(zt ′)[ust ′(zt ′)+ Eε(εst ′ |Ist ′ = 1, zt ′)]Fo
k (zt ′ |zt)

+λβT−t NT
−ν∑NT

n=1

∑
x V (x)

∑KT

s=0

∑
zT

Mn
k (x
′|zT )ps(zT )F

o
k (zT |zt) (17)

where Fo
k (zt ′ |zt) is the t ′ − t period ahead optimal transition function, recursively defined as:

Fo
k (zt ′ |zt) =

{
F(zt ′ |zt , Ikt = 1) for t ′ − t = 1∑17

r=0

∑
zt ′−1

pr (zt ′−1)F(zt ′ |zt ′−1, Ir t ′−1 = 1)Fo
k (zt ′−1|zt) for t ′ − t > 1

where NT is the number children induced from ZT , KT is the number of possible choice combinations available to

the individual in the terminal period (in which birth is no longer feasible) and Mn
k (x
′|zT ) = M(x ′|zT ) conditional

on IkT = 1 for the nth child born in a parent’s life-cycle.
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Let ek(p, z) represent the expected preference shocks conditional on choice k being optimal in state z. The

expected preference shocks are written in this notation to convey the shock as a function of the conditional choice

probability (see Hotz and Miller (1993)). For example, in the Type 1 extreme value case, ek(p, z) is given by

γ − ln[pk(z)] where γ is Euler’s constant. From the representation in Proposition 1 we can define the ex-ante

conditional lifetime utility at period t , excluding the dynastic component as:

Uk(zt) = ukt(zt)+
∑T

t ′=t+1 β
t ′−t

∑17
s=0

∑
zt ′

ps(zt ′)[ust ′(zt ′)+ es(p, zt ′)]Fo
k (zt ′ |zt)

Because Uk(zt) is a function of only the primitives of the problem and the conditional choice probabilities,we can

write an alternative representation for the ex-ante value function at time t :

V (zt) =
∑17

k=0 pk(zt)[Uk(zt)+ ek(p, zt)+ λβ
T−t NT

−ν∑NT

n=1

∑
x V (x)

∑KT

s=0

∑
zT

Mn
k (x
′|zT )ps(zT )F

o
k (zT |zt)]

(18)

Equation (18) is satisfied at every state vector zt . The problem is stationary over generation, so zt = x at

period t = 0 because there is no history of decisions in the state space, and hence the initial state space has

finite support on the integers {1, ..., X}. We define the optimal lifetime intergenerational transition function as

Mo
k (x
′|x) =

∑NT

n=1

∑KT

s=0

∑
zT

ps(zT )M
n
k (x
′|zT )F

o

k
(zT |x). Mo

k can be interpreted as the probability that average

descendent of the individual with characteristic x ′, given that his parents have characteristics x , chooses decision

k in the first period and behaves optimally from period 1 to T of parent’s life-cycle. Now, we can express the

components of Equation (18) in vector or matrix form:

V0 =


V (1)

.

.

.

V (X)

 , U (k) =


Uk(1)

.

.

.

Uk(X)

 , E(k) =


ek(p, 1)

.

.

.

ek(p, X)

 , P(k) =


pk(1)

.

.

.

pk(X)

 ,

ιX =


1

.

.

.

1


X x1

, and Mo(k) =


Mo

k (1|1) ... Mo
k (X |1)

.

.

.

Mo
k (1|X) ... Mo

k (X |X)


Using these components the vector of ex ante value function can be expressed as:

V0 =
∑17

k=0 P(k) ∗ [U (k)+ E(k)+ λβT N−νT Mo(k)]V0 (19)

where ∗ refers to element by element multiplication. Rearranging the terms and solving for V0 we obtain:

V0 = [IX − λβ
T N−νT

∑17
k=0{P(k)ι

′
X } ∗ Mo(k)]−1

∑17
k=0 P(k)[U (k)+ E(k)] (20)

where IX denote as the X × X identity matrix. Equation (20) is based on the dominant diagonal property, which

implies that the matrix IX − λβT N−νT

∑17
k=0{P(k)ι

′
X } ∗ Mo(k) is invertible.

3.2 Estimation

We parameterized the period utility by a vector θ2, ukt(zt , θ2), the period transition on the observed states is

parameterized by a vector θ3, F(zt |zt−1, IkT = 1, θ3), the intergenerational transitions on permanent characteris-

tics is parameterized by a vector θ5, Mn(x ′|zT+1, θ4), and the the earnings function is characterized by a vector

θ5, wt(x, ht , θ5). Therefore the conditional value functions, decision rules, and choice probabilities now also de-

pend on θ ≡ (θ2, θ3, θ4, θ5, β, λ, ν). Standard estimates of dynamic discrete choice models involve forming the
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likelihood functions from the conditional choice probability derived in Equation (16). This involves solving the

value function for each iteration of the likelihood function. The method used to solve the valuation function

depends on the nature of the optimization problems, and normally falls into one of two cases

1. Finite horizon problems: The problem has an end date (like in a standard life-cycle problem) and hence

future value function is obtained via backwards recursion.

2. Stationary infinite horizon problem: The valuation is obtained via a contraction mapping.

A dynastic discrete choice model in unusually because it involves both a finite horizon problem and an infinite

horizon problem. Solving both problems for each iteration of the likelihood function is a computationally infeasible

for all but the simplest of models. We avoid solving the stationary infinite horizon problem in estimation by

replacing the terminal value in the life-cycle problem with Equation (20). This alters the problem to a finite

horizon problem which can be solved via backwards recursion since the flow utility function is:

υk(zT ) = ukT (zT )+ λNT
−ν∑

x V (x)
∑NT

n=1 Mn
k (x
′|zT ) (21)

Since ukT (zT ) is parameterized by θ2, the transition Mn
k (x
′|zT ) is known since can be estimated from the data.

Observing Fε(ε0t , .., ε17t) and calculating V (x) via equation (20)6, we can calculate the ex ante value function at

T using V (zT ) =
∑17

k=0

∫
I 0
k I (zT , εT )[υk(zT ) + εkT ] fε(εT )dεT . The conditional value function for T-1 is given

by υk(zT−1) = ukT−1(zT−1)+ β
∑

zT
V (zT )F(zT |zT−2, IkT = 1). This is continued backwards given υk(zT−1) to

form value function at T-2, and so on.

The backward induction procedure outlined above shows that only Mn
k (x
′|zT ) in equation (21) and (20) depends

on the next generation’s outcome. Thus we can estimate the intergenerational problem with only two generations of

data, as is the case in the standard stationary discrete choice models (see Rust (1987) for example). To estimate the

intergenerational problem we let Idtg, zdtg,and εdtg respectively indicate the choice, observed state, and unobserved

state at age t in the generation g of dynasty d . Forming the conditional choice probabilities for each individual in

the first observed generation of dynasty d at all age t yields the components necessary for estimation. Estimation

proceeds in two steps.

Step 1: In the first step we estimate the CCP, transition, earnings functions necessary to compute the inversion in

Equation (20). The expectation of observed choices conditional on the observed state variable gives an empirical

analogue to the conditional choice probabilities at the true parameter values of the problem, θo
1, allowing us to

estimate the CCPs, we denote this estimate by p̂k(zdt1). We also estimates θ3, θ4, and θ5 which parameterize the

transition and earnings functions F(zt |zt−1, IkT = 1, θ3), Mn(x ′|zT+1, θ4) and wt(x, ht , θ5) respectively in this

step.

Step 2: The second step can be estimated two ways, the first is a pseudo maximum likelihood (PML) and the

second is a generalized method of moment (GMM). We can use a pseudo maximum likelihood method and not

a pure maximum likelihood estimator because part of the likelihood function is concentrated out using the data.

With D dynasties, the PML estimates of θ0 = (θ2, β, λ, ν) are obtained via:

θ̂0P M L = arg max
θ0

(∑D

dt1=1

∑T

t=0

∑17
k Idt1 ln[pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)]

)
(22)

where pk(zdt1; θ0, θ̂3, θ̂4, θ̂5) is the CCP defined in equation (16) with the conditional value function replaced with

υk(zdt1, θ0, θ̂3, θ̂4, θ̂5); which is calculated using the backward recursion using the estimated choice probabilities

and the transition functions outlined in step 1.

6This manipulation is possible because the alternative value function in equation (20) is a function of only the parameters of the model

and the CCP. Since the CCP can be estimated directly from the data, backward recursion becomes possible because the decision in the last

period, T, is similar to a static problem when the value of children is replaced with equation (20).
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An alternative second step GMM estimator is formed using the inversion found in Hotz and Miller (1992).

Under the assumption that ε is distributed independently and identically as type I extreme values, then Hotz and

Miller inversion implies that

log
(

pk(zdt1; θ0, θ̂3, θ̂4, θ̂5)/pK (zdt1; θ0, θ̂3, θ̂4, θ̂53)
)
= υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υK (zdt1, θ0, θ̂3, θ̂4, θ̂5) (23)

for any normalized choice K . We can use p̂k(zdt1), estimated from stage 1, to form an empirical counterpart

to equation (23) and estimate the parameters of our model. The moment conditions can be obtained from the

difference in the conditional valuation functions calculated for choice k and the base choice 0. The following

moment conditions are produced for an individual at age t ∈ {17, ...., 55}:

ξ jdt(θ0) ≡ υk(zdt1, θ0, θ̂3, θ̂4, θ̂5)− υ0(zdt1, θ0, θ̂3, θ̂4, θ̂5)− ln
[

p̂k(zdt1)/ p̂0(zdt1)
]

(24)

therefore there are 17 orthogonality conditions therefore j = 1, ..., 17. Let ξ dt(θ0) be the vector of moment

conditions at t , these vectors are defined as ξ dt(θ0) = (ξ 1dt(θ0), ξ 2dt(θ0), ...ξ 17dt(θ0))
′. Therefore E[ξ dt(θ

o
0)|zdt ]

converges to 0 for every consistent estimator of true conditional choice probability, pk(zdt1; ; θ0, θ̂3, θ̂4, θ̂5), for

t ∈ {17, ..., 55}, and where θo
0 is the true parameter of the model. Define ξ d(θ0) ≡

(
ξ d1(θ0)

′, ..., ξ dT (θ0)
′
)′

as

the the vector of moment restrictions for a given individual over time and define a weight matrix as 8(θ0) ≡
Et [ξ d(θ0)ξ d(θ0)

′]. Then the GMM estimate of θ0 is obtained via:

θ̂02SG M M = arg min
θ0

[1/D
∑D

d=1 ξ d(θ0)]
′8̂[1/D

∑D

d=1 ξ d(θ0)]. (25)

where 8̂ is a consistent estimator of 8(θo).

3.3 Monte Carlo Study

To compare the dynamics of the model in a numerical example and to examine the performance of the estimation,

we use a simple human capital investment model with intergenerational transfers which has the two period model

structure of Section 1. We generate simulated data from the model for given parameter values, compare the

dynamics, and estimate the model parameters for the generated data set. We estimated the parameters using the

Nested Fixed Point (NFP) and Pseudo Maximum Likelihood (PML) estimators described above. The estimations

are repeated for both algorithms for different specifications of the model in terms of sample size ( i.e., for 1000,

10, 000, 20, 000, 40, 000). The number of structural parameters estimated including the discount factors are 3.

For illustrative purposes we start with the model in which the period utility function, uk(zt), has the following

linear form: the individual chooses whether to invest or not Ik ∈ {0, 1} in each period t ∈ {0, 1}. We assume that

individuals may have only one child, N ≤ 1, and receive the following utilities associated with each choice:

uk(zt) =

{
zt if k = 0

(1− θ)zt if k = 1

}
where Fε(εt) is the choice specific, unobservable part of the utility and assumed to be independently distributed

type 1 extreme values.

The value of the vector zt is subject to change each period because of different choices made in each period

and because individual characteristics like skill and education, given in the vector x, may transition over time. In

the example, environment the individual starts the life-cycle with a particular set of character traits, which can

be denoted as zt ∈ (0.5, 0.6, 0.7, 0.8, 0.9). Note that at t = 0 the individual has not made any choices yet, so

the vector z0 depends fully on initial characteristics x . The value of z1 is given by the transformation function

10



Fk(zt |zt−1) In ?? we modeled the transformation function Fk(zt |zt−1) as deterministic, but here we assume a

stochastic process given by the transition matrix:

F0(zt |zt−1) =


.85 .13 .02 0 0

.04 .85 .09 .02 0

.01 .04 .85 .09 .01

0 .01 .05 .85 .09

0 0 0 0 1

 , and Fk(zt |zt−1) =


1 0 0 0 0

.1 .9 0 0 0

.13 .27 .6 0 0

.01 .11 .28 .6 0

0 .04 .13 .23 .6

 .
The individual’s character traits in the next period are determined by the probabilities in the corresponding row,

where each row corresponds to one of the initial values z0 ∈ (0.5, 0.6, 0.7, 0.8, 0.9), and each column represents

character traits in the next period, z1 ∈ (0.5, 0.6, 0.7, 0.8, 0.9). The transition is such that an individual with

character traits z0 = 0.5 with who chooses not to have a child such that the choice vector I0 = 0 will have

characteristics z1 = .5 with a probability of 0.85. In this simplified model, the next generation’s (offspring’s)

initial characteristics z′0 depend only on the sum of the financial investment decisions in the life-cycle where zT+1.

This educational outcome of the offspring is determined by the intergenerational transition function:

M(z′0 | zT+1) =

 1 0 0 0 0

0 .1 .4 .4 .1

0 0 .04 .06 .9


where zT+1 can take values in {0,1,2}.The next generation’s starting character traits are determined by the prob-

abilities given in the row, where each row corresponds to one of the values of zT+1 ∈ (0, 1, 2) and the first row

represents investment level zT+1 = 0. If the individual invests nothing, then the next generation will have the

lowest consumption value with complete certainty. The transition is such that an individual who opts to invest

2 times in the life-cycle has a faces a probability of 0.9 that the next generation will start his life-cycle with the

characteristics z′0 = 0.9.

We simulated the model for a given values of the parameters of the model, (θ2, β, λ) = (0.25, 0.8, 0.95),

where θ is the structural parameter of interest which gives the marginal cost of investment, and λ and β are the

generational and time discount factors respectively. We solve the dynamic problem for data sets of 1, 000, 10, 000,

20, 000, 40, 000 individual dynasties and repeat the simulation 100 times. For the conditional choice probability

(CCP) estimation, the initial consistent estimates are estimated nonparametrically using the generated sample.

Next, we estimate the model by NFP and PML.7 Table 2 presents the result of the estimation for each specification.

We find, not surprisingly, that the finite sample properties of the estimators improve monotonically with sample

size. In the NFP estimation, the Mean Square Error (MSE) of the parameter θ drops quickly as the sample size

increases. The results for the discount factors are similar: MSE fall as sample size increases. In the PML estimation

we observe a similar pattern for all estimators. We obtain similar results from the NFP and PML estimations. For

the sample size of 1, 000 the PML estimate of the MSE of θ0 is 0.00249, compared with 0.00288 from the NFP.

The PML estimate of the MSE of λ is 0.01253 compared to 0.00901, and PML estimate of the MSE of β is

0.00396 compared to 0.00305. For the sample sizes 10, 000, 20, 000 and 40, 000, the MSE obtained from PML

estimation is lower than the MSE obtained from the NFP, but the magnitudes are still very close. In terms of biases,

the two estimation algorithms are also quite similar. The major difference between the two estimation algorithms

computational time, which vary greatly between the NSP and PML even though we simulate a very simple model.

The average computational time for the NFP for a sample of 1000 is 347.6 seconds, but only 0.65 seconds for the

PML estimation, meaning the PML was 530 times faster. For the sample size of 40, 000 computation times are

509.8 and 12.6 seconds for the NFP and PML respectively, a ratio of 40.4.

7As illustrated in the estimation section, intergenerational models at the final step can be estimated either by PML or generalized method

of moments (GMM). For this simulation study we used the PML because it is more comparable to the Full Solution Maximium Likelihood.
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3.4 Large Sample Properties

It is well known in the econometric literature that under certain regularity conditions, pre-estimation does not

have any impact on the consistency of the parameters in the subsequent steps of a multistage estimation (Newey,

1984; Newey and McFadden, 1994; Newey, 1994). The asymptotic variance, however, is affected by the pre-

estimation. In order to conduct inference in this type of estimation, one has to correct the asymptotic variance for

the pre-estimation. The method used for correcting the variance in the final step of estimation depends on whether

the pre-estimation parameters are of finite or infinite dimension. Unfortunately, our estimation strategy combines

both finite- and infinite-dimensional parameters. Combining results from two sources (Newey, 1984; Newey and

McFadden, 1994), however, allows us to derive the corrected asymptotic variance for our estimator.

We proposed two estimators: A PML-estimator and a GMM-estimator. The PML-estimator can also be written

as a GMM-estimator by using the first order condition of the optimization problem as the moment condition. As

such we will only derive the large sample property for a moment based estimator where the moment can either be

the first condition of the PML-estimator defined in Equation (22) or the orthogonal condition defined in Equation

(24). For ease of notation we will use the same notation to represents these two types of orthogonality conditions.

Following Newey (1984), we can write the sequential-moments conditions for the first- and third-step estimation

as a set of joint moment conditions:

ξ d(Zd, θ0, θ3, θ4, θ5, ψ) =
[
ξ d F(Zd, θ3), ξ d M(Z , θ4), ξ dW (Z , θ5), ξ d(Zd, θ0, θ3, θ4, θ5, ψ)

]′
,

whereξ d F(Zd, θ3) is the orthogonality condition from the estimation of the life-cycle transition function, ξ d M(Z , θ4)

is the orthogonality condition from the estimation of the generation transition function, ξ dW (Z , θ5) is the orthog-

onality condition from the estimation of the earnings equation, and ξ d(Zd, θ0, θ3, θ4, θ5, ψ) is the moment con-

ditions from the second-step estimation defined in Equation (24). Regardless of the estimation method used to

estimate θ3, θ4, and θ5 they can always be expressed as moment conditions. Let θ = (θ0, θ3, θ4, θ5)
′, with the true

value denoted by θo. Each element of infinite dimensional parameter, ψ , can be written as a conditional expecta-

tion. Redefine each element as ψk(zk) = fzk (zk)E
[
Ĩdk | zk

]
, where Ĩdkt = [1, Idkt ]

′ for the estimation of pk(zdt).

Therefore, ψk(D)(zk) = 1
D

D∑
d=1

Ĩdk JδN
(zk − zk

d). The conditions below ensure that ψ (D) is close enough to ψo for D

large enough, in particular that
√

D
∥∥ψ (N ) − ψo

∥∥2
converges to zero.

A3: There is a version of ψo(z) that is continuously differentiable of order κ , greater than the dimen-

sion of z and ψo
1(z) = fz(z) is bounded away from 0.

A4:
∫

J (u) du = 1 and for all j < κ ,
∫

J (u)

(
j⊗

s=1

u

)
du = 0.

A5: The bandwidth, δD, satisfies Dδ2 dim(z)
D /(ln(D))2 →∞ and Dδ2κ

D → 0.

A6: There exists a 9(Z), ε > 0, such that∥∥∇θξ d(Z , θ, ψ)−∇θξ d(Z , θ
o, ψo)

∥∥ ≤ 9(Z) [∥∥θ − θo
∥∥ε + ∥∥ψ − ψo

∥∥ε]
and E[9(Z)] <∞.

A7: θ (D)→ θo with 2o in the interior of its parameter space.

A8: (Boundedness)

(i) Each element of ξ d(Z , θ, ψ) is bounded almost surely: E[
∥∥ξ d(Z , θ, ψ)

∥∥2
] <∞;

(ii) pdkt ∈ (0, 1), for all k.

(iii) ξ d F(Zd, θ3), ξ d M(Z , θ4) and ξ dW (Z , θ5) are continuously differentiable in θ3,θ4, and θ5 respec-

tively.

12



Proposition 2 Under A1–A8 and the influence, 8(Z), defined in the appendix,
√

N
(
θ (D) − θo

)
⇒ N (0, 6(θo)),

where

6(θo) = E
[
∇θξ d(Z)�

−1
d ∇θξ d(Z)

′
]−1

E

[
∇θξ d(Z)�

−1
d

{
ξ d(Z)+8(Z)

} {
ξ d(Z)+8(Z)

}′
�−1

d ∇θξ d(Z)
′
]

× E
[
∇θξ d(Z)�

−1
d ∇θξ d(Z)

′
]−1

.

Assumptions A3–A8 are standard in the semiparametric literature, see Newey and McFadden (1994) for details.

One can now use Theorem 1 to calculate the standard for all the parameters in our estimation. The proof of Theorem

1 will follow from checking the conditions for Theorem 8.12 in Newey and McFadden (1994).

4 Extensions

The dynastic framework developed so far in this paper has three major drawbacks. First, part of parental investment

and transfer from parent to children are monetary in nature. Monetary investment and/or parental transfer, such

as paying for college, purchasing a house, are most naturally characterized as a continuous choice. Second, the

framework assume that gender does not matter. However, there are significant differences in the cost, choices and

opportunities over an individual lifetime which are gender specific. Third, which is related to gender but a specific

to it, is that individuals normally form households and it take a man and a woman to reproduces, and fertility is

central in the model. In this section we consider extensions to the basic framework that account for these three

shortcomings.

4.1 Continuous Choice and Transfer

In order for the estimation technique developed above to be applicable to a dynastic framework two features

were present. First, all choices were discrete, and second, all systematic state variables, at the initial stage and

in every period during the life-cycle have a discrete state space. We replace these assumptions with two weaker

assumptions. The first is that there must be at least one discrete choice variable. This requirement is easily satisfied,

as birth decision is naturally discrete. The second, is that the initial systematic state variable, i.e. endowment that

an individual starts the adult life with, must belong to a finite set with discrete support. This is weaker than

the original assumption but is a more restrictive requirement but is satisfied in a non-trivial number of economic

dynastic models. For example, in models where human capital is the major intergenerational transfers and even in

model of bequests once the amount transferred is discretized. In practice, most dynamic programing models the

state space in normally discretized. This requirement, however, relaxes the assumption that state space is discrete

for the entire lifetime and that all choice variable are discrete. While bequest and initial wealth still has to be

discrete, the framework allows for any transfer and investment of parents make during over their life and map into

discrete initial conditions of the child such as education, and houses or other assets discrete in nature are allowed.

We extend our framework by assuming that we observed data on the per-period expenditures of raising a

child, pcnt , which is continuous. Lets further assume that this expenditure is potentially productive, i.e. higher

expenditure increases the probability of a higher level of education of the child. Lets redefined the vector of

state variable z, to capture these new assumptions, zt = ({Ik1}
17
k=0 , ..., {Ikt−1}

17
k=0 , pcn1, ..., pcnt−1, x) with x ∈

{x1, ..., x|X |}, a discrete set with finite support. As before M(x ′ | zT+1) is the integenerational transition probability

of x conditional on parent’s endowment, x , and parent’s choices over his/her lifetime.

Let I o
kt and pco

nt be the sequence of optimal choice over the parents lifetime. Also lets redefine the systematic

part of current utility in Equation(8) as

ukt(zt , pcnt)=u1kt(zt)+ ut [wt(x, ht)− pcnt , zt ]. (26)
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There the lifetime expected utility excluding the dynastic component at the start of an adult’s life becomes:

UgT (x) = E0

[∑T

t=0 β
t [
∑17

k=0 I o
kt{u1kt(zt , pco

nt)+ εkt}]|x
]
. (27)

As before we can write the value function of the problem, which represents the expected present discounted value

of life time utility from following I o and pco
nt , given zt and εt , as:

V (zt+1, εt+1) = max
I,pcnt

E I,pcn

({∑T

t ′=t+1 β
t ′−t

∑17
k=0 Ikt ′[ukt ′(zt ′, pcnt ′)+ εkt ′]

+βT−t ′λN−ν
∑N

n=1 ET [Ug+1,n(x
′
n)|zT+1]

}
|zt+1, εt+1

)
(28)

By Bellman’s principle of optimality, the value function can be defined recursively as:

V (zt , εt) =
∑17

k=0

(
I o
kt(zt , εt)[ukt(zt , pco

nt(zt))+ εkt ]+ β
∫ [∫

V (zt+1, εt+1) fε(εt+1)dεt+1

]
d Fk(zt+1|zt , pc)]

)
where fε(εt+1) is the continuously differentiable density of Fε(ε0t , .., ε17t), and Fk(zt+1|zt , pc) is a transition

function for state variables which is conditional on choices I o
kt = 1 and pco

nt = pc. Note that I o
kt(zt , εt) is a

function of zt and εt while pco
nt(zt) is only a function zt . This is a consequence of additive separability of the

preferences shock which will not affect the continuous choice which will be demonstrated below. The ex ante

value function is then

V (zt) =
∑17

k=0 pk(zt)
[
ukt(zt , pco

nt(zt))+ Eε[εkt |Ikt = 1, zt ]+ β
∫

V (zt+1)d Fk(zt+1|zt , pc)
]

(29)

In this form V (zt) is now a function of the conditional choice probabilities, the continuous choice decision rule, the

expected value of the preference shock, the per-period utility, the transition function, and the ex ante continuation

value. All components expect the conditional probability, the continuous choice decision rule and the ex ante

value function are primitives of the initial decision problem. By writing the conditional choice probabilities and

the continuous choice decision rule as a function of just the primitives, and the ex ante value function, we can

characterize the optimal solution of problem (i.e. the ex ante value function) as implicitly dependent on just the

primitives of the original problem. Let define the conditional value function, υk(zt , pcnt):

υk(zt) = max
pcnt

[
ukt(zt , pcnt)+ β

∫
V (zt+1)d Fk(zt+1|zt , pc)

]
(30)

Therefore the probability of observing choice k, conditional on zt , pk(zt), is still given by:

pk(zt) =
∫ [∏

k 6=k′ 1{υk(zt)− υk′(zt) ≥ εkt−εtk′}
]

fε(εt)dεt (31)

However, the optimal continuous choice is found in two steps. First find the optimal choice conditional on Ikt = 1,

called it pcknt(zt). This characterized by the following Euler equation:

∂ukt(zt , pcnt)

∂pcnt

= −β
∂
∫

V (zt+1)d Fk(zt+1|zt , pc)

∂pcnt

. (32)

Then plug it into the conditional valuation function:

υk(zt) =
[
ukt(zt , pcknt(zt))+ β

∫
V (zt+1)d Fk(zt+1|zt , pc)

]
(33)

and find the optimal discrete choice:

I o(zt , εt) = arg max
I

∑17
k=0 Ikt [υk(zt)+ εkt ].

Finally we obtain the optimal continuous choice by sets pco
nt(zt) = pcknt(zt) if I o

kt(zt , εt) = 1.

We now can find an alternative valuation function which is only a function of pk(zt), pcknt(zt), and primitives

of the model. We can now state a more general version of Proposition3
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Proposition 3 There exists an alternative representation for the ex-ante conditional value function at time t which

is a function only of the primitives of the problem and the conditional choice probability as:

υk(zt) = ukt(zt , pcknt(zt))+
∑T

t ′=t+1 β
t ′−t

∑17
s=0

∫
[ps(zt ′)[ust ′(zt ′, pcknt ′(zt))+ Eε(εst ′ |Ist ′ = 1, zt ′)]d Fo

k (zt ′ |zt)

+λβT−t NT
−ν∑NT

n=1

∑
x V (x)

∑KT

s=0

∫
[Mn

k (x
′|zT )ps(zT )]d Fo

k (zT |zt) (34)

where Fo
k (zt ′ |zt) is the t ′ − t period ahead optimal transition function, recursively defined as:

Fo
k (zt ′ |zt) =

{
F(zt ′ |zt , Ikt = 1, pcknt(zt)) for t ′ − t = 1∑17

r=0

∑
zt ′−1

pr (zt ′−1)F(zt ′ |zt ′−1, Ir t ′−1 = 1, pcknt ′−1(zt ′−1))F
o
k (zt ′−1|zt) for t ′ − t > 1

where NT is the number children induced from ZT , KT is the number of possible choice combinations available to

the individual in the terminal period (in which birth is no longer feasible) and Mn
k (x
′|zT ) = M(x ′|zT ) conditional

on IkT = 1 for the nth child born in a parent’s life-cycle.

This representation is similarly to the one in Proposition3 except for the inclusion of pcknt(zt) and the replace-

ment of integral for a summation deal with the continuous state variables over the life-cycle. The inversion and

hence the estimation follows the through as before except we now need a first stage consistent estimate of pcknt(zt)

as well. This is obtained as pcknt(zt) = E[pcnt |zt , Ikt = 1]. See Altug and Miller (1998) and Gayle and Golan

(2012) for applications with continuous and discrete choices.

4.2 Household and Gender

We extend the basic framework to include household decisions and gender. To the best of our knowledge no other

paper estimates dynastic models with household decisions. There are many model of household decisions; here we

show how extend the model incorporate a unitary decisions maker. The framework can be extended to deal with

collective household decisions, see Gayle Golan and Soytas (2014) for an application of this estimation techniques

to a non-corporative collective model of household behavior. Let individual’s gender, subscripted as σ , takes the

value of m for a male and f for a female: σ = { f,m}. Gender is included in the vector of invariant characteristics

xσ . Let K describe the number of possible combinations of actions available to each household. Individuals get

married at time 0, and for simplicity we assume that there is no divorce (see Gayle, Golan, and Soytas 2014 for

application with marriage and divorce). Households are assumed to live for T periods and die together. Time zero

is normalized to take account of the normal age gap within married couples, which would imply that men has a

longer childhood than female. All individual variables and earnings are indexed by a the gender subscript σ . We

omit the gender subscript when a variable refers to the household (both spouses). The state variables are extended

to include the gender of the offspring. Let the vector ζ t indicate the gender of a child born at age t , where ζ t = 1

if the child is a female and ζ t = 0 otherwise. The vector of state variables is expanded to include the gender of the

offspring:

zt = ({Ik1}
K
k=0 , ..., {Ikt−1}

K
k=0 , ζ 0, .., ζ t−1, x f , xm).

We assume households invest time and money in the children in the household. The function wσ t(zt , hσ t)

denotes the earnings function; the only difference from the single agent problem is that gender is included in zt

and can thus affect wages. The total earnings is the sum of individual earnings as wt(zt , ht) = w1t(zt , h f t) +
w2t(zt , hmt) where ht = (h f t , hmt). The educational outcome of the parents offsprings is mapped from the same

parental inputs as the single agent model: income and time investment, number of older and younger siblings, and

parents’ characteristics such as education, race, and labor market skill. In the extension gender is also included

as a parental characteristic. Thus the production function is still denoted by M(x ′|z
T+1
) where z

T+1
represents the

state variables at the end of the parents’ life-cycle, T .
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In the household, the total per period expenditures cannot exceed the combined income of the spouses. The

budget constraint for the household is given by

wt ≥ ct + αNc(zt)(N t+bt)wt(zt , ht) (35)

The right hand side represents expenditures on personal consumption of the parents, ct , and on children. Parents

pay for the children living in their household, regardless of the biological relationship, and do not transfer money

to any biological children living outside of the household.

As in the single agent model, we can eliminate the continuous choice in the lifetime utility problem so that

household face a purely discrete choice problem. Recall that the budget constraint for the household, assuming no

borrowing or saving, is:

wt(zt , ht)− αN (zt)(N t+bt)wt(zt , ht) = ct (36)

and, as in the single agent problem, we may substitute for consumption in u2 and obtain the following household

utility function:

ukt(zt) = θ k(zt)+ ut [wt(zt , ht)(1− αN (zt)(N t+bt)), zt ]. (37)

For notation simplicity let x f ,∈ { f }Ff=1 and xm ∈ {m}Mm=1 and P f m be the probability that type f female married

type m make at age 0. We can then defined the expected lifetime utility for a type ( f,m) household at age 0,

excluding the dynastic component, as:

UT ( f,m) = E0

[∑T

t=0 β
t
∑K

k=0 I 0
kt{ukt(zt)+ εkt}

]
, (38)

and the expected lifetime utility for a type ( f,m) household at age 0 as

U ( f,m) = UT ( f,m)+ βTλE0

[
N−ν

∑N

n=1

∑F

f ′=1

∑M

m′=1 P f ′m′Un( f ′,m ′)| f,m

]
. (39)

As in the single individual version of the model we can define the expected present discounted value of the

lifetime utility of the household as any period t as

V (zt , εt) = max
I

E I

(∑T

s=t+1 β
s−t
∑K

k=0 Iks[uks(zs)+ εks]+ βT−sλN−ν
∑N

n=1

∑F

f ′=1

∑M

m′=1 P f ′m′Un( f ′,m ′)|zt , εt

)
(40)

This can be written recursively as

V (zt , εt) =
∑K

k=0 I o
kt(zt , εt)[ukt(zt)+ εkt ]+ β

∑
z

∫
V (z, ε) fε(ε)dεF(z|zt , I o

kt = 1)]

where fε(ε) is the continuously differentiable density of Fε(ε0t , .., ε17t), F(z|zt , Ikt = 1) is a transition function

for state variables which is conditional on choice k, and I o
kt(zt , εt) is optimal household decision rule.. Similar to

Equation (48) we can define the conditional choice household probability as by pk(zt) = E[I o
kt = 1|zt ] and the ex

ante value function as:

V (zt) =
∑K

k=0 pk(zt)
[
ukt(zt)+ Eε[εkt |Ikt = 1, zt ]+ β

∑
z V (z)F(z|zt , Ikt = 1)

]
. (41)

The rest of the estimation carries through as in the single individual case.

Discussion The addition of the two household members to the model captures important issues of the degree

of specialization in housework and labor market work in household with different composition of education. The

importance of which spouse spends time with children (and the levels of time) depends on the production function

of education of children and whether time of spouses is complement or substitute. Furthermore, we capture patterns

of assortative mating which may amplify the persistence of income across generations relative to a more random

matching patterns. Since in our model there is potentially correlation of the cost of transfers to children (time input)

with both parents’ characteristics, assortative mating patterns imply that if children of more educated parents are

more likely to be more educated, they are also more likely to have a more educated spouse which increases the

family resources and their children educational outcomes.
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5 Empirical Application

To illustrate the estimation method, we estimate the above model using a data set compiled from two sources, the

Panel Study of Income Dynamics (PSID) and the American Time Use Survey (ATUS). The PSID is a longitudinal

survey compiled from in person interviews between 1968 and 1972, and by telephone interview thereafter. The

ATUS is a cross sectional survey compiled from telephone interviews conducted between 2003 and 2011. From

the PSID collection we use data from the Family-Individual File of the Michigan PSID and from ATUS data we

use the entire collection. The PSID provides a long panel of matched data on individuals labor market hours,

earnings, housework hours, marriage, and childbirth histories, for overlapping cohorts and generations. Our initial

sample from the PSID contains 423,631 individual-year observations. Where an observation was missing for a

parent or spouse, the entire panel for that household was excluded. To select relevant data we began by creating

a variable called "Relationship to Head [of household]" and setting the variable equal to either “head,” “wife,”

“son,”or “daughter” based on survey responses. We further narrowed the sample to white and black individuals

between the ages of 17 and 55, taking 17 as a lower bound for high school graduates and 55 as the upper bound for

fertility decisions. We excluded anyone under 17 years of age as an eligible parent and we excluded individuals

with less than 5 years of sequential observations because the earnings equation we plan to estimate requires a least

4 observed labor-market participation decisions. Finally we excluded all observations of parents whose children

were older than 16 years in the first panel wave to ensure the data represents parental investment in a child’s early

life. These exclusions reduced the number of individual-year observations to 139,827, and produced a sample of

panel data containing 12,051 individual males and 17,744 individual females, all of whom were observed for at

least one year during our sample period.

A shortcoming of the PSID is that housework hours are recorded in aggregate, so the PSID not contain infor-

mation on time spent on different household activities. The PSID does not provide data on time spent on child

care or other kinds of housework. Time spent with children is estimated using a variation of the approach used

in previous literature such as Hill and Stafford (1974, 1980), Leibowitz (1974), and Datcher-Loury (1988). Hours

spent with children are computed as the deviation of average housework hours for parents with children from the

average housework hours of individuals without children. We compute the average hours spent with children for

each gender, education level, and age and set hours spent with children to zero where there is a negative value and

when individuals have no children. We have benchmarked this variable with actual time spent with children from

the American Time Use Survey (ATUS) and the basic patterns are similar. See the companion paper, Gayle, Golan

and Soytas (2014), for more details on this comparison.

Table 1 presents the summary statistics for our sample; Column (1) summarizes the overall sample, Column

(2) shows only data from parents, and Column (3) summarizes data of the their children. The first generation is

on average 7 years older than the second generation. As a consequence, a higher proportion are married in the

first generation. The male-female ratio is similar across generations (about 55 percent female), and this ratio is

higher in our sample than in the general population because, females are more likely to maintain responsibility for

children in cases of divorce. Our sample contains a higher proportion of blacks than the general population, which

is consistent with PSID survey procedures, and the second generation has an even higher proportion of blacks than

the first generation (about 29 percent in the second and 20 percent in the first generation) because of higher fertility

rates among blacks in our sample. There are no significant differences across generations in completed years of

education. The second generation in our sample has a lower average age than the first generation, so the second

generation also has a lower marriage rate and a lower average for number of children, annual labor income, labor

market hours, housework hours, and mean time spent with children. Our second generation sample spans the same

age range, 17 to 55, as the first sample.
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5.1 Empirical Implementation

This section describes the choice set specifications and functional forms of the model that we estimate. We as-

sume that all individuals enter the first period of the life-cycle married. That is, they transition into a married

household immediate after becoming adult. When individuals transition into a married household, their spouses’

characteristics are drawn from the known matching function G(x−σ | xσ ). Since the matching function depends on

the individual’s state variables– it separately captures the effect of number of children and past actions that affect

labor market experience for example, on the spouse’s characteristics.

We set the number of an adult’s periods in each generation to T = 30 and measure the individual’s age where

t = 0 is age 25. This is because at this age most individuals would have completed their education and started

their family in the data. As discussed above, we assume that parents receive utility from adult children,whose

educational outcome is revealed at the last period of their life regardless of the birth date of the child. This

assumption is similar to the Barro-Becker assumptions. We avoid situations where the outcome of an older child

is revealed while parents make fertility and time investment decisions to ensure that (i) these decisions are not

affected by adult child outcomes, and (ii) that adult children’s behavior and choices do not affect investment in

children and fertility of the parents, in which case solutions to the problems are significantly more complicated and

it is not clear whether a solution exists.

The three levels of labor supply correspond to working 40 hours a week; an individual working fewer than three

hours per week is classified as not working, individuals working between 3 and 20 hours per week are classified

as working part-time, while individuals working more than 20 hours per week are classified as working full-time.

There are three levels of parental time spent with children corresponding to no time, low time, and high time. To

control for the fact that females spend significantly more time with children than males, we use a gender-specific

categorization. We use the 50th percentile of the distribution of parental time spent with children as the threshold

for low versus high parental time with children, and the third category is 0 time with children. This classification is

done separately for males and females. Finally, birth is a binary variable; it equals 1 if the mother gives birth in that

year and 0 otherwise. Therefore the household choice are a combination of labor supply and time with children for

males and females in household plus the birth decision.

Labor Market Earnings An individual’s earnings depend on the subset of his or her characteristics, zσ t . These

include age, age squared, and dummy variables indicating whether the individual has high school, some college,

or college (or more) education interacted with age respectively; the omitted category is less than high school. Let

ησ be the individual-specific ability, which is assumed to be correlated with the individual-specific time-invariant

observed characteristics. Earnings are assumed to be the marginal productivity of workers and are assumed to be

exogenous, linear additive, and separable across individuals in the economy. The earnings equations are given by

wσ t = exp(δ
0σ zσ t +

∑ρ
s=0 δ

pt
σ ,s

∑
kt−s∈HPσ

Ikt−sσ +
∑ρ

s=1 δ
f t
σ ,s

∑
kt−s∈HFσ

Ikt−sσ + ησ ) (42)

where HPσ and HFσ are the set of choices for part-time and full-time work, respectively. Therefore, the earnings

equation depends on experience accumulated while working part-time and full-time and the current level of labor

supply. Thus, δ pt
σ ,s and δ f t

σ ,s capture the depreciation of the value of human capital accumulated while working

part-time and full time, respectively. In the estimation we assume ρ = 4 given that the effect of experience with

higher lags is insignificant (Gayle and Golan, 2012; Gayle and Miller, 2013).

Production function of children We assume that race is transmitted automatically to children and rule out

interracial marriages and fertility. This is done because there is insufficient interracial births in our sample to study

this problem. Therefore, parental home hours when the child is young affect the future educational outcome of
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the child, which is denoted by Ed ′σ
8, and innate ability, η′σ , both of which affect the child’s earnings (see equation

42).The state vector for the child in the first period of the life-cycle is determined by the intergenerational state

transition function M(x ′|zT+1); specifically, we assume that

M(x ′|zT+1) =
[
Pr(η′σ | Ed ′σ ), 1

]
Pr(Ed ′σ | zT+1) (43)

Thus, we assume that the parental inputs and characteristics (parental education and fixed effects) determine edu-

cational outcomes according to the probability distribution Pr(Ed ′σ | zT+1). In our empirical specification the state

vector of inputs, zT+1, contains the parental characteristics, the cumulative investment variables (low time and high

time) of each parent up to period T , the permanent income of each parent, and the number of siblings..In the data,

we observe only total time devoted to children each period; thus, we assign each child age 5 or younger in the

household the average time investment, assuming all young children in the household receive the same time input.

Parental characteristics include the education of the father and mother, their individual-specific effects, and race.

Once the education level is determined, it is assumed that the ability η′σ is determined according to the probability

distribution Pr(η′σ | Ed ′σ ). The above form of the transition allows us to estimate the equations separately for the

production function of children given as the first two probabilities and the marriage market matching given as the

last term.

Contemporaneous Utility We assume that the per-period utility from consumption is linear; therefore, Equation

(37) the utility for a single parent utility from consumption and children (after substituting the budget constraint),

becomes

ukt(zt) = θ k(zt)+ αwt(zt , ht)− ααN (zt)(N t+bt) (44)

where θ k(zt) are the coefficients associated with each combination of time allocation choice, thus capturing the

differences in the value of non-pecuniary benefits/costs associated with the different activities. The vector of

decisions includes birth; thus, we allow the utility associated with different time allocations to depend on whether

there is a birth or not. As discussed earlier, this utility captures not only the level of leisure but also the non-

pecuniary costs/benefits associated with the different activities; for example, we do not rule out that time spent

with children may be valued and that the non-pecuniary costs/benefits depend on birth events and levels of labor

supply.

We assume no borrowing and saving, one consumption good with price normalized to 1, and risk neutrality.

The first term represents the utility from own consumption. The second term, however, represents the net utility/cost

from having young children in the household. In general, given our assumptions, we can use a budget constraint to

derive the coefficients on income and number of children and a separate, non-pecuniary utility from children and

monetary costs. However, since we do not have data on consumption or expenditures on children, the coefficients

on the number of children also capture non-pecuniary utility from children and cannot be identified separately

from the monetary costs of raising children. The interaction of income with the number of children and education

captures differences in the cost of raising children by the socioeconomic status of parents. By assuming a linear

utility function, we abstract from risk aversion and insurance considerations that may affect investment in children,

fertility, as well as the labor supply. For families, we ignore the insurance aspects of marriage and divorce. While

these issues are potentially important, we abstract from them and focus on transmission of human capital. The

no borrowing and savings assumption is extreme and allows us to test whether (i) income is important in the

production function of education of children, and (ii) whether the timing of income is important.

8Level of education, Edσ , is a discrete random variable in the model where it can take 4 different values: less than high school (LHS),

high school (HS), some college (SC), and college (COL).
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5.2 Empirical Results

This section presents results of estimation and analysis of the structural model. First, we present estimates from

Step 1 of our estimation procedure. Second, we present estimates from Step 2 of the estimation. Third, we present

results that assess how well our model fits the data. Finally, we present counterfactual value of each type of

household, which can be interpreted also as the return to parental investment in children; the valuation function

of the children includes the value of their education, earnings, as well as the spouse they married and his or her

income.

5.3 First stage estimation

The first stage estimates include estimates of the earnings equation, the unobserved skills function, the intergener-

ational education production function, and the marriage assignment functions. All these functions are fundamental

parameters of our model which are estimated outside the main estimation of the preference, discounts factors, and

the net costs of raising children parameters. The first stage estimates also include equilibrium objects such as the

conditional choice probabilities. Below we present estimates on the main earnings equation, the unobserved skills

function, the intergenerational education production function. The estimates of the marriage assignment functions

and the conditional choice probabilities are included in a supplementary appendix.

Earnings equation and unobserved skills Table 3 presents the estimates of the earnings equation and the func-

tion of unobserved (to the econometrician) individual skill (see also Gayle, Golan and Soytas, 2014). The top

panel of the first column shows that the age-earnings profile is significantly steeper for higher levels of completed

education; the slope of the age-log-earnings profile for a college graduate is about 3 times that of an individual with

less than a high school education. However, the largest gap is for college graduates; the age-log-earnings profile for

a college graduate is about twice that of an individual with only some college. These results confirm that there are

significant returns to parental time investment in children in terms of the labor market because parental investment

significantly increases the likelihood of higher education outcomes, which significantly increases lifetime labor

market earnings.

The bottom panel of the first column and the second column of Table 4 show that full-time workers earn 2.6

times more than part- time workers for males, and 2.3 times more than part time workers for females (see also

Gayle, Golan and Soytas (2014)). It also shows that there are significant returns to past full-time employment for

both genders; however, females have higher returns to full-time labor market experience than males. The same

is not true for part-time labor market experience; males’ earnings are lower if they worked part time in the past

while there are positive returns to the most recent female part-time experience. However, part-time experiences

2 and 3 years in the past are associated with lower earnings for females; these rates of reduction in earnings are,

however, lower than those of males. These results are similar to those in Gayle and Golan (2012) and perhaps

reflect statistical discrimination in the labor market in which past labor market history affects beliefs of employers

on workers’ labor market attachment in the presence of hiring costs.9 These results imply there are significant costs

in the labor market in terms of the loss of human capital from spending time with children, if spending more time

with children comes at the expense of working more in the labor market. This cost may be smaller for female than

males because part-time work reduces compensation less for females than males. If a female works part-time for

3 years, for example, she loses significantly less human capital than a male working part-time for 3 years instead

of full-time. This difference may give rise to females specializing in child care; this specialization comes from the

labor market and production function of a child’s outcome as is the current wisdom.

The unobserved skill (to the econometrician) is assumed to be a parametric function of the strictly exogenous

time-invariant components of the individual variables. This assumption is used in other papers (such as those by

9These results are also consistent with part-time jobs difffering more than full-time jobs for males more than for females.
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MaCurdy, 1981; Chamberlain, 1986; Nijman and Verbeek, 1992; Zabel, 1992; Newey, 1994; Altug and Miller,

1988); and Gayle and Viauroux, 2007). It allows us to introduce unobserved heterogeneity to the model while still

maintaining the assumption on the discreteness of the state space of the dynamic programming problem needed

to estimate the structural parameters from the dynastic model. The Hausman statistic shows that we cannot reject

this correlated fixed effect specification. Column (3) of Table 4 presents the estimate of the skill as a function of

unobserved characteristics; it shows that blacks and females have lower unobserved skill than whites and males.

This could capture labor market discrimination. Education increases the level of the skill but it increases at a

decreasing rate in the level of completed education. The rates of increase for blacks and females with some college

and a college degree are higher than those of their white and male counterparts. This pattern is reversed for blacks

and females with a high school diploma. Notice that the skill is another transmission mechanism through which

parental time investment affects labor market earnings in addition to education.

Intergenerational education production function A well-known problem with the estimation of production

functions is the simultaneity of the inputs (time spent with children and income). As is clear from the structural

model, the intergenerational education production function suffers from a similar problem. However, because the

output of the intergenerational education production (i.e., completed education level) is determined across gener-

ations while the inputs, such as parental time investment, are determined over the life-cycle of each generation,

we can treat these inputs as predetermined and use instruments from within the system to estimate the production

function.

Table 4 presents results of a Three Stage Least Squares estimation of the system of individual educational

outcomes; the estimates of the two other stages are in the supplementary appendix. The system includes the linear

probabilities of the education outcomes equation as well as the labor supply, income, and time spent with children

equations. The estimation uses the mother’s and father’s labor market hours over the first 5 years of the child’s life

as well as linear and quadratic terms of the mother’s and father’s age on the child’s fifth birthday as instruments. The

estimation results show that controlling for all inputs, a child whose mother has a college education has a higher

probability of obtaining at least some college education and a significantly lower probability of not graduating

from high school relative to a child with a less-educated mother; while the probability of graduating from college

is also larger, it is not statistically significant. If a child’s father, however, has some college or college education

the child has a higher probability of graduating from college. This is consistent with the findings of Rios-Rull and

Sanchez-Marcus (2002).

We measure parental time investment as the sum of the parental time investment over the first 5 years of the

child’s life. The total time investment is a variable that ranges between 0 and 10 since low parental investment is

coded as 1 and high parental investment is code as 2. The results in Table 5 show that while a mothers’ time invest-

ment significantly increases the probability of a child graduating from college or having some college education, a

father’s time investment significantly increases the probability of the child graduating from high school or having

some college education. These estimates suggest that while a mother’s time investment increases the probability

of a high educational outcome, a father’s time investment truncates low educational outcome. However, time in-

vestment of both parents is productive in terms of their children’s education outcomes. It is important to note that

mothers’ and fathers’ hours spent with children are at different margins, with mothers providing significantly more

hours than fathers. Thus, the magnitudes of the discrete levels of time investment of mothers and fathers are not

directly comparable since what constitutes low and high investment differs across genders.

5.3.1 Second stage estimation

This section presents estimates of the intergenerational and intertemporal discount factors, the preference para-

meters, and child care cost parameters. Table 5 presents the discount factors. It shows that the intergenerational

discount factor, λ, is 0.795. This implies that in the second to last period of the parent’s life, a parent valuation of
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their child’s utility is 79.5% of their own utility. The estimated value is in the same range of values obtained in

the literature calibrating dynastic model (Rios-Rull and Sanchez-Marcos, 2002; Greenwood, Guner, and Knowles,

2003). However, these models do not include life-cycle. The estimated discount factor, β, is 0.81. The discount

factor is smaller than typical calibrated values, however, few papers that estimate it find lower values (for example,

Arcidiacono, Sieg, and Sloan, 2006, find it to be 0.8).10 Lastly, the discount factor associated with the number

children, υ, is 0.25. It implies that the marginal increase in value from the second child is 0.68 and of the third

child is 0.60.

Table 5 also presents the marginal utility of income which is positive and increasing with number of children

except for a household with a college graduate wife and husband with at least a high school education. This

rationalized the negative education in education. Also husband’s education decreases the marginal of income for

families with children. The marginal utility of income for families with children is also lower for black families.

The right hand panel of Table 5 presents our estimates of the dis/utility from the household. As is usual in

discrete choice models they are estimated relative to an outside choice with in case are both spouses not work,

giving birth, or spending any time with young children. We also use an additive specification in which the cost

of birth, work and time with children are additively separable. First, every labor supply choice of the household

carries with it a disutility relative to the reference choice; the exception is for households in which both spouses

works full time — which statistically is not different from no work, no birth and no time with children – and when

the wife does not work and husband works full time. In the data if both spouses spend low time with children and

there is no birth then both spouses are equally likely to be observed working full time as not working and hence

the equal utility both set of choices. Second, there are no distinct patterns to utility from time with children; these

estimates are highly nonlinear, perhaps reflecting that it is a mixture of leisure and disutility. However, giving birth

provides has a positive utility. This implies that, although parents get utility from the quality of their children, they

also get some instantaneous utility from a birth.

5.3.2 Model fit and Value of Different Household

In this section, we first assess the ability of our model to reproduce the basic stylized facts by race, gender, and

marital status as summarized in Section 2. We assess how well our model predicts the choices of labor supply,

home hours with young children, and birth. Our model is over-identified and passes the standard over-identifying

restrictions J-test. In the estimation, the conditional choice probabilities are targeted; in the simulation we simulate

a sample of individuals and determine whether the individuals in our simulated sample behave like the individuals

in our data. In some regards, this exercise is equivalent to a graphical summary of our model’s over-identification

test. Next, we calculate the counterfactual value of different household types to see whether it can rationalize the

observed marriage pattern in the data.

Table 6 presents the model’s fit. The model matches the labor supply patterns between gender and across

race well. While it also matches the variation across race and gender for parental time with children, the levels

are not similar in all cases. Examining the birth decisions, the model produces the differences in birth rates

across household of different race, but the underpredicts the fecundity of whites by about a half. This lower birth

rate is partly rationalizes the lower time with children predicted by the model. Nevertheless, our empirical model

specification is very parsimonious: We do not include race, education, or marital status in the preference parameters

for the disutility/utility of the different choices. In addition, the only unobserved heterogeneity is estimated from

the earnings equations. Still, the model performs well in replicating the data based primarily on the economic

interactions embodied in it.

Next, we turn to the value of different household types; the results are presented in Table 7. It shows that

there is not much difference between married households by race. The only exception is that a black male with

at least some college education receives a negative lifetime utility from marrying a female with less than high

10We are not aware of dynastic models in which the time discount factor is estimated.

22



school education. While the qualitative pattern is similar for white couples, it is not as strong. Overall, households

with more education have higher values. For whites, the maximum value is achieved in two college graduate

households, while for blacks it is a college educated husband and a wife with some college.

6 Conclusion

This paper develops an estimation that partially overcomes this curse of dimensional by exploiting properties of

the stationary equilibrium. It provides a framework to estimate a rich class of dynastic models which includes in-

vestment in children’s human capital, monetary transfers, unitary households, endogenous fertility and a life-cycle

within each generation. This is an extension of methods used in the literature for the estimation of non-dynastic

model to the dynastic setting. This estimation technique makes this estimation and empirical assessment of pro-

posed counterfactual policy reform feasible. The paper compares the performance of the proposed estimator to a

nested fixed point estimator using simulations and provides estimation results from an application of intergenera-

tional transmission of human capital. The application provides plausible estimates of the intergenerational discount

factors and matching the data very well.

A Appendix

Proof of Proposition 1. Recall the conditional value function in Equation (Link to Model Section):

υk(zt) = ukt(zt)+ β
∑

zt+1
V (zt+1)F(zt+1|zt , Ikt = 1) (45)

We begin by noting that

V (zt+1) =
∑17

s=0 ps(zt+1)
[
ust+1(zt+1)+ Eε(εst+1|Ist+1 = 1, zt+1)+ β

∑
zt+2

V (zt+2)F(zt+2|zt+1, Ist+1 = 1)
]

(46)

Substituting 46 into
∑

zt+1
V (zt+1)F(zt+1|zt , Ikt = 1) gives:∑

zt+1
V (zt+1)F(zt+1|zt , Ikt = 1) =

∑
zt+1

∑17
s=0 ps(zt+1)

[
ust+1(zt+1)+ Eε(εst+1|Ist+1 = 1, zt+1)

]
F(zt+1|zt , Ikt = 1)

+β
∑

zt+1

∑17
s=0 ps(zt+1)

[∑
zt+2

V (zt+2)F(zt+2|zt+1, Ist+1 = 1)
]

F(zt+1|zt , Ikt = 1)

Substitute the above into Equation (45) gives:

υk(zt) = ukt(zt)+ β
∑

zt+1

∑17
s=0 ps(zt+1)

[
ust+1(zt+1)+ Eε(εst+1|Ist+1 = 1, zt+1)

]
F(zt+1|zt , Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

[∑
zt+2

V (zt+2)F(zt+2|zt+1, Ist+1 = 1)
]

F(zt+1|zt , Ikt = 1) (47)

Similarly

V (zt+2) =
∑17

r=0 pr (zt+2)
[
ur t+2(zt+2)+ Eε(εr t+2|Ir t+2 = 1, zt+2)+ β

∑
z+3 V (zt+3)F(zt+3|zt+2, Ir t+2 = 1)

]
(48)

Then ∑
zt+2

V (zt+2)F(zt+2|zt+1, Ist+1 = 1) =∑
zt+2

∑17
r=0 pr (zt+2)

[
ur t+2(zt+2)+ Eε(εr t+2|Ir t+2 = 1, zt+2)

]
F(zt+2|zt+1, Ir t+1 = 1)

+β
∑

zt+2

∑17
r=0 pr (zt+2)

[∑
z+3 V (zt+3)F(zt+3|zt+2, Ir t+2 = 1)

]
F(zt+2|zt+1, Ist+1 = 1) (49)
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Substitute into (47) gives:

υk(zt) = ukt(zt)+ β
∑

zt+1

∑17
s=0 ps(zt+1)

[
ust+1(zt+1)+ Eε(εst+1|Ist+1 = 1, zt+1)

]
F(zt+1|zt , Ikt = 1)

+β2
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr (zt+2)

[
ur t+2(zt+2)+ Eε(εr t+2|Ir t+2 = 1, zt+2)

]
×F(zt+2|zt+1, Ist+1 = 1)F(zt+1|zt , Ikt = 1)

+β3
∑

zt+1

∑17
s=0 ps(zt+1)

∑
zt+2

∑17
r=0 pr (zt+2)

∑
z+3 V (zt+3)F(zt+3|zt+2, Ir t+2 = 1)

×F(zt+2|zt+1, Ist+1 = 1)F(zt+1|zt , Ikt = 1) (50)

WLOG we assume t + 3 = T then :

V (zT , εT ) = max
I

E

(∑17
k=0 IkT [ukT (zT )+ εkT + λN−νk

∑Nk

n=1

∑
xn

Ug+1,n(xn)]|zT , εT

)
Now

V (zT ) =
∫

V (zT , εT ) fε(εT )dεT

=
∫

max
I

E

(∑17
j=0 I jT [u jT (zT )+ ε jT + λN−νj

∑N j

n=1

∑
xn

Ug+1,n(xn)]|zT , εT

)
fε(εT )dεT

=
∑17

j=0 p j (zT )[ukT (zT )+ Eε(ε jT |zT , I jT = 1)+ λN−νj

∑N j

n=1

∑
xn

Ug+1,n(xn)M(x
′
n|zT , I jT = 1)](51)

From the value function representation we know that Ug+1,n(xn) = V (xn) therefore

V (zT ) =
∑17

j=0 p j (zT )[u jT (zT )+ Eε(ε jT |zT , I jT = 1]+ λN−νj

∑N j

n=1

∑
xn

V (xn)M(xn|zT , I jT = 1)] (52)

Substitute the above into (50) and rearranging we get:

υk(zt) = ukt(zt)+ β
∑

zt+1

∑17
s=0 ps(zt+1)

[
ust+1(zt+1)+ Eε(εst+1|Ist+1 = 1, zt+1)

]
F(zt+1|zt , Ikt = 1)

+β2
∑

zt+2

∑17
r=0 pr (zt+2)

[
ur t+2(zt+2)+ Eε(εr t+2|Ir t+2 = 1, zt+2)

]
×
∑

zt+1

∑17
s=0 ps(zt+1)F(zt+2|zt+1, Ist+1 = 1)F(zt+1|zt , Ikt = 1)

+β3
∑

zT

∑17
j=0 p j (zT )[u jT (zT )+ Eε[ε jT |zT , I jT = 1]

∑17
r=0

∑
zt+2

pr (zt+2)F(zt+3|zt+2, Ir t+2 = 1)

×
∑17

s=0

∑
zt+1

ps(zt+1)F(zt+2|zt+1, Ist+1 = 1)F(zt+1|zt , Ikt = 1)

+λβ3
∑

zT

∑17
j=0 p j (zT )N

−ν
j

∑N j

n=1

∑
xn

V (x
′

n)M(x
′
n|zT , I jT = 1)

∑
zt+2

∑17
r=0 pr (zt+2)F(zT |zt+2, Ir t+2 = 1)

×
∑

zt+1

∑17
s=0 ps(zt+1)F(zt+2|zt+1, Ist+1 = 1)F(zt+1|zt , Ikt = 1) (53)

Using the definition of the optimal transition function the above simplifies to:

υk(zt) = ukt(zt)+ β
∑17

s=0

∑
zt+1

ps(zt+1)
[
ust+1(zt+1)+ Eε[εst+1|Ist+1 = 1, zt+1]

]
Fo(zt+1|zt , Ikt = 1)

+β2
∑17

s=0

∑
zt+2

ps(zt+2)
[
urs+2(zt+2)+ Eε[εst+2|Ist+2 = 1, zt+2]

]
Fo(zt+2|zt , Ikt = 1)

+β3
∑17

s=0

∑
zT

ps(zT )[usT (zT )+ Eε[εsT |zT , IsT = 1]]Fo(zT |zt , Ikt = 1)

+λβ3
∑17

s=0

∑
zT

ps(zT )N
−ν
s

∑Ns

n=1

∑
xn

V (xn)M(xn|zT , I sT = 1)Fo(zT |zt , Ikt = 1) (54)

Under the assumption that parents are infertility in the final period of their life-cycle simplifies to:

υk(zt) = ukt(zt)+ β
∑17

s=0

∑
zt+1

ps(zt+1)
[
ust+1(zt+1)+ Eε[εst+1|Ist+1 = 1, zt+1]

]
Fo(zt+1|zt , Ikt = 1)

+β2
∑17

s=0

∑
zt+2

ps(zt+2)
[
urs+2(zt+2)+ Eε[εst+2|Ist+2 = 1, zt+2]

]
Fo(zt+2|zt , Ikt = 1)

+β3
∑17

s=0

∑
zT

ps(zT )[usT (zT )+ Eε[εsT |zT , IsT = 1]]Fo(zT |zt , Ikt = 1)

+λβ3 N−ν
∑N

n=1

∑
xn

V (xn)
∑KT

s=0

∑
zT

M(xn|zT , I sT = 1)ps(zT )F
o(zT |zt , Ikt = 1). (55)
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Proof of Proposition 2. We first check the various boundedness requirements of Theorem 8.12 in Newey and

McFadden (1994). By assumption A8(i), we have that E[
∥∥ξ d(Z , θ, ψ)

∥∥2
] < ∞. It obvious by inspection that

ξ d(Z , θ, ψ) is continuously differentiable in θ and by A8(ii–iii) that E[∇θξ d(Z , θ, ψ)] < ∞. Additionally,

∇ψψξ d(Z , θ
o, ψo) is also bounded: E[

∥∥∇ψψξ d(Z , θ
o, ψo)

∥∥] <∞. Second, consider a point-wise Taylor expan-

sion for the j th element of ξ d(Z , θ, ψ),

ξ
j
(Z , ψ) = ξ

j
(Z , ψo)+∇ψξ

j
(Z , ψo)(ψ(z)− ψo(z))+ (ψ(z)− ψ0(z))′∇ψψξ

j
(Z , ψo)(ψ(z)− ψo(z))

+o(
∥∥ψ(z)− ψo(z)

∥∥2
),

where the norm over ψ is the sup-norm. Next, note that∣∣∣ξ j
(Z , ψ)− ξ

j
(Z , ψ0)∇ψξ

j
(Z , ψo)(ψ(z)− ψo(z))

∣∣∣ ≤ ∥∥∥(ψ(z)− ψo(z))′∇ψψξ
j
(Z , ψo)(ψ(z)− ψo(z))

∥∥∥
+o(

∥∥ψ(z)− ψo(z)
∥∥2
)

≤
∥∥ψ − ψo

∥∥2
∥∥∥∇ψψξ j

(Z , ψo)
∥∥∥+ o(

∥∥ψ − ψo
∥∥2
),

using the triangle inequality and the Cauchy-Schwartz inequality. Therefore, for ‖ψ − ψo‖ small enough,∣∣∣ξ j
(Z , ψ)− ξ

j
(Z , ψo)−∇ψξ

j
(Z , ψ0)(ψ(z)− ψ

o(z))
∣∣∣ ≤ ∥∥ψ − ψo

∥∥2
∥∥∥∇ψψξ j

(Z , ψo)
∥∥∥ .

So that ∥∥ξ(Z , ψ)− ξ(Z , ψ0)−∇ψξ(Z , ψ
o)(ψ(z)− ψo(z))

∥∥ ≤ ∥∥ψ − ψo
∥∥2 ∥∥∇ψψξ(Z , ψo)

∥∥∥∥ξ(Z , ψ)− ξ(Z , ψo)−∇ψξ(Z , ψ
o)(ψ(z)− ψo(z))

∥∥ ≤ ∥∥ψ − ψ0

∥∥2 ∥∥∇ψψξ(Z , ψo)
∥∥

Hence 0(Z , ψ−ψo) = ∇ψξ(Z , ψ0)(ψ(z)−ψ
o(z)) and9(Z) =

∥∥∇ψψξ(Z , ψo)
∥∥. It follows that both 0(Z , ψ−

ψo) and 9(Z) are bounded from the boundedness conditions established above. Next we establish the form of the

influence function. Note that we have∫
0(Z , ψ)F0( dω) =

∫
fz(z)E[∇ψξ(Z , ψ

o) | z]ψ(z) dz =

∫
υ(z)ψ(z),

where υ(z) = fz(z)E[∇ψξ(Z , ψ0) | z]. So, by the arguments on page 2208 of Newey and McFadden (1994), we

have the influence function for ξ(ω,ψ (D)):

8(z) = υ(z)− E
[
υ(z) Ĩ

]
= fz(z)E

[
∇ψξ(Z , ψ

o) | z
]
− E

[
fz(z)E[∇ψξ(Z , ψ

o) | z] Ĩ
]
.

Again by the boundedness of ∇ψξ(Z , ψ0), it follows that
∫
‖υ(z)‖ dz < ∞. Finally Assumption A7 guarantees

that the Jacobian term converges.

Proof of Proposition 3.

This results follows immediately by combining the results in Proposition 1, with integral over zt+1 the summa-

tion.
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TABLE 1 : SUMMARY STATISTICS

(Standard Deviation are in parentheses)

Total sample Parents Children

Variable N Mean N Mean N Mean

Female 115,280 0.545 86,302 0.552 28,978 0.522

Black 115,280 0.223 86,302 0.202 28,978 0.286

Married 115,280 0.381 86,302 0.465 28,978 0.131

Age 115,280 26.155 86,302 27.968 28,978 20.756

(7.699) (7.872) (3.511)

Education 115,280 13.438 86,302 13.516 28,978 13.209

(2.103) (2.138) (1.981)

Number of children 115,280 0.616 86,302 (0.766) 28,978 0.167

(0.961) (1.028) (0.507)

Annual labor income 114,871 16,115 86,137 19,552 28,734 5,811

(24,622) (26,273) (14,591)

Annual labor market hours 114,899 915 86,185 1078 28,714 424

(1041) (1051) (841)

Annual housework hours 66,573 714 58,564 (724) 8,009 641

(578) 585 (524)

Annual time spent on children 115,249 191 86,275 234 28,974 63.584

(432) (468) (259)

Number of individuals 12,318 6,813 5,505

Source: Data from the Family-Individual File of the Michigan Panel Study of Income Dynamics (PSID), and include

individuals surveyed between 1968 and 1997. Column (1) contains the summary statistics for the full sample; column (2)

contains the summary statistics for the parents generation; column (3) contains the summary statistics of the off spring of the

parents in column (2). Annual labor income is measured in 2005 dollars. Education measures year of completed education.

There are less observations for annual housework hours than time spent on children because single individuals with no child

are coded as missing for housework hours but by definition are set to zero for time spent on children
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TABLE 2: SIMPLIFIED DISCRETE CHOICE MONTE CARLO SIMULATION RESULTS

Pseudo Maximum Likelihood Nested Fixed Point (ML)

sample size sample size

1,000 10,000 20,000 40,000 1,000 10,000 20,000 40,000

θ = 0.25

Mean 0.24473 0.24935 0.24886 0.24881 0.22714 0.24571 0.23320 0.24477

Std. Dev. 0.04991 0.01328 0.00915 0.00668 0.04884 0.01354 0.02135 0.01019

Bias -0.00527 -0.00065 -0.00114 -0.00119 -0.02286 -0.00429 -0.01680 -0.00523

M.S.E 0.00249 0.00017 0.00008 0.00005 0.00288 0.00020 0.00073 0.00013

λ = 0.8

Mean 0.80425 0.79745 0.79797 0.79673 0.77538 0.78966 0.76934 0.78855

Std. Dev. 0.11241 0.03175 0.02157 0.01587 0.09211 0.03244 0.03656 0.02063

Bias 0.00425 -0.00255 -0.00203 -0.00327 -0.02462 -0.01034 -0.03066 -0.01145

M.S.E. 0.01253 0.00100 0.00046 0.00026 0.00901 0.00115 0.00226 0.00055

β = 0.95

Mean 0.94208 0.95245 0.95037 0.95136 0.93441 0.95227 0.94603 0.95027

Std. Dev. 0.06276 0.01893 0.01301 0.00934 0.05322 0.01983 0.01820 0.01236

Bias -0.00792 0.00245 0.00037 0.00136 -0.01559 0.00227 -0.00397 0.00027

M.S.E. 0.00396 0.00036 0.00017 0.00009 0.00305 0.00039 0.00034 0.00015

Avg Comp.

time5 0.65 2.88 6.06 12.60 347.6 376.4 467.5 509.8

Note: Pseudo Maximum Likelihood (PML) corresponds to the estimation conducted by the new estimator using PML, and

ML estimation is by the Nested Fixed Point (NFXP). All of the simulations are conducted using the GAUSS programming

language on a 2 CPU 1.66 GHz, 3 GB RAM.laptop computer. Unit of time is seconds. The mean, empirical standard

deviation, bias and mean squared error (M.S.E)of each parameter estimate are reported in the respective column for each

sample size. The bias and the MSE are calculated relative to the original data generating value of the parameter. The data

generating value of the parameter is also reported at the top left corner of summary statistics block for that parameter. (i.e., it

is reported as θ = 0.25 for the first parameter).
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TABLE 3: ESTIMATES OF EARNINGS EQUATION: DEPENDENT VARIABLE: LOG OF YEARLY EARNINGS

(Standard Errors in Parenthesis)

Variable Estimate Variable Estimate Variable Estimate

Demographic Variables Fixed Effect

Age Squared -4.0e-4 Female x Full time work -0.125 Black -0.154

(1.0e-5) (0.010) (0.009)

Age x LHS 0.037 Female x Full time work (t-1) 0.110 Female -0.484

(0.002) (0.010) (0.007)

Age x HS 0.041 Female x Full time work (t-2) 0.025 HS 0.136

(0.001) (0.010) (0.005)

Age x SC 0.050 Female x Full time work (t-3) 0.010 SC 0.122

(0.001) (0.010) (0.006)

Age x COL 0.096 Female x Full time work (t-4) 0.013 COL 0.044

(0.001) (0.010) (0.006)

Current and Lags of Participation Female x Part time work (t-1) 0.150 Black x HS -0.029

Full time work 0.938 (0.010) (0.010)

(0.010) Female x Part time work (t-2) 0.060 Black x SC 0.033

Full time work (t-1) 0.160 (0.010) (0.008)

(0.009) Female x Part time work (t-3) 0.040 Black x COL 0.001

Full time work (t-2) 0.044 (0.010) (0.011)

(0.010) Female x Part time work (t-4) -0.002 Female x HS -0.054

Full time work (t-3) 0.025 (0.010) (0.008)

(0.010) Individual Specific Effects Yes Female x SC 0.049

Full time work (t-4) 0.040 (0.006)

(0.010) Female x COL 0.038

Part time work (t-1) -0.087 (0.007)

(0.010) Constant 0.167

Part time work (t-2) -0.077 (0.005)

(0.010)

Part time work (t-3) -0.070

(0.010)

Part time work (t-4) -0.010 Hausman Statistics 2296

(0.010) Hausman P-Value 0.000

N 134,007

Number of Individuals 14,018

R-squared 0.44 0.278

Note: LHS is a dummy variable indicating that the individual has completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school but college; SC is a dummy variable

indicating that the individual has completed education of greater than high school but is not a college graduate; COL is a

dummy variable indicating that the individual has completed education of at least a college graduate.
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TABLE 4: 3SLS SYSTEM ESTIMATION THE EDUCATION PRODUCTION FUNCTION

(Standard Errors in parenthesis; Exclude class is Less than High School)

Variable
High

School
Some

College

College

High School Father 0.063 0.003 -0.002
(0.032) (0.052) (0.0435

Some College Father 0.055 0.132 0.055
(0.023) (0.038) (0.031)

College Father -0.044 0.008 0.120
(0.032) (0.051) (0.042)

High School Mother 0.089 0.081 -0.019
(0.040) (0.065) (0.052)

Some College Mother 0.007 -0.041 0.017
(0.030) (0.049) (0.039)

College Mother 0.083 0.120 0.040
(0.036) (0.057) (0.047)

Mother’s Time -0.014 0.080 0.069
(0.021) (0.034) (0.027)

Father’s Time 0.031 0.100 0.026
(0.019) (0.029) (0.025)

Mother’s Labor Income -0.025 -0.013 0.005
(0.009) (0.014) (0.011)

Father’s Labor Income 0.001 0.001 0.002
(0.003) (0.004) (0.003)

Female -0.002 0.135 0.085
(0.017) (0.028) (0.022)

Black 0.020 0.082 0.043
(0.039) (0.063) (0.051)

Number Siblings Under age 3 -0.014 -0.107 -0.043
(0.017) (0.027) (0.022)

Number Siblings between age 3 and 6 -0.029 -0.047 -0.012
(0.019) (0.030) (0.025)

Constant 0.855 -0.231 -0.359
(0.108) (0.172)] (0.140)]

Observations 1335 1335 1335

Note: Data from the Family-Individual File of the Michigan Panel Study of Income Dynamics (PSID), and include

individuals surveyed between 1968 and 1997. Instruments: Mother’s and father’s labor market hours over the child’s first 8

years of life, linear and quadratic terms of mother’s and fathers age when the child was 5 years old.
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TABLE 5: STRUCTURAL ESTIMATES OF DISCOUNT FACTORS AND UTILITY PARAMETER

(Standard Errors in parenthesis)

Variable Estimates Variable Estimates

Discount factors Dis/Utility of Choices

β 0.816 Wife Husband

(0.002) Labor Supply

λ 0.795 No work, Part time -0.512

(0.200) (0.005)

υ 0.248 No work Full time 0.207

(0.168) (0.009)

Marginal Utility of Income Part time No work -2.023

Family labor Income 0.480 (0.003)

(0.004) Part time Part time -1.168

Children x Family Labor Income 1.216 (0.009)

(0.065) Part time Full time -0.605

Children x HS x Family Labor Income 1.279 (0.008)

(0.066) Full time No work -0.408

Children x SC x Family Labor Income 1.300 (0.007)

(0.065) Full time Part time -1.24532

Children x COL x Family Labor Income -1.017 (0.011)

(0.066) Full time Full time 0.001

Children x HS Spouse x Family Labor Income -0.995 (0.010)

(0.066) Time with Kids

Children x SC Spouse x Family Labor Income -0.992 Low Medium 0.502

(0.066) (0.014)

Children x COL Spouse x Family Labor Income -0.466 Low High 0.564

(0.066) (0.013)

Children x Black xFamily Labor Income -0.108 Medium Low -0.169

(0.004) (0.008)

Medium Medium 0.129

(0.010)

() Medium High 0.593

(0.013)

High Low -0.364

(0.007)

High Medium 0.353

(0.011)

High High -0.140

(0.012)

Birth 0.701

(0.025)

Note: LHS is a dummy variable indicating that the individual has completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school but college; SC is a dummy variable

indicating that the individual has completed education of greater than high school but is not a college graduate; COL is a

dummy variable indicating that the individual has completed education of at least a college graduate. Excluded choice is no

work, no time with children and no birth for both spouses.
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TABLE 6: MODEL FIT

LABOR SUPPLY TIME WITH YOUNG CHILDREN BIRTH

WHITES

Wife

Data Model Data Model

No work 0.2634 0.2599 Low 0.6363 0.8315

Part time 0.1596 0.1622 Medium 0.2257 0.0531

Full time 0.5770 0.5779 High 0.1380 0.0470

Data Model

Husband No birth 0.9014 0.9551

Data Model Data Model Birth 0.0986 0.04493

No work 0.0290 0.0250 Low 0.8237 0.9592

Part time 0.0306 0.0361 Medium 0.1008 0.0238

Full time 0.9404 0.9390 High 0.0755 0.0170

BLACKS

Wife

Data Model Data Model

No work 0.1998 0.1309 Low 0.6837 0.9046

Part time 0.1002 0.2150 Medium 0.2192 0.0497

Full time 0.7000 0.6541 High 0.0971 0.0457

Data Model

Husband No birth 0.8955 0.9249

Data Model Data Model Birth 0.1045 0.07507

No work 0.0640 0.0596 Low 0.8338 0.9729

Part time 0.0423 0.0555 Medium 0.0744 0.0123

Full time 0.8937 0.8850 High 0.0919 0.0148
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TABLE 7: VALUE OF HOUSEHOLDS BY RACE AND EDUCATION

Race Husband Education Wife Education Lifetime Value

LHS LHS 10.2553

LHS HSH 16.9345

LHS SC 16.6506

LHS COL 19.0289

HSH LS 13.1308

HSH HSH 18.9846

HSH SC 21.2153

HSH COL 22.0866

Black SC LS -10.4675

SC HSH 19.6639

SC SC 23.1898

SC COL 23.0041

COL LHS -16.0114

COL HSH 22.8146

COL SC 25.8566

COL COL 24.8893

LHS LHS 9.2577

LHS HS 15.7034

LHS SC 16.5853

LHS COL 18.2363

HS LS 10.6104

HS HSH 17.4535

HS SC 16.2491

HS COL 19.2838

White SC LS 10.8613

SC HSH 18.0404

SC SC 16.6752

SC COL 20.4933

COL LHS 12.9575

COL HSH 13.8842

COL SC 21.1367

COL COL 23.2325

Note: LHS is a dummy variable indicating that the individual has completed education of less than high school; HS is a

dummy variable indicating that the individual has completed education of high school but college; SC is a dummy variable

indicating that the individual has completed education of greater than high school but is not a college graduate; COL is a

dummy variable indicating that the individual has completed education of at least a college graduate.
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