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Abstract 

We derive a tractable nonlinear earnings function which we estimate separately individual-by-

individual using the NLSY79 data. These estimates yield five important parameters for each 

individual: three ability measures (two representing the ability to learn and one the ability to 

earn), a rate of skill depreciation, and a time discount rate. In addition, we obtain a population 

wide estimate of the rental rate of human capital. To illustrate heterogeneity in the production of 

human capital, we plot the distribution of these parameters along with NLSY79 reported AFQT 

scores. By utilizing these parameters, we are able to verify a number of heretofore untested 

theorems relating to human capital investments. In addition, we are able to show how these 

human capital production function parameters relate to cognitive ability, personality traits, and 

family background. Further, accounting for this individual specific heterogeneity dramatically 

reduces estimates of population-wide persistence of (unit-root) permanent and (mean-reverting) 

transitory shocks.  

 

 

 

                                                 
*
 The initial version of this paper was written while Polachek was a Visiting Scholar at the NBER in 

Cambridge, Massachusetts. It was presented at the 2011 IZA Cognitive and Non-Cognitive Skills 

Workshop in Bonn, Germany. The current version now focuses on the heterogeneity of individual human 

capital production function parameters. We thank Vikesh Amin, Christian Belzil, Hwan-Sik Choi, Armin 

Falk, Alfonso Flores-Lagunes, Richard Freeman, Claudia Goldin, James Heckman, Larry Katz, Subal 

Kumbhakar, Dennis Pixton, Arnab Roy, Anton Schick, Xiangin Xu, Francis Yammarino, and Bong Joon 

Yoon for valuable advice and discussion. 

 

mailto:polachek@binghamton.edu
mailto:Tirthatanmoy.Das@ucf.edu
mailto:fecoret@hotmail.com


1 

 

1. Introduction 

 

Parameters of life-cycle models are used in various branches of economics. For example, they are 

employed to calibrate dynamic general equilibrium models (King and Rebelo, 1999), to interpret 

skill formation (Cunha, Heckman, Lochner, and Masterov, 2005), but there are numerous other 

applications.
1
  Typically, such parameters are estimated population-wide. However, as Browning, 

Hansen and Heckman (1999) show, heterogeneity of these human capital parameters is crucial 

because often representative agent models are severely limited and can yield erroneous results. 

Because of this insight, macroeconomics has started to use models where heterogeneity is present 

(Heathcote, et al., 2009). Currently, studies that get at parameter heterogeneity of human capital 

models do so in a limited way. None, to our knowledge, examine how each parameter varies 

individual-by-individual.   

 

In this paper, we estimate individual-specific human capital parameters. We use these 

parameters to answer a number of questions: First, knowing individual-specific human capital 

parameters enables us to test heretofore untested aspects of the life-cycle human capital model. 

An example is whether a greater “ability to learn” (in Heckman et al.’s, 1998, terminology) is 

associated with more years of school and whether a greater “ability to earn” is associated with 

less years of school. Another is whether a higher rate of time preference is associated with fewer 

years of school. Second, knowing individual-specific human capital parameters enables us to 

assess how ability as well as time preference and skill depreciation are related to personality. For 

example, do individuals with a high internal locus of control have a greater ability to learn? Is 

emotional depression associated with time preference? Third, knowing individual-specific human 

capital parameters enables us to examine how family background, including getting educational 

stimuli as a child, is related to one’s abilities to learn and earn. Fourth, knowing individual-

specific parameters enables us to assess how accounting for heterogeneity affects estimated 

responses to permanent (unit-root) and transitory (mean-reverting) income shocks. In short, 

utilizing these parameters has implications for a wide range of issues, from the nature versus 

nurture debate to macroeconomic policy.  

 

With the advent of speedier computers, better optimization routines, and longer panels 

than in the past, one can retrieve individual-specific parameters of the human capital life-cycle 

model by estimating appropriate earnings functions individual-by-individual. In this paper, we 

                                                 
1
 See Cunha and Heckman (2007), Guvenen (2011) and Polachek (2008) for additional applications. 
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obtain individual specific measures for five such parameters. As will be explained, these include 

each person’s rate of time preference, each person’s skill depreciation rate, and (again using 

Heckman et al.’s 1998 nomenclature) three ability parameters – two of which measure a person’s 

“ability to learn” and one a person’s “ability to earn”.  

 

To estimate these parameters person-by-person, we adopt a number of innovations. First, 

we devise a tractable formulation of an earnings function by modifying Haley’s (1976) nonlinear 

specification. This enables us to estimate and identify the five basic parameters mentioned above 

for each person. We prove identification based on Newey and McFadden’s (1986) conditional 

mean criterion. Second, we adopt a maximization routine more prone to converge to a global 

optimum than traditional hill-climbing techniques. Third, we examine the plausibility of our 

estimates by testing whether they are consistent with individual choices based on life-cycle 

human capital theory. Fourth, we plot the distribution of each parameter across the population and 

compare these distributions by race. Fifth, we show how family background as well as skill-based 

tests and personality are related to one’s abilities to earn and learn. Finally, sixth, we assess how 

taking account of such heterogeneity affects responses to permanent and transitory shocks 

estimated in earnings dynamics models. 

 

Our estimates yield a number of new findings. For example, on the micro level, we find 

that blacks have higher rates of time discount and skill depreciation than whites. Individuals with 

both higher time discount rates and greater rates of the skill depreciation have fewer years of 

school. Individuals with a high internal locus of control, and individuals who demonstrate high 

levels of self-esteem, exhibit greater ability as well as lower skill depreciation and time discount 

rates. Individuals inclined towards mental depression have a higher time discount. At the same 

time, family background, such as higher parental education, is associated with a greater ability to 

learn, lower skill depreciation, and a smaller rate of time discount. Educational stimuli, such as 

growing up in a household that subscribed to newspapers and magazines, are associated with a 

higher ability. Conversely, growing up poor is associated with lower levels of ability. On the 

macro level, we find that accounting for heterogeneity reduces estimates of population-wide 

reactions to permanent and transitory shocks by over 50%.  

 

Of course a number of assumptions underlie our approach. First, we assume individuals 

plan their human capital investment strategy based on expectations that they seek to work each 

year of their working life. This is why we concentrate on males who generally have continuous 
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work histories.  Second, we assume individuals use their time and existing human capital to 

create new human capital, but we do not include other inputs such as books and computers as 

well as parental, teacher, and school quality which also can be used to create additional human 

capital.
2
 Third, we assume labor markets reward individuals based on human capital, and neither 

incomplete information nor incentive pay governs worker earnings. Fourth, we assume human 

capital is homogeneous in that remuneration per unit of human capital is constant both across the 

population and over the life-cycle of each individual.
3
 Fifth, we assume all human capital 

production function parameters remain constant throughout each person's life. In the context of 

our model, this means we assume that ability does not change over one’s lifetime, though 

modifications can be made to parameterize changes in measured ability as environmental factors 

such as job, industry, or location change (Borghans et al., 2008). Finally, we rely on individuals 

with a significant work history. Obviously, those with a more complete work-history constitute a 

select sample of the population. Such selectivity biases could come about when making 

inferences about racial differences in ability, for example, if black workers are relatively more 

able than white workers compared to black and white non-workers. However, we find that the 

ability advantage of workers to non-workers is similar for both blacks and whites, so that this bias 

is at worst very small. 

 

The remainder of the paper is organized as follows: Section 2 derives the life-cycle 

human capital model that forms the basis of our estimation. Section 3 describes our estimation, 

including issues regarding identification. Section 4 explains the data. Section 5 gives our results. 

Finally, section 6 concludes. 

 

2. Using the Life-Cycle Human Capital Model to Estimate Ability 

 

The human capital life-cycle investment model yields a complex nonlinear earnings function.
4
  

From this nonlinear function we identify three ability parameters based on the production 

                                                 
2
 Heckman (2008) describes how to modify the underlying human capital production function to include 

these factors as well as family background and personality.  
3
 We cannot test this assumption because age variation in the NLSY79 is limited. However, we find cohort 

effects to be negligible. Further, we test whether rental rates per unit of human capital differ across 

individuals based on occupation and other characteristics, but by and large, we find these rental rates vary 

little based on these characteristics. 
4
 Mincer’s log-linear specification gets around these nonlinearities by assuming time-equivalent human 

capital declines linearly with age. There are conceptual issues regarding estimation as well as interpretation 

of the schooling and experience coefficients in the Mincer earnings function. See Heckman, Lochner and 

Todd (2006). 
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function of human capital. Using Heckman, Lochner and Taber’s (1998) terminology, two of 

these parameters depict “ability to learn” because they measure the ease which an individual can 

create new human capital from old human capital.
5
 The third parameter depicts an individual’s 

initial “ability to earn” because it represents earnings power devoid of human capital 

investments.
6
 In addition, for each individual, we estimate a skill depreciation parameter as well 

as a rate of time preference. 

 

The derivation of the nonlinear earnings function containing these parameters entails the 

typical lifetime maximization paradigm. In the model, one’s earnings are directly proportional to 

human capital stock. Each year one’s human capital stock is augmented by the amount of new 

human capital one creates through schooling or on-the-job training, and one’s human capital 

stock is diminished by the amount human capital depreciates. Creating new human capital entails 

using time and existing human capital to produce new human capital, given one’s ability. The 

greater one’s ability, the more human capital one can produce, and the more rapidly one can 

increase earnings power from year-to-year (Ben-Porath, 1967).  

 

Whereas not everyone accepts the human capital framework as the basis for modeling 

earnings, the approach is surprisingly robust compared to other models in explaining earnings 

patterns.
7
 For example, screening models explain why education enhances earnings, occupational 

segregation models explain why women earn less, efficiency wage models explain certain wage 

premiums, and productivity enhancing contract models explain upward sloping (though not 

necessarily concave) earnings profiles; but none of these theories simultaneously explain all these 

phenomena, whereas the human capital model does. But more important, these other models do 

not allow one to identify ability, skill depreciation, or time discount rates from an empirical 

specification. For this reason, we adopt the human capital model.  

 

2.1 The Ben-Porath Model  

                                                 
5
 The first of these two parameters is an individual’s human capital production function output elasticity, 

and the second is the individual’s human capital production function total factor productivity parameter. 
6
 From these we also provide estimates of the value of human capital stock measured at the time one 

graduates from school and enters the labor market. 
7
 See Rubinstein and Weiss (2006) for a survey of these approaches as well as a discussion of the 

importance of heterogeneity. 
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The Ben-Porath (1967) model assumes individuals invest to maximize expected lifetime 

earnings.
8
  Investment is governed by a production function in which one combines own time and 

ability along with past human capital investments to create new human capital. At each time 

period, the marginal cost of each unit of investment is essentially the foregone earnings 

associated with the time needed to produce an additional unit of human capital.
9
  The marginal 

gain is the present value of each additional unit of human capital. Ben-Porath’s innovation was to 

realize that the finite life constraint implies a monotonically declining marginal gain over the life-

cycle (at least for individuals that work continuously throughout their lives).
10

  The equilibrium 

yields a human capital stock that rises over the life-cycle at a diminishing rate. This results in the 

commonly observed concave earnings profile. 

 

The solution to Ben-Porath’s earnings function is nonlinear. At the time of this 

breakthrough in 1967, few computers were fast enough to easily estimate its parameters. 

However, given the advent of faster computers and longer panels containing individual data, we 

feel now is a good time to examine the implications of the life-cycle model. Our innovation is to 

do so person-by-person. Obtaining person-specific life-cycle parameters gets at heterogeneity. As 

already mentioned, this heterogeneity is a relatively important issue in micro-based econometric 

research. In addition, it has implications for calibrating macroeconomic models, and it has 

implications regarding the earnings-dynamics literature. We adopt a generalized Haley (1976) 

specification. 

 

2.2 Generalizing the Haley Model 

 

The human capital model assumes an individual’s potential earnings 
*

tY  (what a person could 

earn) in time period t are directly related to human capital stock tE . As such,  

  
               (1) 

                                                                                       

                                                 
8
  Incorporating labor supply enables one to maximize utility potentially enabling one to identify specific 

taste parameters, but doing so requires a number of additional assumptions to identify key earnings 

function parameters. 
9
 In more complicated models this cost also includes expenses for goods such as tuition, books, computers, 

and other material inputs to create human capital. As does Mincer and others, we assume the goods 

components are offset by earnings during the investment process.  
10

 See Polachek (1975) for the case of discontinuous labor force participation. 
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where for simplicity R is assumed to be the constant rental rate per unit of human capital.
11

 

Human capital stock is accumulated over one’s lifetime by judicious investments in oneself via 

schooling and on-the-job training (as well as health, job search and other earnings augmenting 

types of human capital).
12

 The rate of change in human capital stock, 
tE
 
is the amount of human 

capital produced (  ) minus depreciation, so that 

ttt EQE                                                                              (2) 

where   is the constant rate of human capital stock depreciation. For simplicity, we assume 

individuals create human capital using a Cobb-Douglas production function such that  

      
                   (3) 

where tK  is the fraction of human capital stock reinvested in time period t and )1,0(b  and   

are production function parameters.
13

 The parameter b reflects the rate at which current (invested) 

human capital stock is transformed to new human capital. It indicates how one acquires new 

knowledge from old, and as such denotes how quickly one learns. We designate b to depict the 

“scale” at which one learns. The “technology” parameter   represents total factor productivity. 

Both β and b reflect an individual’s ability to learn.  

                                                                                                     

 The individual’s objective is to maximize discounted disposable earnings, tY , over the 

working life-cycle.
14

 This goal is achieved by choosing the amount of human capital, Kt, to 

reinvest each year, t, in order to maximize the present value of lifetime earnings 

             
 

 
           (4) 

                                                 

11
 Heckman et al. (1998) assume that the rental rates can vary by schooling level. Polachek (1981) assumes 

the rental rate can vary by type of human capital. Polachek and Horvath (1977) assume the rental rate can 

vary by geographic location. Earnings dynamics models (Meghir and Pistaferri, 2011) assume rental rate 

shocks can affect the investment process. To identify each parameter we maintain the assumption of a 

constant rental rate. Later in the paper, we test whether rental rates vary significantly by population strata.     
12

 Specific training is also included because, according to Kuratani (1973), in equilibrium workers receive 

remuneration for the exact same portion of specific training they pay for, which they finance by taking 

lower wages during the training period.  
13

 As already mentioned, we assume no additional inputs other than one’s own human capital. Less 

simplified production functions could entail individuals employing “goods” inputs such as teachers, books, 

and study time. For example, Ben-Porath (1967) assumes  where Dt equals other inputs. 

Later empirical analysis precludes taking account of these other factors of production because no data are 

available for these other inputs. Thus we adopt the above more simplified human capital production 

function used by Haley (1976).  
14

 As already mentioned, we abstract from labor supply. 

21 b

t

b

tt DKq 
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where J is the total discounted disposable earnings over the working life-cycle, r  is the personal 

time discount rate, and N  is the age at which one retires (assumed known with certainty).
15

 

Disposable earnings are 

            .        (5)  

Maximization of (4) subject to equations (2) and (3) can be done by maximizing the Hamiltonian 

                                  
          (6) 

with constraints , which means one cannot invest using more human capital than one 

currently has; and the transversality condition , which indicates a zero (labor market) gain 

from human capital investing in one’s final year at work. The  solution involves three phases: (1) 

specialization in human capital investment, the time periods when Kt = Et, which we denote as 

“school” since in these time periods one invests full-time; (2) working, which defines the time 

periods when one both works and invests; and (3) retirement, which denotes the time periods 

when one ceases investing completely. We are concerned with Phase 2 since this depicts the only 

time periods we can observe earnings. 

  

This maximization yields a nonlinear (in the parameters) earnings function
16
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where        ;   
  

 
 
 

   
 
  t* is the age at which the individual graduates from school; N is 

the anticipated retirement age which we take as 65, a reasonable assumption for this cohort; and 

E0 is the human capital stock when training begins.  In reality parents begin training their children 

at (or prior to) birth, but for our purposes we consider period 0 to begin when the child starts 

                                                 
15

 We define t=0 to be the time when one begins full-time schooling because we have no data on individual 

investments prior to school.  
16

 Appendix A contains the derivation. Note this specification differs from Haley’s because in our 

derivation we assume a two-term Taylor expansion for the third term in Haley’s earnings function. Our 

specification enables us to identify skill depreciation, which Haley’s specification could not do. 

Importantly, as is shown in Appendix A, this identification does not arise from approximating Haley’s third 

term, nor does it introduce an endogeneity bias by introducing a non-zero truncation error. 

0 tt KE

0N
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formal schooling because this is the point we know children begin learning full-time. Given likely 

measurement error in     and the influence of other unobservable factors, we add a time varying 

error term εt for each individual.  

 

We fit (7) separately for each individual in the NLSY79 to estimate ,,,, EWb  
and r . 

The dependent variable is the individual's weekly earnings (adjusted to 1982-84 dollars). The 

independent variable is current age, t; and t* denotes the age when one completes school. As will 

be explained later, we use data only on those individuals who completed school, and thus we do 

not consider individuals with school intermittent trajectories. In principle, t* can be solved in 

terms of the ability, time-discount, and depreciation parameters E0, b, β, r, and δ. Inserting this 

solution into (7) would complicate the specification as well as omit valuable information we 

already have for t*. Further, including t* does not result in an endogeneity bias when estimating 

(7) person-by-person because t* is a constant, and hence uncorrelated with the error term   . 

Instead, later in the paper, we show how school level varies across individuals based on the above 

earnings function parameters we estimate. Our dataset has 1928 individuals. Thus, we run 1928 

regressions, to obtain parameter estimates for each individual.  

 

One point about E0 is noteworthy before we describe how we estimate (7).  In the formal 

model (see Appendix A), E0 corresponds to human capital stock when one begins specialization, 

that is when one begins school. One can also derive estimates for potential earnings when one just 

begins work. We do so by defining ES as the amount of human capital when one just completes 

school. ES is computed by augmenting E0 by the human capital produced during each year of 

school. Multiplying ES by the rental rate per unit of human capital yields potential earnings. Of 

course, at this stage of the life-cycle, potential earnings exceed actual earnings because 

individuals are still heavily investing in human capital, though not full-time (on-the-job training). 

Later in life, the gap between potential earnings and actual earnings should diminish as the 

proportion of available time spent investing declines. Later in the paper, when presenting our 

empirical estimates, we verify the validity of these predictions. 
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3. Estimation 

 

Fitting earnings function (7) gives rise to four major considerations.
 17

 First, proving structural 

identifiability of each parameter is complicated, given the intricate nonlinearity of (7). Second, 

choosing an efficient optimization routine is important, given the large number of nonlinear 

regressions and the necessity to achieve global rather than local convergence. Third, we need a 

method to retrieve individual-specific parameters estimates β, E0, and the population estimate R 

from composite term estimates E and  . Fourth, specifying standard errors for each parameter 

estimate is nontrivial given only 15-24 observations per individual. In the following five 

subsections, we handle each of these four issues as well as test whether R varies across the 

population. 

 

3.1 Structural Identification 

 

We prove identification in Appendix B by applying the nonlinear least-squares conditional mean 

identification criteria (Newey and McFadden, 1986). This requires there to exist a unique set of 

parameters    that minimizes the mean square error,              , given the first moment, 

      , and the condition         , where        is the conditional mean of y,         

       . To show this we consider two parameter vectors,         , each of which minimizes 

the mean square error. We utilize a proof by contradiction to demonstrate that      thereby 

implying a unique  .  

 

3.2 Global Convergence and Parameter Restrictions 

 

For estimation we employ the Genetic Algorithm (GA), a recently available parallel processing 

optimization routine originally developed by Holland (1975).
18

 The GA technique optimizes 

numeric strings using genetic reproduction, crossover, and mutation concepts (Goldberg, 1989). It 

is more prone to converge at a global optimum compared to Newton-Raphson hill-climbing 

algorithms which rely on a point-to-point gradient-based search (Dorsey and Mayer, 1995).  

                                                 
17

 We use nonlinear least squares, but as an alternative, one can use the shrinkage estimator which improves 

the standard error at the expense of introducing bias. Whereas the bias is easy to express in linear models, 

this is not the case in complex nonlinear models. For nonlinear models, additional research remains to 

analyze standard measures of asymptotic distributional quadratic bias and risk measures (Ahmed and Nicol, 

2012).  
18

 We use a version of GA written by Czarnitzki and Doherr (2009).   



10 

 

 

We implement the algorithm to estimate ,ˆ,ˆ,ˆ,ˆ
iiii EWb  and ir̂  in (7) for each individual 

i.19
 As in the Ben-Porath life-cycle model we restrict the parameter space to positive real numbers 

and given the Cobb-Douglas production function for human capital, we restrict b to be less than 

1. Further, we restrict the coefficients r and δ to be less than 0.2 and 0.1 respectively, given that r 

and δ depict rates of time preference and depreciation. Finally, we choose multiple seeds (search 

procedures) to insure convergence to a global minimum. As will be reported, we achieve 

convergence for 1868 of the 1928 individuals.
20

  

 

3.3 Identification of Individual-Specific βi,    , and Population-Wide R 

 

To identify i , 
i

E0
, and the population-wide R, we adopt the following approach: First, we 

specify i  to equal ie  where   is the population average and ie  is the individual deviation. 

Second, we rewrite (8) as  

i

b

i eRW i )1( 
 .      (8) 

Taking the logarithm, yields 

   iii eRbW lnlnln)1(ln   .    (9) 

Assuming          , one can fit (9) using each individual’s values for     and     obtained from 

estimating (7) to identify the population value of R (the coefficient of ( ib1 )), the average   

(the constant term), and individual-specific values of i  obtained by taking the anti-loge of the 

                                                 
19

 We assume iid residuals based on the results of a Durbin-Watson serial correlation test for the nonlinear 

least squares model (White, 1992). Only six cases exhibit positive autocorrelation. The absence of 

significant autocorrelation for any one individual (5% significance level) allows us to abstract from 

possible persistent macroeconomic shocks often considered in the earnings dynamics literature. Were there 

any persistent wage shocks, one would need to modify (7) to accommodate the serial correlation. Pooling 

the residuals over all individuals yields a Durbin-Watson statistic of 1.199 based on Bhargava et al. (1982). 

On the other hand, and even more importantly, the Durbin-Watson statistic based on rerunning (7) for all 

individuals pooled (i.e., for the whole sample combined rather than individual-by-individual) yields a 

Durbin-Watson statistic of only 0.401, suggesting far more serial correlation when one does not adjust for 

heterogeneity. This result (i.e., the difference in Durbin-Watson values between the individual-specific and 

the pooled regressions) motivates our analysis on earnings dynamics, later in the paper. 
20

 Those for whom we do not achieve convergence have a higher standard deviation in weekly earnings 

($263 versus $225), lower schooling, (12.3 versus 12.9 years), and lower AFQT scores (34 versus 41). The 

more erratic earnings in these observations probably cause us not to achieve convergence.  



11 

 

sum of the latter two terms in (9).
21

 Utilizing ib  and i  values along with the coefficient 

i

i

b

i

i

E
E




1

1

0ˆ



 obtained from estimating (7) yields individual-specific . 

 

Heckman, Lochner and Taber (1998) adopt an alternative identification strategy to 

determine R. Their approach exploits the fact that all observed earnings changes (adjusted for 

hours) between two time periods must be attributed to rental rates changes when in “flat periods” 

human capital stock (Et) remains constant. Typically, flat spots occur late in life, usually around 

the mid-fifties, an age greater than any current respondent in the NLSY. As will be shown in 

Section 5.2, Bowlus and Robinson (2012), who apply the flat spot identification approach with 

CPS data, obtain similar results to ours. 

 

 

3.4 Variation in R across the Population: A Test of Human Capital Homogeneity 

 

Equation (9) can be modified to test for human capital homogeneity. Homogeneity implies each 

basic human capital unit rents for a common price, R, determined in the market. Under 

homogeneity, R is the same across all occupations, all education levels, and all other 

characteristics. In short, earnings differ across individuals in the amount of human capital 

acquired, not because remuneration for each unit differs. On the other hand, heterogeneity implies 

rental rates per unit of human capital can vary if the market rewards each type of human capital 

differently. We test for homogeneity by determining whether rental rates differ across segments 

of the population. Human capital is homogeneous if rental rates are constant.  Human capital is 

heterogeneous if rental rates differ. Obviously, discrimination, incomplete information, and “non-

market” effects will weaken the test. Also, economy-wide aggregate demand shocks (for 

example, as manifested by the unemployment rate) can influence R, since supply and demand 

fluctuations can affect spot market prices for all human capital equally.
22

  

 

                                                 
21

 We identify R because we estimate Wi and bi for each individual, whereas others simply estimate 

population averages (albeit for a different specification). As a result, we can estimate (9). 

.  
22

 We have not examined detailed fields of study such as engineering or medical specialties, which could 

yield different types of human capital. 

i
E0
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 Let   
  depict a vector of individual, regional, and job characteristics. Define    

     
    and A to be the corresponding vector of coefficients. Rewrite (9) as 

                              

                                  
               .                       (9’) 

Here          
   . A statistically insignificant    is consistent with homogeneity. 

 

3.5 Precision of the Estimates: Bootstrapped Standard Errors 

 

We construct paired bootstrapped standard errors to get at the precision of our estimates 

(MacKinnon, 2006).
23

 We run 200 regressions for each individual with randomly drawn (with 

replacement) bootstrapped samples of size equal to the number of observations.
24

 From these, we 

construct the bootstrapped standard errors for each parameter.
25

 

 

4. The Data    

 

We utilize the 2012 NLSY79, which contains up to 24 years of data for each respondent through 

2010.
26

 We do not apply sampling weights since we are estimating (7) for each individual 

separately.
27

 To estimate (7) we use data on age (t), the age at which one leaves school (t*, 

defined as schooling plus five), and weekly earnings (annual earnings divided by number of 

weeks worked) deflated using the 1982-84 urban CPI as base.
28

 Because our earnings function 

specification is designed for those who work continuously, we concentrate only on males given 

that females are more likely to have discontinuous labor force participation, making the 

                                                 
23

 The absence of autocorrelation allows us to compute bootstrap standard errors with i.i.d. residuals. In the 

presence of significant serial correlation, simple bootstrapping may not work well (Li and Maddala, 1996). 

In such a case, one could apply alternative bootstrapping methods, such as moving block bootstrapping, to 

get correct standard errors. 
24

 Chernick (2007, p. 89) reports results adopting a similar procedure for a two-parameter nonlinear least-

squares regression, but with 20 bootstrap replications on 51 observations. 
25

 In considering examples with a large number of parameters (N) and a small sample (n), Fan et al. (2007) 

show that for cases of t simultaneous tests, a necessary and sufficient condition for achieving asymptotic-

level accuracy is ).(ln 2

1

noN   In our case, given 5 parameters, ln(5)=1.6<3.9-4.9, based on a sample of 

15-24. Our sample (n) spans 40-60% of an individual’s 40-year work life, thereby including a large portion 

of the maximum number of observations possible. 
26

 A description of the data is available at:  http://www.bls.gov/nls/. 
27

 We use the sample weights when we aggregate the results to get inferences about particular segments of 

the population. 
28

 CPI data were obtained from Table 24 (Historical Consumer Price Index for All Urban Consumers), p. 

73 (http://www.bls.gov/cpi/cpid1408.pdf). 
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measurement of experience (t) more difficult and resulting in a far more complex nonlinear 

earnings equation (Polachek, 1975). Further, we use data only on individuals that have completed 

school because those working while in school (or those working with the intention of going back 

to school) earn less than commensurately schooled individuals who completed their education 

(Lazear, 1977). This approach avoids measurement errors associate with intermittent school 

trajectories.  

 

A main virtue of the NLSY79 is the information on ability, indicators of personality, as 

well as family background, all of which are independent of our estimated human capital 

production function parameters. Of these we concentrate on the 1980 AFQT
29

 and its particular 

cognitive skills components (general science, arithmetic reasoning, numerical operations, and 

math knowledge), craftsmanship skills (mechanical skills, electronics knowledge, coding speed
30

, 

and automobile repair knowledge), indicators of personality (Rotter locus of control score, 

Rosenberg self-esteem score, and the CES-D depression scale), family background (mother’s and 

father’s schooling, father’s occupation, living in an urban area, lived with parents at age 14, 

household poverty at age 14, household had magazines at age 14), and outcome measures (years 

of schooling completed and indicators of mental health status). We compare these ability, 

personality, background and outcome measures respondent-by-respondent to the Ben-Porath 

parameters we estimated using (7) and (9). 

 

5. Estimation Results  

 

We use non-linear least-squares to evaluate (7) for each person with 15-24 years of data.
31

 We 

employ an algorithm (denoted as GA) used in genetic research (Czarnitzki and Doherr, 2007) 

which is less susceptible to getting stuck at local optima than traditional gradient based 

optimization techniques. We estimate five crucial parameters: an ability parameter ( ib̂ ), the 

discount rate ( ir̂ ), the human capital depreciation rate (   ),

 

and the composite parameters 

i

i

b

i

i

E
E




1

1

0ˆ



 and i

b

i
iRW )(ˆ 1

 . Table 1 contains average estimates for the entire sample as 

                                                 
29

 The 1980 AFQT score differs slightly from the 1989 and 2006 scores because of the way each 

component is weighted.  
30

 Some interpret this as an indication of motivation, a personality trait. See Segal (2012). 
31

 Most individuals have 19 or more years of data.  
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well as for blacks and whites  separately.
32

 The mean b and W values for whites exceed those of 

blacks, whereas the mean black time discount rate (r) and E exceed white values. Also, we find 

the mean black human capital depreciation rate (δ) exceeds the mean white human capital 

depreciation rate. We shall discuss the implications of these parameter values shortly, but first we 

address statistical precision which, as already mentioned, we compute via bootstrap techniques.
33

 

For this, we run 200 nonlinear regression replications utilizing a randomly drawn sample (with 

replacement) equal to the number of observations available for each person.
34

 Mean values of the 

coefficient standard errors averaged across all individuals are given in row (2) of each panel. 

Median values which deemphasize outliers are given in row (3). On average, most observations 

contain coefficients that are statistically significant with the exception of E and r, for which the 

parameter distributions are more right-skewed.  

 

Three factors can affect the accuracy of these estimates. First, estimation equation (7) is 

based on a Taylor approximation of (A-13). We argue (Appendix A) the approximation error is 

small. However, we did not show the error has no influence on the actual estimates. Second, the 

sample size for each individual is limited to between 15 and 24 observations. Based on Fan et al. 

(2007) we claim sufficient asymptotic accuracy, but we do not test for this. Finally, third, one 

might question the accuracy of the nonlinear optimization routine used to estimate the parameters. 

 

Simulation techniques constitute one approach to evaluate the extent of these potential 

biases.
35

  To implement this simulation, we randomly pick 100 individuals. For each individual, 

we draw 100 samples of size 15-24. These samples are based on prediction from equation (A-13) 

derived from coefficient estimates of equation (7). Appendix C contains more detail. We compute 

the bias, variance, and root-mean-square-error for each of the five parameters for each individual. 

These are plotted in Figures C.1 to C.3 in Appendix C. With the exception of a small number of 

outliers, these values center around zero.  Finally, we compute the overall mean and variance of 

these coefficient biases over all 10,000 observations (Table 2) and test whether these biases are 

                                                 
32

 These estimates do not include 42 individuals for whom 1980 sampling weights were not provided in the 

NLSY data. Also, we do not present estimates for Hispanics. However, the Hispanic parameters are 

generally between whites and blacks in magnitude.  
33

 As for goodness of fit, a pseudo R
2 

measure for the entire population is 0.81, computed as      
            

 
  

             
 . 

34
 These computations took 281 hours using an i7-vpro chip parallel processor computer running seven 

STATA programs in tandem, each utilizing the GA algorithm.    
35

 We thank an anonymous referee and the editor of this journal for suggesting such a simulation technique. 

Indeed Eisenhauer, Heckman, and Mosso (2013) adopt this approach to evaluate alternative tuning 

parameters when estimating simulated method of moments models.   
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different from zero. The t-tests for each of the five standardized biases are given in Appendix 

Table C.2. Four are insignificantly different from zero at the 5% level. 

 

Based on the identification strategy we described earlier, we get values for ,ib  ,i  
,0i

E

i
sE ,   , and ir , as well as a population-wide value of R. Mean values of the individual-varying 

parameters are given in Table 3.
36

  

 

5.1 Consistency with Prior Population-Wide Estimates 

  

Mean values of our parameters compare favorably to past studies that estimate aggregate Ben-

Porath based models, though understandably there are differences due to alternative 

methodologies and data. For example, we obtain an r of 0.041 compared to Haley’s (1976) 0.055. 

We obtain a mean b of 0.35 compared to Haley’s 0.58, Heckman’s (1975) 0.67, Heckman’s 

(1976) 0.51-0.54, Heckman et al.’s (1998) 0.80, Song and Jones’s (2006) 0.5, and Liu’s (2009) 

0.52, and we obtain a δ of 0.027 compared to Johnson and Hebein’s (1974) 0.022 and Heckman’s 

(1976) 0.04-0.07. Of course, our results are based on weighted averages of individual values 

whereas the other studies examine one function for the population as a whole. Further, each uses 

slightly different human capital production functions, and some incorporate life-cycle labor 

supply.
37

  

 

Our results are also consistent with computations of Mincer’s “time-equivalent” post-

school investment as well as with Ben-Porath’s declining time-equivalent investment. Figure 1 

plots potential and actual earnings for individuals who began work immediately following 

school.
38

 Actual earnings come from the data, and as such are observed for each person. Potential 

earnings are computed by multiplying predicted human capital stock (ES) by the population-wide 

market rental rate per unit of human capital stock (R), both of which are parameter estimates. 

Innate to the model, potential earnings exceed actual earnings; and one can see this to be the case 

by comparing the two distributions. The mode for actual weekly earnings is approximately $100 

per week (in 1982-84 dollars) and the modal value for potential earnings is about $250. The ratio 

                                                 
36

 To conserve space, summary statistics for each of the ability, personality, family background and 

outcome measures contained in the NLSY79 are available upon request. 
37

 See Browning, Hansen, and Heckman (1999) for a survey describing the results from a number of such 

studies. 
38

 These exclude those with very low schooling levels and those who took a year or more to find their first 

job. 
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implies a “time-equivalent” investment for new entrants to be about 0.60 which compares 

favorably to the 0.7 range based on Mincer’s original earnings function regressions.
39

 Re-

computing these two distributions for older workers (Figure 2) shows a definite narrowing of the 

distance between potential and actual earnings. In short, according to life-cycle theory, older 

workers reinvest less of their existing human capital as they age, and this is what our estimates 

show. 

 

5.2 Homogeneity of Human Capital  

 

Table 4 presents results from estimating (9) and two versions of (9’). In each,     is 2.7 implying 

a rental rate in 1982-84 dollars per week of about $15.     does not vary significantly based on 

cohort or occupation. In column (2), it varies by 0.012 ln points per year of school (but only at the 

10% significance level), by as much as 0.12 ln points by race, by 0.06 ln points in urban areas and 

by -0.03 ln points per week of unemployment spell. Of these, only the unemployment rate and 

race remain statistically significant after adjusting for personality and AFQT in column (3). As 

such, we find that race explains only about 4% of the human capital rental rate, but this possibly 

includes discrimination. The unemployment coefficient remains about the same value (-0.03). 

This negative coefficient is consistent with an economy-wide response to aggregate demand 

shocks, rather than negating homogeneous human capital. The positive AFQT and Pearlin 

coefficients (in column (3)) might be consistent with better labor market search and/or matching.  

 

 Interestingly, despite their different identification strategy, Bowlus and Robinson (2012) 

find a “close correspondence [in rental rates] … for such diverse educational groups as high 

school dropouts and college graduates” and that dropouts tend “to suffer larger price [rental rate] 

declines in recessions” (page 3498). However, our approach is more general in that we can relate 

rental rates to individual characteristics. As such, we show (column 3) that the differences in 

rental rates attributable to schooling (in column 2) may be due to ability and personality, rather 

than school, per se.  

 

 

5.3 Heterogeneity of the Ben-Porath Parameters 

 

                                                 
39

 One obtains 0.56 and 0.81 respectively when one solves for k0 (the equivalent of our E0) using Mincer’s 

(1974) Gompertz specification G(2a) and G(2b), p. 92.    
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One way to examine population heterogeneity is to plot kernel density distributions of our 

estimated parameters. Also, it is instructive to compare our estimates to the distribution of AFQT 

reported in the NLSY79, especially given we have three ability measures (b and β representing 

abilities to learn, and E0 representing ability to earn). For ease of comparison, we scale each of 

our parameters because each has a different measurement range and metric. For example, b 

ranges from 0.01 to 0.70 with a mean of .35 and β varies from 0.13 to 1.59 with a mean of 0.64. 

Thus we scale each parameter by
ii

ii

LH

Lx




 where Li is the lowest value and Hi is the highest. This 

POMP (percent of maximum possible) score yields a scaling between zero and a hundred, where i 

indexes each parameter. Figures 3 plots the kernel density functions for AFQT, ib , i , 
i

E0
, 

iSE

, and δi for blacks and whites.
40

 Ability parameters b and β are relatively bell-shaped. Parameters 

E0 and r are skewed to the right, and the skill depreciation parameter δ appears to have a double 

peak. Generally blacks (solid line) fare worse than whites (dashed line). Kolmogorov-Smirnov 

tests for the difference in these ability distributions are given in Table 5 (rows 1-7). The race 

differences for each distribution (with the exception of r) are significantly different statistically, 

but the distance measure is largest for the AFQT.
41

 

 

For comparison purposes we also utilize the Kolmogorv-Smirnov test to determine the 

similarity of black and white distributions for each other NLSY79 ability, personality, and 

background variable used in the remainder of the paper. With the exception of the Rosenberg 

Self-Esteem Measure, and the Pearlin Mastery Score, all are statistically different. Moreover, the 

distance measures of all the ability test scores (AFQT and the ASVAB tests) are larger than our 

ability measures (b, β, and E0) and the personality indicators (Rotter Locus of Control, Rosenberg 

Self-Esteem Score, and the CES-D 20 depression index). Race differences in the distance 

measure for poverty is between the AFQT and ASVAB test scores, our ability measures, and the 

personality indicators. In short, the AFQT and ASVAB test scores appear to accentuate race 

differences compared to our and other measures.  

 

5.4 Consistency with Human Capital Theory 

                                                 
40

 The AFQT test scores are given in percentiles ranging from 1 to 99. We compute raw scores based on 

appropriately summing the scores for each component part. We then scale these as indicated above. These 

rescaled scores are contained in Figure 3. To conserve space, we do no plot racial differences in the 

distributions of other ability, personality, or family background variables. 
41

 Note the Kolmogorov-Smirnov test is independent of units. As such, one can compare the distance 

measure across variables. The greater the distance, the larger the relative race difference.  
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Our estimated ability, skill depreciation, time preference measures, as well as the AFQT scores 

are related to schooling in a predictable way. These patterns are presented in Table 6 which 

contains a specific regression.
 
 The dependent variable is loge years of school completed. The 

independent variables are b, β, E0, δ, and r (also in logs so that the effects of each can be 

compared in percent terms), cohort, race, and background variables. The ability to learn 

parameters b and   have the largest positive coefficients. Human capital theory predicts a 

positive correlation between this type ability and schooling level because a higher ability to learn 

raises the amount of human capital one can produce per unit of time. Holding rental rates per unit 

of human capital constant, producing more human capital per time unit lowers the opportunity 

cost of going to school, thereby increasing the amount of school purchased. On the other hand, 

schooling levels do not rise with the ability to earn parameter, E0. This is expected because an 

individual’s higher initial human capital substitutes for schooling, and as Ben-Porath (1967) 

predicts, leads one to stop school earlier.
42

 Schooling decreases with skill depreciation. This result 

also is as expected since a higher depreciation rate lowers the value of what is learned because 

more is “forgotten”. Finally, schooling levels decrease with the estimated time discount rate (r). 

This latter result, too, is noteworthy because higher time discount rates should imply fewer years 

of schooling. Individuals with high discount rates are more reluctant to put off the gratification of 

current market earnings, given that they discount the future heavily.  

 

 

5.5 How the Ben-Porath Parameters Vary by Cognitive Ability, Personality, and Family 

Background 

 

One criticism of the Mincer (1958) framework is it does not explain why people choose a 

particular level of education. In his model people are indifferent between various levels of school 

because all levels yield the same lifetime earnings. Individuals are homogeneous in every respect 

except levels of schooling. No explanation is given why people vary in the number of years of 

schooling they undertake.  

 

The Ben-Porath model argues that ability, depreciation and time preference affect human 

capital investments, and hence levels of school attained. As we illustrated above, by examining 

each individual separately, we obtain individual specific ability, depreciation, and time preference 

                                                 
42

 Es is positively related to schooling since by construction it incorporates what is learned in school. 
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parameters. These are related to years of schooling in a predictable way, as was shown in Table 6. 

But this begs the question why, in the first place, these ability and time preference parameters 

differ from person to person. In this section we examine this issue. We ask what personality and 

background factors are associated with the various Ben-Porath parameters (skill depreciation, 

time preference and ability to learn and earn) we estimated. Getting at this question gives some 

indication of the relative roles of nature versus nurture, and may serve as the underlying reasons 

why these parameters, which are related to years of school, differ across the population. In short, 

innate ability (e.g., quantitative versus verbal test scores), personality traits, and family 

background might determine the Ben-Porath parameters that predict years of school. At the same 

time, our estimated Ben-Porath parameters can be used to test hypotheses psychologists raise 

about ability, intelligence and personality. In the next three subsections, we examine each of these 

issues. 

 

5.5.1 Ben-Porath Parameters and ASVAB Test Scores 

 

Psychologists define intelligence as a “general mental capability that, among other things, 

involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, 

learn quickly and learn from experience” (Gottfredson, 1997a, p. 13). General intelligence is 

often referred to simply as “g”. According to De Young (2011, p. 3) “the most widely used 

distinction between abilities, at the level of the hierarchy immediately below g, is … fluid and 

crystallized intelligence (Horn & Cattell, 1966).” Fluid intelligence is supposed to be innate and 

crystalized is supposed to be learned, in essence knowledge based. However, according to De 

Young, recent factor analysis by Johnson and Bouchard (2005a and 2005b) finds crystallized 

intelligence to be mostly verbal and fluid intelligence to be mostly nonverbal so that “most past 

findings regarding fluid and crystallized intelligence … can be translated cleanly into a verbal-

nonverbal framework” (p. 3). 

 

We find some evidence that this is the case with our ability estimates. Table 7 presents a 

correlation table between our ability estimates and ASVAB test scores. The top panel presents 

correlations for cognitive skills and the lower panel for what we call craftsmanship skills. Rows 

1-3 of the top panel give these correlations for math, row 4 for science and rows 5-6 for verbal 

scores. Almost without exception, math abilities are more highly correlated with b, beta and E0 

than are the verbal test scores. As such, our measures more represent innate fluid ability rather 

than crystalized or learned ability. This makes sense because E0 depicts one’s ability to earn just 
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before one begins school, and b and   reflect one’s ability to create new human capital from old, 

again independent of human capital stock. The correlation between ability and craftsmanship 

skills are the lowest which also makes sense since these skills are more learned. Also, we find the 

more able depreciate less quickly (forget less) and have lower time discount rates.  

 

5.5.2 Ben-Porath Parameters and Personality 

 

McAdams and Pal (2006, p. 212) define personality as “encompassing dispositional traits, 

characteristic adaptations, and integrative life stories, complexly and differentially situated in 

culture.” Whether personality and ability are related is still debated in the psychology literature. 

Eysenck (1994) argues that personality and intelligence are unrelated. Chamorro-Premuzic and 

Furnham (2005) claim that both are related but categorically distinct. DeYoung’s (2011, p. 6) 

review of current research “rules out the possibility that intelligence is unrelated to personality.”  

 

Table 8 presents correlation coefficients for four psychological indicators. The Rotter 

score (varying from 0 to 16), which denotes a person’s external locus of control, defines the 

extent one views life chances to be determined by external factors. The Mastery scale defines the 

extent individuals can control the environment where they operate.  Scores vary from 7 (low 

mastery) to 28 (high mastery). The Rosenberg Self-Esteem Scale (Rosenberg, 1965) is a measure 

of self-worth based on how a respondent answers ten questions regarding self-acceptance. The 

CES-D scale measures symptoms associated with depression. The empirical results indicate a 

negative correlation between external locus of control and ability to learn, a positive correlation 

between mastery and ability to learn, a positive correlation between self-esteem and ability to 

learn, and a negative relation between depression and ability to learn. Self-esteem is positively 

related to one’s ability to earn, but locus of control, mastery, and depression are not. Those with 

high external locus of control, those with low mastery scores, and those exhibiting depression 

have high discount rates and high skill depreciation rates.  

 

  

5.5.3 Ben-Porath Parameters and Family Background 

 

Family background is also correlated with ability. Table 9 indicates a positive correlation between 

parental education, father’s success (being in a professional or managerial occupation) and one’s 

ability to learn. Similarly these parental background variables exhibit an inverse correlation with 
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time-discount and skill depreciation. Having had magazines in the home at age 14 are also 

positively correlated with the ability to learn and negatively correlated with skill depreciation and 

the time discount rate. The correlation with poverty during childhood (in year 1978) is the 

opposite. To the extent learning goes on in the home, these results are consistent with parental 

investments in children’s human capital, as the correlations mimic the results obtained from 

AFQT and ASVAB ability measures, exhibited earlier in Table 8.  

 

We observe no relation between living in an urban area and our ability measures. This is 

an expected result to the extent being in an urban area has no relationship to human capital 

investments and no relationship to ability. 

 

5.6 Earnings Dynamics Implications  

 

Examining the autoregressive structure of residuals has implications regarding earnings 

dynamics. To see this, define two sets of residuals. The first (   
 ) is obtained from estimating (7) 

individual-by-individual. Here    
            

                      . The second (   
 ) is obtained 

by re-estimating (7) for all individuals pooled (i.e., for the whole sample combined rather than 

individual-by-individual). Define this latter residual to be    
                             where 

     is un-subscripted because it now depicts a population-wide estimate. The mean first-order 

autoregressive coefficient,   
 , based on    

  is 0.26. However,    
  based on    

  is 0.80. The 

difference is statistically significant at        This stark difference highlights how parameters 

estimating individual reactions to earnings shocks can change when adjusting for individual-

specific heterogeneity. 

 

A growing earnings dynamics literature decomposes earnings in terms of permanent and 

transitory components. The most minimal specification depicts earnings simply as the sum of 

these two components so that           , but typically one augments this specification in a 

number of ways. These modifications include introducing explanatory variables to account for 

earnings levels, allowing the relative importance of the error components to vary with calendar 

time, introducing persistence in the transitory shock via ARMA processes, permitting the 

permanent component to evolve over time, and adjusting for heterogeneity in various ways. One 

question arising in this literature is how allowing for heterogeneity affects the estimation of these 

shocks. Clearly as Krueger et al. (2010) indicate “what may pass as a permanent shock may 

sometimes be heterogeneity in disguise,” and responses to transitory shocks can vary with 
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measured and unmeasured individual characteristics. Indeed a number of recent studies 

concentrate on heterogeneity by allowing ARMA processes to vary across individuals (e.g., 

Browning and Ejrnӕs, 2013). This question is important because earnings dynamics parameters 

have been applied to a number of policy related economics issues. These include consumption 

and savings (Browning, Hansen, and Heckman, 1999), schooling choices (Cunha, Heckman, and 

Navarro, 2005), poverty (Lillard and Willis, 1978), and more. Our results can be used to help 

address the question of how heterogeneity affects the earnings dynamics error structure 

parameters. 

 

A number of studies present decile ranges of key parameters illustrating that 

heterogeneity affects the speed individuals respond to shocks (e.g., Browning, Ejrnæs, and 

Alvarez, 2010; and Browning and Ejrnæs, 2013). However, it is also possible that heterogeneity 

manifests itself in the way individuals accumulate human capital over their lives. Varying human 

capital accumulation trajectories, in turn, can alter the way one responds to shocks. In addition, 

this type heterogeneity might also alter what one actually perceives to be a shock in the first 

place. As such, some of what past literature perceives as a permanent shock might reflect person-

specific differences in human capital acquisition. Similarly, person-specific differences in human 

capital accumulation might be perceived as adjustments to transitory shocks. To get at these 

possibilities, we compare the parameters obtained from a relatively simple error structure under 

the two regimes described above. In each case we assume an error structure similar to ones used 

in a number of published studies surveyed in Doris et al (2013) and Hryshko (2008). Specifically, 

we assume 

    Γ
 
     

           

                      

where, of course, each parameter has an I or S superscript, and where Γ
 
 depicts year-specific 

effects,    individual-effects,   the autoregressive component, and   the moving average 

component of the remaining individual-year specific shock after eliminating year and individual 

heterogeneity. Clearly the difference in these parameters (e.g.,                           

indicate the effect of heterogeneity on estimated earnings dynamics. In Table 10 we present 

estimates of these parameters using the residuals computed based on the two-regimes outlined 

above. Column (1) presents results for the residuals adjusted for heterogeneity, whereas column 
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(2) provides the non-heterogeneity adjusted parameters.
43

 Like most studies, the variance in the 

transitory shock (  
 ) trounces the variance in the permanent shock (  

 ). In virtually all studies 

  is positive, and at 0.92, our estimate of   is in the same ballpark as the 0.956 obtained by 

Dikens (2000), the 0.847 obtained by Moffit and Gottschalk (1995), and the 0.964 obtained by 

Sologon and O’Donoghue (2010), all also using an ARMA(1,1) process. On the other hand, our 

estimate of   for the heterogeneity adjusted model, is 0.44, about half the magnitude obtained in 

the non-heterogeneity adjusted case. Also, as in most studies,   is negative. For the non-

heterogeneity case        , which again is comparable to those studies above. For the 

heterogeneity adjusted case               
 

 
 the size of the non-heterogeneity adjusted case. 

In short, adjusting for heterogeneity dramatically decreases estimates measuring the persistence 

of transitory earnings shocks. This means previous measures of such responses may indeed be 

contaminated as “what may pass as a permanent shock may sometimes be heterogeneity in 

disguise,” and estimated responses to transitory shocks can vary with measured and unmeasured 

individual characteristics, as Kreuger et al. (2010) speculated. 

 

5.7 Selectivity 

 

One might argue that black workers (working 15 or more years) are relatively more able 

than white workers (working 15 or more years) because only the relatively “better” blacks 

compared to whites are able to sustain such a long work history. One can assess this bias by 

utilizing the NLSY79 reported AFQT scores for non-workers of each race. If the “worker” 

compared to “non-worker” AFQT advantage is greater for blacks than whites, then our Ben-

Porath measures overstate black compared to white ability, and as a result understate the racial 

ability gap. In contrast, if the relative AFQT advantage is greater for whites, then the opposite is 

true, and as such, we then overstate black-white ability differences. A t-test rejects the hypotheses 

that the overall difference is unequal. In short, those working 15 or more years tend to be more 

able than those working less than 15 years (or not at all); but the difference between black 

“workers” and “non-workers” is not statistically different than for white “workers” and “non-

workers”.
44

 This result is consistent with small, if any, selectivity biases when considering racial 

                                                 
43

 Our empirical analysis of the covariance structure is based on residuals for years 1979-1994. After 1994, 

data were collected every two years instead of every year.  
44

 The actual test comprises an insignificant α3 white-worker interaction coefficient in the following 

regression:                                                                     
          , where the standard errors are given in parentheses.  
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differences in our estimated Ben-Porath ability parameters obtained by concentrating on blacks 

and whites working at least 15 years of their lifetime. 

 

6. Summary and Conclusion 

 

As early as the 1990s, Browning, Hansen and Heckman (1999) used parameters of the life-cycle 

model to illustrate inherent biases in the representative agent framework because the approach 

fails to account for individual heterogeneity. Recent studies acknowledge this insight about 

heterogeneity, but none estimate a complete set of Ben-Porath parameters individual-by-

individual. To our knowledge, this paper represents the first to do so. 

 

These parameters are important because they can be used to help calibrate 

macroeconomic models, because they have implications with regard to the distribution of income, 

because they can be used to test theorems regarding schooling decisions, and because they are 

related to underlying psychological personality and family background variables. Further, to the 

extent that personality traits are innate, knowing these parameters and how they relate to 

personality can shed light on aspects of nature versus nurture.  

 

To obtain these parameters, we adopt four methodological innovations. First, we devise a 

tractable, albeit complex, nonlinear formulation of the Ben-Porath model that enabled us to 

identify five basic human capital parameters. Second, we prove these parameters are identified 

based on Newey and McFadden’s (1986) nonlinear least-squares conditional mean identification 

criteria. Third, we estimate these parameters, individual-by-individual, using a novel algorithm. 

Fourth, we are able to estimate a plausible population-wide human capital rental rate.  

 

A number of new findings emerge from our analysis. First, we find blacks have slightly 

higher skill depreciation and time discount rates, which could account for one reason blacks 

obtain less years of school than whites. Second, we confirm important relationships based on the 

life-cycle human capital model. We find one’s ability to learn to be positively correlated with 

years of school, but not so with one’s ability to earn. Further, both a higher discount rate and a 

greater degree of skill depreciation are associated with fewer years of school. Third, we confirm 

that ability is related to a number of personality traits and family background variables. For 

example, a high internal locus of control and a high mastery (belief one controls events) are 

related to one’s ability to learn, but unrelated to one’s ability to earn. Also, individuals who score 
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high on the AFQT exhibit a high ability to learn, and only a marginally higher ability to earn. 

Finally, our results are relevant to the macroeconomic earnings-dynamics literature. For example, 

we find the autoregressive and moving average parameters on transitory shocks are more than 

halved when using our heterogeneity-adjusted residuals.  

 

Our results are promising enough to warrant pursuing the approach further. For example, 

zeroing in on various types of ability might enable one to gain insights into occupational choice 

decisions including answering questions relating to gender differences in scientific professions. 

Also, accounting for this heterogeneity can alter how one assesses macroeconomic policy, 

particularly how individuals respond to economic shocks. Further, linking ability, time discount, 

and skill depreciation parameters to understand innate own and parental personality 

characteristics could get at important questions regarding nature versus nurture. In any case, the 

whole approach gets at heterogeneity in a new way that can be valuable to analyze other aspects 

of human behavior. 
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                                                          Figure 1* 

 
*Weekly earnings in 1982-4 dollars. Potential earnings computed by multiplying predicted human capital at zero 

experience (ES) by the population rental rate per unit of human capital (R). Actual earnings are from the NLSY79.  

 

Figure 2* 

 
*Weekly earnings in 1982-4 dollars. Potential earnings computed by multiplying predicted human capital for 40-45 

year olds (Et) by the population rental rate per unit of human capital (R). Actual earnings are from the NLSY79. 
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Figure 3* 

 
* Estimated parameters are scaled from 0-100 to be compatible with AFQT scores.  See text for details. 

 

 

 

Table 1: Earnings Function Parameter Estimates* 

           

All (N=1826) 0.351 3.808 5.392 0.027 0.041 

Bootstrapped SE(mean) 0.054 0.778 2.98 0.008 0.022 

Bootstrapped SE(median) 0.049 0.685 2.39 0.007 0.016 

Proportion of observations with sig(5%) 0.943 0.95 0.430 0.792 0.445 

      

Blacks (N=596) 0.323 3.748 6.253 0.029 0.043 

Bootstrapped SE(mean) 0.062 0.866 3.470 0.009 0.024 

Bootstrapped SE(median) 0.059 0.765 2.58 0.0079 0.0182 

Proportion of observations with sig(5%) 0.899 0.930 0.367 0.783 0.398 

      

Whites (N=1230) 0.355 3.817 5.265 0.026 0.041 

Bootstrapped SE(mean) 0.049 0.735 2.73 0.0075 0.02 

Bootstrapped SE(median) 0.046 0.657 2.33 0.0066 0.0143 

Proportion of observations with sig(5%) 0.965 0.96 0.461 0.797 0.469 
*Weighted average coefficients of equation (7) estimated for NLSY79 individuals. Row 1 of each panel gives average parameter 
estimates of (7) over the entire sample. Rows (2) and (3) give mean and median bootstrapped standard errors. Each observation is 
weighted by the NLSY79 weights when computing the averages and medians. Average R

2 
values for All, Blacks, and Whites are 0.480, 

0.397, and 0.492. 
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Table 2: Simulated Biases
1
 

Coefficient Mean Bias Variance 

b -0.005 0.00520 

W -0.046 0.86421 

δ -0.002 0.000144 

r 0.004 0.00083 

E 0.897 13.3536 

1
 Biases based on 100 simulated regressions of sample size 15-24 for each of 100 individuals randomly 

chosen from the 1826 individuals of Table 1. See Appendix C for details on how these biases are computed. 

 

Table 3: Mean Values of Individual-Specific Parameters* 

Parameter Observations Mean SD 

b 1826 0.35 0.10 

β 1826 0.64 0.17 

E0 1826 2.75 2.79 

Es 1826 18.11 10.53 

  1826 0.03 0.01 

r 1826 0.04 0.04 

Average weekly earnings  (1982-84 dollars) 34872 426.1 348.1 

t (age) 34872 32.0 8.48 

t* (School leaving age) 1826 18.12 2.9 

* Computed from our estimates of (7) and (9). Parameter definitions are given in text.  

 

 
   

Table 4: Determination of Rental Rates per Unit of Human Capital* 

Dependent variable: log(W) (1) (2) (3) 

Independent Variables 
   (1-b) 2.719*** 2.694*** 2.671*** 

 
(0.0704) (0.193) (0.231) 

 (1-b)*school 
 

0.0116* -0.00647 

  
(0.00624) (0.00716) 

(1-b)*unemployment 
 

-0.0309*** -0.0292*** 

  
(0.00376) (0.00392) 

(1-b)*white 
 

0.116*** 0.0699* 

  
(0.0329) (0.0371) 

(1-b)*urban 
 

0.0601** 0.0394 

  
(0.0260) (0.0270) 

(1-b)*manufacturing 
 

0.0216 0.0320 

  
(0.0293) (0.0304) 

(1-b)*father professional or managerial 
 

0.0504* 0.0326 
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(0.0282) (0.0292) 

(1-b)*cohort-age14in1979 
 

-0.000367 0.0304 

  
(0.0716) (0.0753) 

(1-b)*cohort-age15in1979 
 

0.0599 0.0709 

  
(0.0673) (0.0707) 

(1-b)*cohort-age16in1979 
 

0.0473 0.0412 

  
(0.0674) (0.0707) 

(1-b)*cohort-age17in 1979 
 

0.0699 0.0595 

  
(0.0670) (0.0701) 

(1-b)*cohort-age18in1979 
 

0.0339 0.0237 

  
(0.0658) (0.0690) 

(1-b)*cohort-age19in1979 
 

0.0192 0.00982 

  
(0.0664) (0.0695) 

(1-b)*cohort-age20in1979 
 

-0.00939 -0.0315 

  
(0.0670) (0.0701) 

(1-b)*cohort-age21in1979 
 

0.0490 0.0368 

  
(0.0668) (0.0704) 

(1-b)*professional 
 

0.161 0.168 

  
(0.150) (0.150) 

(1-b)*service 
 

-0.0111 0.0134 

  
(0.152) (0.152) 

(1-b)*sales 
 

0.181 0.191 

  
(0.151) (0.151) 

(1-b)*construction 
 

0.102 0.131 

  
(0.150) (0.151) 

(1-b)*farm 
 

-0.0566 0.0149 

  
(0.190) (0.192) 

(1-b)*production worker 
 

0.114 0.130 

  
(0.150) (0.150) 

(1-b)*Locus of control 
  

-0.00582 

   
(0.00516) 

(1-b)*Self esteem 
  

0.00424 

   
(0.00328) 

(1-b)*AFQT, 1980 
  

0.00226*** 

   
(0.000568) 

(1-b)*Pearlin mastery score 
  

0.00908** 

   
(0.00436) 

(1-b)*Depression index 
  

0.00159 

   
(0.00162) 

Constant -0.501*** -0.739*** -0.780*** 

 
(0.0462) (0.0516) (0.0534) 

    Observations 1,826 1,557 1,464 

R
2
 0.450 0.516 0.527 

* Estimation of (9) and (9’). The dependent variable is      
 . The (1-b) coefficient depicts ln R The other coefficients 

represent  percent deviations associated with the  NLSY79 independent variables. See text for an explanation. Standard 
errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. The cohort coefficients are relative to age 22 in 1979.  
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 * Computed from our estimates of (7), (9) and data contained in the NLSY79. 
 

  

Table 5: Kolmogorov-Smirnov Test Comparing the Black and White Distributions 
of the Indicated Variable*   

Variable  Distance P-value 

b 0.140 0.000 

β 0.199 0.000 

E0 0.119 0.000 

Es 0.252 0.000 

  0.097 0.001 

r 0.037 0.643 

AFQT, 80 0.487 0.000 

Locus of control (Rotter) 0.078 0.014 

Self-esteem (Rosenberg) 0.022 0.992 

Pearlin mastery 0.066 0.063 

CES-D 20 0.174 0.000 

ASVAB, general science 0.520 0.000 

ASVAB, arithmetic 0.458 0.000 

ASVAB, word knowledge 0.481 0.000 

ASVAB, paragraph comprehension 0.395 0.000 

ASVAB, numeric ability 0.331 0.000 

ASVAB, coding speed 0.354 0.000 

ASVAB, auto shop knowledge 0.597 0.000 

ASVAB, math knowledge 0.349 0.000 

ASVAB, mechanical knowledge 0.519 0.000 

ASVAB, electronics 0.505 0.000 

Agreeableness (principal component) 0.223 0.000 

Extraversion (principal component) 0.151 0.004 

Openness  (principal component) 0.533 0.000 

Conscientiousness (principal component) 0.132 0.000 

Neuroticism (principal component) 0.161 0.000 

Mother's years of schooling 0.274 0.000 

Father's years of schooling 0.239 0.000 

Fathers occupation (if professional/managerial) 0.189 0.000 

Urban 0.065 0.064 

Poverty  0.303 0.000 

Household subscribes magazine (at age 14) 0.316 0.000 
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Table 7: Correlation: Ben-Porath Parameters and Cognitive and Craftsmanship 

Skills* 

            

Cognitive Measures      

Arithmetic reasoning  0.222 0.196 0.049 -0.141 -0.043 

Sig (p-value)  0.000 0.000 0.039 0.000 0.071 

      

Numeric operations 0.210 0.259 0.051 -0.113 -0.043 

Sig (p-value) 0.000 0.000 0.031 0.000 0.071 

      

Math knowledge 0.233 0.208 0.024 -0.133 -0.103 

Sig (p-value) 0.000 0.000 0.317 0.000 0.000 

      

General science 0.190 0.175 0.052 -0.129 -0.027 

Sig (p-value) 0.000 0.000 0.029 0.000 0.254 

      

Word knowledge 0.186 0.185 0.018 -0.142 -0.052 

Sig (p-value) 0.000 0.000 0.450 0.000 0.029 

      

Paragraph comprehension 0.158 0.163 0.033 -0.148 -0.034 

Sig (p-value) 0.000 0.000 0.161 0.000 0.153 

      

Craftsmanship Skills      

Mechanical 0.149 0.167 0.043 -0.132 -0.005 

Sig (p-value)   0.000   0.000   0.069   0.000   0.838 

      

Electronics 0.137 0.198 0.080 -0.116 0.020 

Sig (p-value) 0.000 0.000 0.001 0.000 0.403 

      

Coding speed 0.184 0.199 0.034 -0.125 -0.061 

Sig (p-value) 0.000 0.000 0.152 0.000 0.010 

      

Auto shop 0.062 0.187 0.072 -0.094 0.034 

Sig (p-value) 0.009 0.000 0.003 0.000 0.151 

          * Computed from our estimates of (7), (9) and data contained in the NLSY79. N=1784. 

Table 6: Schooling Level as a Function of the Ben-Porath Parameters* 

Variables Coefficient. t-value    

ln(b) 0.0528 5.81    

ln(β) 0.0716 4.69    

ln(E0) 0.0058 1.26    

ln(δ) -0.0342 -6.49    

ln(r) -0.0322 -7.98    

Constant 2.3349 68.52    

Observations 1701    

Adj. R
2
 0.2356    

* Dependent Variable: Ln(Completed Years of School) from NLSY79. Independent variables are individual-
specific coefficient estimates of (7) and (9). Also adjusted for cohort, race, household poverty in 1978, and 
whether household subscribed to magazines at age 14, 



32 

 

 

Table 8: Correlation: Ben-Porath Parameters and Personality* 

            

Locus of control (Rotter) -0.120 -0.080 0.000 0.120 0.050 

Sig (p-value) 0.000 0.000 0.900 0.000 0.040 

      

Self-esteem (Rosenberg) 0.070 0.120 0.080 -0.080 0.060 

Sig (p-value) 0.000 0.000 0.000 0.000 0.010 

      

Mastery score (Pearlin) 0.130 0.120 -0.010 -0.110 -0.110 

Sig (p-value) 0.000 0.000 0.820 0.000 0.000 

      

CES-D Depression Scale -0.101 -0.066 0.024 0.106 0.049 

Sig (p-value) 0.000 0.005 0.303 0.000 0.040 

* Computed from our estimates of (7), (9) and data contained in the NLSY79. NRotter=1807, NRosenberg=1808, 
  NPearlin=1790, and NCES-D=1790. 

 

 

Table 9: Correlation: Ben-Porath Parameters  and Family Background* 

            

Mothers schooling 0.162 0.067 -0.039 -0.114 -0.076 

Sig (p-value) 0.000 0.006 0.104 0.000 0.002 

      

Father's schooling 0.151 0.127 -0.039 -0.097 -0.100 

Sig (p-value) 0.000 0.000 0.115 0.000 0.000 

      

Professional/Managerial 
Father 

0.138 0.088 -0.007 -0.085 -0.063 

Sig (p-value) 0.000 0.000 0.764 0.000 0.007 

      

HH poverty, 1978 -0.081 -0.149 -0.049 0.034 -0.037 

Sig (p-value) 0.001 0.000 0.042 0.161 0.131 

      

HH had magazine, age 14 0.153 0.099 0.011 -0.134 -0.062 

Sig (p-value) 0.000 0.000 0.654 0.000 0.008 

      

Urban 0.022 0.048 0.015- 0.016 -.006- 

Sig (p-value) 0.340 0.040 0.520 0.500 0.780 

* Computed from our estimates of (7), (9) and data contained in the NLSY79. NMother’s schooling=1721,  
  NFather’s schooling=1596, NProf/managerial father=1826, NHH pvery=1715, NHH magazine=1812, NUrban=1820. 
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Table 10: Covariance Structure* 
 

Parameter Individual-Specific Model  Pooled Model 

   -1.78 -6.06 

 
(0.977) (3.311) 

 

     0.00 0.01 
 

  
 

0.44 0.92 

 
(0.007) (0.003) 

 

-0.07 -0.35 

     

     8687.75 7805.66  
*Parameters are based on Earnings Dynamics Model in Section 5.7. We use SAS version 9.2 to compute the ARMA parameters. It 
reports the estimate of ρ (the auto regressive parameter). It does not report θ (the moving average parameter) directly. Instead it 
reports γ (a re-parameterization involving ρ and θ). The values are (γ-pooled=0.8030 (se: 0.004482); and γ-indiv= 0.3753 (se: 

0.006783). Based on Fuller (1976), page 68), we calculate θ from the following equation of ρ and γ:  θ 
          

  
 where     

   and             .    
  is computed as:      
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Appendix A: Derivation of the Human Capital Earnings Function 

 

Assume the individual’s objective is to maximize discounted disposable earnings    over the 

working life-cycle.
45

 This objective is achieved by choosing the amount of human capital    to 

reinvest each year in order to maximize the present value of lifetime earnings 

                                                                        (A1)                                                                                                   

where   is the total discounted disposable earnings over the working life-cycle,   is the personal 

discount rate, and   is the number of years one works, assumed known with certainly. Disposable 

earnings are 

 

                                                                                   (A2)                  

 

where   is the rental rate per unit of human capital,
46

  denotes human capital stock in time 

period t and    the amount of human capital stock reinvested in time period t to create new 

human capital. We assume the individual begins with an innate stock of human capital    which 

can be augmented by investing all or part of this. The period-to-period change in human capital is 

denoted by  

 

         (A3)
 

where we assume   is a constant rate of stock depreciation of existing human capital stock, and 

where we assume individuals create human capital using a Cobb-Douglas production       
 . 

 Maximization of (A1) subject to equations (A2) and (A3) entails maximizing the 

Hamiltonian 

 

                                  
                                (A4)      

     

with constraints  and making use of the transversality condition . 

 

The function    is the marginal contribution to the total discounted disposable earnings if 

there is one more unit of human capital investment in period t. Assuming that no corner solutions 

are binding, the necessary conditions are as follows. 

                        (A5.1)                                                                                               

                                                                                           (A5.2)          

                                                                                               (A5.3)           

            (A5.4) 

From equation (A5.2), we obtain . Solving this differential equation and using 

the tranversality condition (A5.4) we obtain 

 

                                                 
45

 As noted in the text, we abstract from labor supply considerations. 
46

 In the empirical work we test whether R varies by race, occupation, industry and other variables. 
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     (A6)

 

 

From (A6), , indicating a diminishing value of human capital over time. 

 

 

From (A5.1)  

 

 

implying that  

      (A7)                                                                                       

 

Substituting (A6) into (A7) yields 

 

 for .   (A8)                                               

 

Of  course,  during school since one devotes full-time to investing while in school.  

 

To obtain human capital stock (  ), we combine (A8) with (A3) and (A5.3) which yields 

a differential equation whose closed form solution entails an infinite hypoergeometric series  

 

   (A9)

 

where 

 

 

                                                                                                                                      (A10)

 

 

Haley shows that the infinite hypergeometric series converges to a particular value from the 

second term. In Haley’s derivation the convergence criterion is set for 6 decimal places.  A 

simpler form can be obtained by setting the convergence at 4 decimal places. We use this slightly 

less stringent convergence criterion to construct the earnings function.  

At  j = 0, the infinite sum of the hyper-geometric series becomes 
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or,  

   A(11) 

                

 

As such, the stock of human capital at time t can be expressed as  

 

or 

 

   

or   

 

or   

 

(A12)  

Observed earnings can be expressed as following  

 

 

 

 

where, R is the rental rate of human capital. Thus, 
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Letting                in the third term of (A13), one can rewrite                         in 

terms of x as           
 

   .  Expanding      with a second degree Taylor’s series 
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Note that     is a good approximation point because             assumes a value close to zero 

for any reasonable       during one’s work life t < N. To support this claim, we simulate      
with various plausible values of       ranging from (0.04 – 0.08) and   (ranging from 0.2 to 

0.6) and plot them against age in Figure A1, Figure A2, Figure A3. All three figure show the 

approximated function closely matches the actual function.  

 

As an additional test to show a statistically insignificant truncation error, we compute values for 

                        over the life-cycle         (the t-range of our data). We denote 

these 39 values as   , where t = 16, … 54. Next we approximate    by       as in (A14). This 

yields 39    and        pairs on which we run the regression               . We repeat this 

5040 times for    and       values computed for 0.01<r<0.15, 0.01<δ<0.1, and 0.2<b<0.7 in 

order to test the hypothesis that    . We find only 1.8% of the regressions reject the hypothesis 

at the 1% significance level.   

 

Substituting (A14) in (A13) yields 

 

               
                                 

 

 
                   

                    
                      

            
 

 
                     . 

 

Finally, given that    
 

   
                , we obtain the earnings function (7): 

 

   
 

        
 

 
       

 

 
         

 
 

 
     

  
 

 
 

 

   
 

 
     

     
     

  
 

 
 

 

   
 

 
        

  

   
     

 

   
 

 
      

     
            

      
 

   
 

 
      

 

     
  

 

     
                                  

 

We fit equation (7) to estimate b, W, E, δ, and r.  
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Figure A.1 

 
Figure A.2 

 
Figure A.3 
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Appendix B: Structural identification 

 

Least-squares estimation seeks a set of parameters that minimizes the mean square error     
          where         is the regression function which represents the conditional mean of y 

(               ) under the assumption of        and         . Identification implies a 

unique    minimizing               that satisfies both moment conditions.  

 

To show this, we employ a proof by contradiction. Let   be the conditional mean that minimizes 

the mean square error. Next, suppose there is another parameter    such that          minimizes 

the mean square error. Identification requires that there exist a unique set of parameters     such 

that                  . 
 

Proof: 

 

To show this, re-parameterize (7) as follows: 

 

                                 (7’) 

 

where  

 

             
 

 
          

 

 
                       

 

  
 

 

     
           

  

     
     

             
 

 
 

 

     
               

            
 

     
        

 

   
          

               
 

     
        

 

   

 

   
           

         
          
 

Suppose (7’) is not identified. This means that there exists at least another        such that 

                                               , or           
    

           
                

              . 

 

Suppose          
         

        then the only possible parameter values that satisfy the 

above equation are                            which means the regression 

function does not exist. This is a contradiction.  

 

On the other hand, if          
           

    , then the only combination that satisfies 

the above equation is                         which means that the parameter 

vectors are identical i.e.   
         

      . Thus, (7’) enables one to uniquely retrieve 

                           .  
 

Next, from this, we show a unique solution for the five parameters of interest (b, W, E, δ, and r) 

obtained when solving the seven equations underlying the parameter estimates (            

               ) obtained from (7’). To do this we write out the seven equations: 

              
 

 
          

 

 
                       

 

  
 

 

     
           

  

     
     (i)        
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                                                                        (iv) 

                                                                                                                                  (v) 

                                                                                                                                 (vi) 

                                                                                                                                                       (vii) 

 

From the above,   is uniquely identified from (vii). Given (vii) and the linear restrictions (v) and 

(vi), we obtain a unique value for r.  

Next, divide (ii) by (iii) to obtain:  
  

  
  

 

 
                

     

 
 .  

Let       
 

 
                 to yield  

  

  
     

     

 
.              (viii) 

Divide (iii) by (iv) to yield: 
  

  
              

     

 
 . 

Let                    to obtain  
  

  
     

     

 
 .                                                (ix) 

Combining (viii), and (ix) yields 
   

    
 

   

   
 , or      

   

   
     , or      

   

   
        

Note that 
   

   
 is expressed as a function of school leaving age   , Retirement age   , and   ,  . 

Any solution of  ,  ,  ,  ,   that solves for M and L must also solve for K. Thus, one can ignore 

(iii).  

From equation (i), (ii), and (iv), we solve for  ,  ,  . Divide (ii) by (iv) to obtain 

  

  
  

 

 
                

      

  
   or  

     

 
     

 

                 
  

  
                       (x) 

The solution thus depends on the value of   , and   . For any     , and       (x) will yield real 

solutions.  Imposing the non-negativity restriction on the parameters (i.e.              
ensures that     , and       conditions are met. Further the restriction 0  <      ensures that 

the negative solution of 
     

 
 in (x) is also not possible. Hence,   is uniquely identified. Once   

is uniquely identified, one can uniquely solve for   either from (ii) or from (iv). Finally, given 

the values of        , one can solve for E from (i). Thus, the parameters            are 

structurally identified. 
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Appendix C: Simulated Parameter Estimates 

We select a sample of 100 individuals at random from the 1826 individuals in our data. 

For each of these individuals, we have a set of parameters (b, W, E δ, and r), which were 

computed from equation (7). From these, we compute A0, A1, and A2 of equation (A13). 

For each of the 100 individuals, we use equation (A13) along with schooling and work 

experience to generate 100 sets of earnings data (using A13) for samples of 15 to 24 

observations (ten of size 15, ten of size 16, and so on, up to ten of size 24). We then 

augment earnings by random draws from a normal distribution with zero mean and a 

standard deviation based on the estimated error from equation (7) adjusted for the degrees 

of freedom. Using equation (A13) to simulate earnings enables us to avoid possible 

truncation biases arising from the Taylor Series approximation described in Appendix B. 

These varying sample sizes enable us to mimic the sample sizes we previously used from 

the NLSY. This procedure yields 10,000 individual panels of earnings data.  

For each of these simulated datasets (of size 15 to 24) we re-estimate (7) to obtain the 

parameter estimates for    
 ,    

 ,    
 ,    

 , and    
  (where i = 1....100 depicts each 

individual and s = 1....100 depicts each panel). For each individual, we calculate the 

average of these estimated parameters (  
    

 ,   
 ,   

 , and   
 ), their variances, and their 

root mean squared errors. Then we construct the bias by subtracting our original 

parameter estimates (                    from the average of these estimated parameters 

to obtain   
 =

    
 - bi),   

 = (   
  - Wi),   

 = (  
  - δi),   

 = (  
  - ri), and   

 = (  
  - Ei). 

Figures C.1, C.2, and C.3 plot kernel densities of the 100 sets of these biases and their 

variances and root mean-square errors. Table C.1 presents the overall mean and the 

overall variance. Given that the coefficients for each i are obtained from simulated data, 

each set of biases comes from distributions with different standard deviations based on 

the original estimate of (7). For hypothesis testing, we standardized,   
  ,   

 ,   
 ,   

 , and 

  
 , such that      

   
  
 

 
  
    

 ,      
   

  
 

 
  
    

     
   

  
 

 
  
    

    
   

  
 

   
    

    
  

  
 

 
  
    

  where  
  
 ,     

 ,  
  
      

 , and    
  are the standard deviations and n is the 

number of replications (in our case 100). These  standardized biases are distributed 

according to a standardized normal distribution allowing us to test if they statistically 

differ from zero. We find  four biases (   
     

     
         

   are insignificantly 

different from zero at the 5% level. Table C.2 contains the 95% confidence intervals for 

these. 
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Figure C.1 

Kernel Density Plot of Biases for Each Parameter 
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Figure C.2 

Kernel Density Plot of Parameter Variances 
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Figure C.3 

Kernel Density Plot of Parameter Root Mean Square Errors 
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Table C.1 

Simulated Biases 

Coefficient Mean Bias Variance 

b -0.005 0.00520 

W -0.046 0.86421 

δ -0.002 0.000144 

r 0.004 0.00083 

E 0.897 13.3536 

 

 

Table C.2 

Standardized Confidence Intervals of Biases 

 

Standardized 

Coefficient 

95% Confidence Interval 

b -3.483 to 0.941 

W -2.392 to 1.746 

δ -3.398 to 0.034 

r -1.142 to 3.003 

E 0.826 to 4.289 
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