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Abstract

We propose a job assignment model with individual heterogeneity and derive a measure of gender differences

in the propensity to get job positions along the wage distribution. This measure is used to quantify gender

disparities in the public and private sectors with a French exhaustive administrative dataset. We then show

how the model can motivate decomposition and counterfactual exercises consistent with economic theory. Our

approach constitutes an alternative to more descriptive methods such as Oaxaca decompositions and quantile

counterfactual approaches. Gender differences in the propensity to get jobs along the wage distribution are

found to be rather similar in the public and private sectors, although the gap is slightly larger in the public

sector in the 0.5 − 0.85 rank interval (and slightly smaller at ranks above 0.85). The overall contribution of

observables to explaining gender differences is small in the two sectors except for ranks below 0.5 in the public

sector. Long part-time experience is the only factor with a sizable explanatory power. The gender wage gap in

the public sector increases by only 0.7 points when workers are assigned to jobs according to the rules of the

private sector, but the gender quantile gap at the last decile is significantly larger by 4.6 points.
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1 Introduction

There is now a large body of evidence showing sizable gender wage differences related to the segregation of females

in low-paid jobs (Meurs and Ponthieux, 2015). In this paper, we propose a new way to quantify the role of

observable characteristics in explaining the gender wage gap based on a job assignment model where job positions

are characterized by heterogeneous wages and there are gender differences in the propensity to get these positions.

In our model, job positions are indexed by their rank in the wage distribution. All workers consider that the

position at the highest rank is the most attractive in terms of earnings but some of them find work conditions

too constraining to apply. Observable characteristics, including gender, can influence both the propensity to apply

and applicants’chances of being selected for the job. Workers not selected for the position consider the job at the

second highest rank, and so on, until all job positions are filled. Overall, this model can be seen as a way of assigning

workers to jobs depending on the result of careers meant to get the best paid positions. It can be brought to the

data and the effects of observable characteristics on the propensity to get jobs along the wage distribution can be

estimated. It is then possible to make gender wage decompositions and construct gender wage counterfactuals by

fixing parameters related to the propensity to get jobs to alternative values.

As our approach is based on economic theory, it provides an alternative to more decriptive methods such as

gender quantile decompositions and counterfactual distributions (Melly, 2005a; Machado and Mata, 2006; Firpo,

Fortin and Lemieux, 2009; Rothe, 2012; Chernozhukov, Fernandez-Val and Melly, 2013).1 In our setting, counter-

factuals are the result of an equilibrium when modifying structural parameters. They are generated by changing

the way workers are assigned to jobs and counterfactual assignments affect the wage distribution conditional on

individual characteristics but not the overall wage distribution which is held fixed. By contrast, the traditional

descriptive approach considers counterfactuals of conditional wage distributions computed from another sample

and this generates an overall wage distribution that depends on the counterfactual. Moreover, equilibrium effects

leading to a reassignment of workers across job positions are ignored. There is also an important difference in the

definition of the rank when studying gender differences across ranks in the wage distribution. Whereas we consider

the rank in the wage distribution of job positions which is a common index for males and females, gender quantile

differences involve two different ranks corresponding to the ranks in the two gender wage distributions.

We show that it is possible to estimate a flexible semi-parametric version of the model by maximum likelihood

to recover the influence of observable characteristics including gender on the propensity to get jobs. Indeed, the

probability of a job being filled with a specific worker rather than the other available workers considering the

job is given by a logit model with the additional feature that the coeffi cients of explanatory variables are gender-

1For a survey, see Firpo, Fortin and Lemieux (2011).
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specific polynomial series of the rank. We introduce interactions between gender and observable characteristics in

the specification to allow for gender-specific probability of being selected to depend on observable characteristics

and the rank. Counterfactuals of wage distributions are generated by changing the coeffi cients of explanatory

variables that capture differences in access to jobs. Consistency when the number of individuals tends to infinity

is proved by extending results in sampling theory proposed by Rosén (1972), as it is possible to draw a parellel

between the selection of workers at each rank and the sampling of observations without replacement. We propose

a simulation approach that yields consistent estimators of these counterfactuals when the number of simulations

tends to infinity.

As an illustration, we apply our approach to assess the respective importance of gender differences in the public

and private sectors. It is said that females may be treated more fairly in the public sector because recruitments

and promotions are based on competition, and labor unions are strong. The public sector is indeed characterized

by a smaller wage gap which is consistent with these arguments. However, the wage dispersion is also smaller

and may hide an assignment to jobs that is not that favorable to females. We first estimate the model on each

sector separately and recover structural parameters measuring the way workers are assigned to jobs in each sector

depending on their gender and other observable characteristics. Our work complements the literature on gender

earnings differences which was originally cross-section (Albrecht, Björklund and Vroman, 2002) but has developped

toward dynamic approaches to take into account the forward-looking behaviour of workers and evaluate specific

mechanisms making use of individual time variations (Bowlus, 1997; Flabbi, 2010a and 2010b; Gayle and Golan,

2011). In contrast with this literature, our goal is to propose a measure of gender differences in propensity to get

positions along a job hierarchy in a context where jobs are heterogeneous using a job assignment model that is

closer in the spirit to Sattinger (1975) and Teulings (1995).2

We then compare the profile of gender differences in propensity to get jobs along the wage distribution of

job positions between the two sectors and assess the role of observable characteristics in explaining inter-sectorial

dissimilarities. For that purpose, we estimate counterfactuals of gender wage distributions in the public sector

considering that workers in that sector are assigned the same way whatever their gender, or alternatively considering

that their assignment follows the rule of the private sector. Our work adds to the literature on public-private

differences which has mostly used standard Oaxaca decompositions (Lucifora and Meurs, 2006) and gender quantile

decompositions (Melly, 2005b), although some recent papers estimate structural dynamic models (Postel-Vinay and

Turon, 2007; Bradley, Postel-Vinay and Turon, 2013).3

For our empirical application, we rely on the DADS Grand Format - EDP 2011 which is a unique administrative

panel dataset recording all jobs in the public and private sectors over the 1992-2011 period for all workers born

in the first four days of October. In particular, it provides accurate information on wages and the longitudinal

2See Sattinger (1993) for a survey on early literature.
3See also Gregory and Borland (1999) for a survey on earlier literature.
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dimension can be used to reconstruct the histories of part-time activity and work interruptions. Estimations are

conducted for the year 2011 considering only full-time jobs for workers aged 30-65 to avoid early-career and unstable

job positions.

We find that the gender probability ratio of getting a given job along the wage distribution are rather similar in

the public and private sectors, although the gap is slightly larger in the public sector in the 0.5− 0.85 rank interval

(and slightly smaller above rank 0.85). In each sector, the overall contribution of observables (age, diploma, part-

time history, work interruption history, and location in Paris region) to explaining gender differences in propensity

to get jobs is small except for ranks below 0.5 in the public sector. Long part-time experience is the only factor

that impedes females to get jobs to some extent. The raw average gender wage gap in the public sector at 13.2%

is smaller than that in the private sector which stands at 15.3%. Interestingly, when workers in the public sector

are assigned to jobs according to the rules of the private sector, the gender wage gap is only 13.9%. This suggests

that the gender wage gap difference between the two sectors due to differences in assignment rules would be rather

small, around 0.7 points, and the raw difference of 2.1 points would be mostly due to the larger wage dispersion in

the private sector. By contrast, the change in gender quantile gap at the last decile when assigning workers in the

public sector with the rules of the private sector is large as it reaches 4.6 points.

In Section 2, we explain how counterfactuals can be constructed from a job assigment model by changing the

propensities to get jobs. We detail in Section 3 how the model can be estimated and empirical counterparts of

counterfactuals can be obtained. Section 4 presents the French public sector as well as the data and provides

descriptive statistics. Section 5 gives the results on estimated coeffi cients and counterfactuals. Finally, Section 7

concludes.

2 The model

We consider each sector separately and ground our analysis within each sector in the job assignment framework

proposed by Gobillon, Meurs and Roux (2015) extended to take into account the observable heterogeneity of

workers. There is an infinite but countable number of workers such that there is a proportion n (m) of males in

the population, which we refer to as the measure of males for clarity hereafter, and a proportion n (f) = 1− n (m)

of females. Workers are characterized by observable attributes X which will affect their chances of getting a job.

We focus on the case where attributes take a finite number of values
{
Xk
}
k=1,...,K

with K the number of values.

Denoting n (X, j) the measure of gender-j workers with characteristics X and FX,j (·) the cumulative distribution

of X for the population of workers with that gender, we have
∫
n (x, j) dFX,j (x) = n (j).

Job positions are heterogenous such that they can be ranked according to a continuous variable related to the

position in the job hierarchy.4 Consistently with our application, we consider that this variable is the wage and

4We assume that the variable used to rank jobs is continuous as we want to estimate the parameters of the model from wage data.
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we assume that each job position is associated with a specific fixed wage through a contract. This wage is not

allowed to depend on the gender or the other observable characteristics of the applicant. We suppose that two job

positions cannot be associated with the same wage offer so that each job can be uniquely identified by its rank in

the wage distribution.5 Workers first decide whether or not to apply for the best ranked position as it offers the

highest wage but work conditions may be too constraining. The applicants are all in competition whatever their

characteristics. The manager of the position chooses an applicant taking into account the observable attributes of

all applicants. Those not hired turn to the second best ranked position, and so on.

More formally, the recruitment process can be described in the following way. For a job of rank u, a manager

screens the available workers who decide to apply. We denote by n (u |X, j ) the measure of gender-j workers with

characteristics X who are available for a job of rank u such that n (1 |X, j ) = n (X, j) as all workers are available

for the first job and n (0 |X, j ) = 0 as all workers end up being employed. Workers are heterogeneous in their labour

supply. For instance, some females may give up applying to well-paid jobs when they have children because these

jobs involve long working hours and investment not compatible with family constraints. Denoting by υ (u |X, j ) the

exogenous share of available gender-j workers with characteristics X who decide to apply for the job, the measure

of applicants with such characteristics is given by υ (u |X, j )n (u |X, j ). The manager derives a utility Vi (u) from

an applicant i that captures both firm profit and taste, and is supposed to take the form:

Vi (u) = lnϕ (u |Xi, j (i) ) + εi (u) (1)

where ϕ (u |X, j ) captures both the profit component that depends on observables and the taste of the manager

for workers of gender j and characteristics X, and εi (u) captures a random profit component derived from the

match (ie. the match quality) drawn independently across individuals. We consider that the manager observes the

two profit components and hires the applicant yielding the highest utility. The set of applicants to the job is the

set of workers not hired for a job of higher rank and interested in the job. This set can be defined recursively as:

Ω (u) =

{
i applying for rank-u job

∣∣∣∣for all ũ > u, i not applying for rank-ũ job or Vi (ũ) < max
k∈Ω(ũ)

Vk (ũ)

}
(2)

The set of applicants for the job, Ω (u), contains all the workers who did not apply for the jobs above rank u

because of work constraints or did not draw a random profit component high enough to get selected for those jobs.

For a given job, the maximization program of the manager is a multinomial model with two specificities. First,

the choice set consists in all applicants still available after better ranked job positions have been filled. To avoid

any selection process based on match quality, we suppose that match qualities are drawn independently across

Nevertheless, the model can easily be adapted to the case where this variable is discrete.
5This assumption is made for expositional purposes and can easily be relaxed at the cost of a slightly less straightforward presentation.

Indeed, formulas become a bit more intricate when several job positions are filled simultaneously because workers are interested by all
of them to the same extent.

5



jobs. Second, the choice set contains an infinite but countable number of workers. We extend the extreme value

assumption on the law of residuals that is associated with a logit specification to an infinite countable number

of jobs following Dagsvik (1994).6 This assumption ensures that for any given job, the probability of selecting a

worker follows a logit model. Under this assumption, the probability that the worker chosen for the job of rank u

is of gender j and has characteristics X verifies:

P (j (u) = j,X (u) = X) = n (u |X, j )φ (u |X, j ) (3)

with:

φ (u |X, j ) =
µ (u |X, j )∫

n (u |X, f )µ (u |X, f ) dX +
∫
n (u |X,m )µ (u |X,m ) dX

(4)

where µ (u |X, j ) = υ (u |X, j )ϕ (u |X, j ) captures labour supply, productivity and taste effects.7 In our application,

we will not try to disentangle these three types of effects. We will rather evaluate the overall effects of explanatory

variables on the propensity to get a job of rank u for a gender-j worker with characteristics X, µ (u |X, j ), that

we label from now on the “conditional worker value”. The denominator of the right-hand side term in (4) is a

competition term which depends on the measures of applicants with the different genders and characteristics. We

will refer to φ (u |X, j ) as the conditional probability of getting the job of rank u, and to φ (u |X,m ) /φ (u |X, f ) =

µ (u |X,m ) /µ (u |X, f ) as the gender conditional probability ratio of getting the job for workers with characteristics

X.8

For gender j, we can derive a differential equation verified by the measure of individuals with characteristics

X available for a job of rank u. Consider an arbitrarily small interval du in the unit interval. The proportion of

jobs in this small interval is du since ranks are equally spaced (and dense) in the unit interval. The measure of

jobs occupied by workers of a given gender j with characteristics X is n (u |X, j )φ (u |X, j ) du. For these gender

and characteristics, the measure of workers available for a job of rank u− du can be deduced from the measure of

workers available for a job of rank u substracting the workers who get the jobs of ranks between u− du and u:

n (u− du |X, j ) = n (u |X, j )− n (u |X, j )φ (u |X, j ) du (5)

6Put differently, we assume that the points of the sequence {j (i) , Xi, εi (u)}, i ∈ Ω (u) are the points of a Poisson process with

intensity measure n(u|X,j )µ(u|X,j )∫
n(u|X,f )µ(u|X,f )dX+

∫
n(u|X,m )µ(u|X,m )dX

exp(−ε)dε.
7Our framework can also be extended to take into account statistical discrimination with µ (u |X, j ) capturing its intensity on top

of the other mechanisms (see Gobillon, Meurs and Roux, 2015).
8Note that the probability of getting the job at a given rank φ (u |X, j ) is conditional not only on the specific characteristics of a

given applicant, but also on the characteristics of all workers not hired for a job of higher rank and interested in the job. We do not
write explicitly this second conditioning to keep notations simple.
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From this equation, we obtain when du→ 0:

n′ (u |X, j ) = φ (u |X, j )n (u |X, j ) (6)

This relationship states that the variations in the measure of gender-j workers with characteristics X around rank

u depend on the stock of gender-j workers with these characteristics and their chances of getting a job. We also

show in Appendix A that, under the initial conditions n (1 |X, j ) = n (X, j), the system of equations considering

(6) for all X and j, where φ (u |X, j ) verifies (4), has a unique solution.

2.1 Decompositions

Suppose that we are able to construct estimators of conditional worker values at any given rank, µ (u |X, j ). It is

possible to make a decomposition of the gender conditional probability ratio of getting a job into the contribution

of the differences in observable characteristics and the contribution of the differences in their returns. Indeed,

denote by φ (u |j ) the probability of an available gender-j worker getting a job at rank u. This probability verifies:

φ (u |j ) =

∫
p (u |X, j )φ (u |X, j ) dX (7)

with p (u |X, j ) = n (u |X, j ) /n (u |j ) where n (u |j ) =
∫
n (u |X, j ) dX is the proportion of gender-j workers with

characteristics X still available for a job at rank u. The (unconditional) gender probability ratio of getting a job

of rank u is given by φ (u |f ) /φ (u |m ). We introduce conditional worker values considered to be the benchmark

in absence of any gender difference in propensity to get jobs, µr (u |X ), which are fixed or estimable. For instance,

they can be the conditional worker values for males or the conditional worker value for the overall population (in

line with Oaxaca and Ransom, 1994). Taking the logarithm of the gender probability ratio of getting the job of

rank u derived from (7) and rearranging the terms, we get:

log [φ (u |f ) /φ (u |m )] =

∫
[p (u |X, f )− p (u |X,m )] logµr (u |X ) dX

+

∫
[logµ (u |X, f )− logµr (u |X )] p (u |X, f ) dX

−
∫

[logµ (u |X,m )− logµr (u |X )] p (u |X,m ) dX + r (u) (8)

where:

r (u) =

[∫
p (u |X, f ) logµ (u |X, f ) dX − log

[∫
p (u |X, f )µ (u |X, f ) dX

]]
−
[∫

p (u |X,m ) logµ (u |X,m ) dX − log

[∫
p (u |X,m )µ (u |X,m ) dX

]]
(9)
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The first right-hand side term in (8) reflects the gender difference in propensity to get the job at a given rank

for available workers if conditional worker values are the same for males and females, and fixed to the benchmark

values. This gender difference is due only to gender differences in the composition of available workers. The second

(resp. third) right-hand side term reflects the gender difference in propensity to get the job if conditional values of

available female (resp. male) workers were modified to take the benchmark values. The fourth one is the residual

due to the non-linearity introduced by the use of logarithms. All right-hand side terms can be computed replacing

conditional worker values by their estimators.

Importantly, the set of workers available at each rank is fixed and determined from the data. We do not reassign

workers to jobs when changing conditional worker values. We now show how to perform counterfacual exercices

that involve a reassignment of workers when changing conditional worker values.

2.2 Counterfactuals

A matter of interest is the gender differences in propensity to get each job along the wage distribution in the public

sector if individuals were attributed the conditional worker values in the private sector, or if individuals of the same

gender were attributed the same conditional worker values. To investigate this matter, we construct counterfactuals

of gender conditional probabilities of getting jobs if gender-j workers were attributed some alternative conditional

worker values µ∗ (u |X, j ). In this counterfactual situation, there is a reassignment of workers across job positions

holding fixed the wage distribution of job positions. Denote by n∗ (u |X, j ) the counterfactual assignment of workers

which is obtained from the differential equation (6) where the conditional probability of getting a job has been

replaced by its expression (4) and conditional worker values by their counterfactuals:

n∗′ (u |X, j ) =
µ∗ (u |X, j )n∗ (u |X, j )∑
`,g
µ∗ (u |X`, g )n∗ (u |X`, g )

(10)

This differential equation is solved under the initial conditions n∗ (1 |X, j ) = n (1 |X, j ) where n (1 |X, j ) is the

measure of gender-j workers with characteristics X in the public sector.

The counterfactual of the gender probability ratio of getting a job can easily be obtained by replacing the

conditional probabilities of getting this job by their expressions (7) where conditional worker values have been

replaced by their counterfactuals and the proportion of gender-j workers with characteristics X still available for

a job at rank u by the counterfactual p∗ (u |X, j ) = n∗ (u |X, j ) /n∗ (u |j ) with n∗ (u |j ) =
∫
n∗ (u |X, j ) dX. The

counterfactual of the gender probability of getting the job is given by:

φ∗ (u |j ) =

∫
p∗ (u |X, j )µ∗ (u |X, j ) dX (11)

We are also interested in constructing gender-specific counterfactual wage distributions and, in particular, gender-
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specific wage distributions for workers in the public sector if the conditional values of these workers were modified

to be the same as in the private sector. The differences between the actual gender-specific wage distributions and

their counterfactuals are due to differences in propensity to get jobs between the two sectors.

The counterfactual of gender-j wage cumulative in the public sector when workers have the same conditional

values as in the private sector verifies:

F ∗j (w) =

∫
n∗ (F (w) |X, j )

n∗ (1 |j )
dX (12)

where F (·) is the wage cumulative in the public sector and n∗ (1 |j ) =
∫
n∗ (1 |X, j ) dX is the counterfactual

measure of gender-j workers. The derivation of this relationship gives the counterfactual of gender-j wage density:

f∗j (w) = f (w)

∫
n∗′ (F (w) |X, j )

n∗ (1 |j )
dX (13)

where f (·) is the wage density in the public sector.

3 Empirical strategy

3.1 Estimation of parameters

It is possible to quantify the influence of observable characteristics on conditional worker values under semi-

parametric assumptions. We make the assumption that conditional worker values can be specified as:

µ (u |X, j ) = exp
[
Xβj (u)

]
(14)

where X now refers to a matrix of attributes which includes the vector of ones and βj (·) are some gender-specific

functions of the rank that we choose to be polynomials of finite order. This model makes an index assumption

to decrease the dimensionality but coeffi cients that can depend on the rank. This dependence is allowed because

labour supply may vary across rank in a specific way for workers depending on their characteristics, or because

characteristics may be valued differently by employers depending on the position that is considered. In that setting,

the empirical counterpart of the conditional probability of a worker i getting a job at rank u given by (4) is simply

a logit model such that the latent variable associated to the worker is Xiβj(i) (u) + ηi (u) with ηi (u) following an

extreme value law.9 This latent variable looks like the utility derived by the manager from the worker being hired

(1) except that the coeffi cients βj (u) do not measure the effects of explanatory variables on the manager’s tastes

only, but rather they joint effects on these tastes, productivity and labour supply.

9Note that the residual ηi (u) is not equal to the productivity match εi (u) because of heterogeneous labor supply effects. We have
ηi (u) = εi (u) when supply effects are uniform across all individuals.
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The parameters of polynomial coeffi cients can be estimated by maximum likelihood. We first introduce some

additional notations. Denote by ui the rank of individual i and Xi the value of his observable attributes, uk =

(k − 1) / (N − 1) the kth rank, ik the individual occupying this rank such that we have Ω
(
uk
)

= {i1, ..., ik}, and
−→
Xk = {Xi1 , ..., Xik} and

−→
j k = {j (i1) , ..., j (ik)} respectively the observed characteristics and genders of the

individuals occuyping the k lowest paid jobs. The likelihood is given by:

L = P
(
ui1 = u1, ui2 = u2, ..., uiN = uN

∣∣−→XN ,
−→
j N

)
= P

(
uiN = uN

∣∣−→XN ,
−→
j N

)N−1∏
k=1

P
(
uik = uk

∣∣uik+1 = uk+1, ..., uiN = uN ,
−→
XN ,

−→
j N

)
= P

(
uiN = uN

∣∣−→XN ,
−→
j N

)N−1∏
k=1

P
(
uik = uk

∣∣uik+1 = uk+1, ..., uiN = uN ,Ω
(
uk
)
,
−→
Xk,
−→
j k

)
=

N∏
k=1

P
(
uik = uk

∣∣Ω (uk) ,−→Xk,
−→
j k

)

where the last equality is obtained under our assumption that the random match qualities εi (u) are independently

and identically distributed across ranks. Here, P
(
uik = uk

∣∣Ω (uk) ,−→Xk,
−→
j k

)
is the empirical counterpart of

φ (uik |Xik , j (ik) ) and it verifies:

P
(
uik = uk

∣∣Ω (uk) ,−→Xk,
−→
j k

)
=

µ (uik |Xik , j (ik) )∑
`6k

µ (uik |Xi` , j (i`) )
=

exp
[
Xikβj(ik) (uik)

]
∑
`6k

exp
[
Xi`βj(i`) (uik)

] (15)

The parameters of polynomial coeffi cients βj (u) are estimated by maximizing the log likelihood L = 1
N

∑
i

P
(
uik = uk

∣∣Ω (uk) ,−→Xk,
−→
j k

)
.

In fact, the likelihood is the same as the partial likelihood obtained when estimating a Cox duration model with

time-varying parameters, and the asymptotic distribution of estimated parameters has long been established (see

Andersen and Gill, 1982).

3.2 Evaluation of decompositions and counterfactuals

It is also possible to make an empirical assessment of the decomposition of the gender probability ratio of getting

each job given by (8). Assume that benchmark conditional worker values µr (u |X ) are also of the form (14) with

estimable polynomial coeffi cients βr (u). In that setting, the decomposition simplifies to:

log [φ (u |f ) /φ (u |m )] = [E (X |f, u )− E (X |m,u )]βr (u)

+E (X |f, u )
[
βf (u)− βr (u)

]
− E (X |m,u ) [βm (u)− βr (u)] + r (u) (16)
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where E (X |j, u ) are the average characteristics of gender-j workers available for a job at rank u. The left-hand

side term, the gender probability ratio of getting a job of rank u, can be estimated non parametrically following

Gobillon, Meurs and Roux (2015). Right-hand side terms can be obtained by replacing average characteristics by

their empirical counterparts, and polynomial coeffi cients by their estimators. When the benchmark values are those

of males, βr (u) ≡ βm (u) which have already been estimated. If the benchmark values are average conditional worker

values for the overall population, βr (u) can be obtained by maximum likelihood fixing βf (u) = βm (u) ≡ βr (u)

and adding a gender dummy to the specification to act as a control in line with Fortin (2008).

It is possible to estimate counterfactuals of gender-j probabilities of getting each job given by (11). For that

purpose, we need to recover estimators of n∗ (u |X, j ) when using the counterfactual conditional worker values

µ∗ (u |X, j ) which we suppose to be of the form (14) with estimable polynomial coeffi cients β∗j (u). The finite

discrete counterpart of the differential equation verified by the measures of available workers (6) is:

N∗
(
uk |X, j

)
= N∗

(
uk+1 |X, j

)
−Dk+1 (X, j) (17)

where N∗ (u |X, j ) is the counterfactual number of gender-j workers with characteristics X available at rank u, and

Dk (X, j) is a dummy taking the value one if an available worker in the set Ω∗j
(
uk, X

)
gets the job at rank uk and

zero otherwise. There is some randomness which comes from the choice of a worker by the manager from conditional

probabilities of getting jobs of the form (4). For a given rank v, a quantity of interest is E
[
N∗
(
ubvNc+1 |X, j

)]
where b·c is the integer part. Indeed, we show in Appendix B that E

[
N∗
(
ubvNc+1 |X, j

)]
/N →

a.s.
n∗ (v |X, j ) for

all v ∈ ]0, 1[. The proof relies on the extension of a theorem on sampling without replacement proposed by Rosén

(1972). Whereas in the original theorem, the influence of explanatory variables on the propensity of an individual

to get the job does not vary across jobs, in our case this propensity varies since exp
[
Xβj (u)

]
depends on the rank.

We show that the proof of the original theorem can be generalized to the case where the influence of explanatory

variables varies across jobs.

The expectation E
[
N∗
(
ubvNc+1 |X, j

)
/N
]
can be estimated using a simulation approach which consists in

generating assignments of workers to jobs. Theoretical fundations of the simulation approach are detailed in

Appendix C. A simulation is indexed by s = 1, ..., S, we denote by Ωsj (u,X) the counterfactual sample of gender-j

workers with characteristics X available at rank u. In practice, the counterfactual sets of available workers with

every characteristics X at the empirical rank uk−1,
{

Ωsj
(
uk−1, X

)}
X,j
, are deduced from the same sets at next

empirical rank,
{

Ωsj
(
uk, X

)}
X,j
, by substracting the worker that gets the job at rank uk which is determined

consistently with the model specification in the following way.

The empirical counterpart of the counterfactual conditional probability of getting a job at rank uk can be

11



rewritten as:

P
(
ui = uk

∣∣Ωs (uk) ,−→X s
k,
−→
j sk

)
=

exp
[
Xiβ

∗
j(i)

(
uk
)]

∑
k∈Ωs(uk)

exp
[
Xkβ

∗
j(k) (uk)

] (18)

with j (i) the gender of worker i, Ωs
(
uk
)
the counterfactual sample of workers available at rank uk, and

(−→
X s
k,
−→
j sk

)
their characteristics and genders. It thus corresponds to the probability of getting the job given by a multinomial

logit model. Hence, it is possible to simulate which worker gets the job at rank uk by computing, for each available

individual, the sum Xiβ̂
∗
j(i)

(
uk
)

+ ηsi
(
uk
)
where ηsi

(
uk
)
has been drawn in an extreme value law. The worker

getting the job is the one with the highest value of this sum. The sets of available workers with given characteristics

and gender at each empirical rank is obtained by recursively applying this procedure from the highest rank to the

lowest rank. Finally, we deduce the number of available workers Ns
(
uk |X, j

)
= Card Ωsj

(
uk, X

)
. We show in

Appendix C that when S → +∞, we have for all v ∈ ]0, 1[, 1
S

∑S

s=1
Ns
(
ubvNc+1 |X, j

)
→
a.s.

E [N∗ (v |X, j )].

We now explain how to evaluate the probability of getting a job at each rank uk for each gender. The empirical

counterparts of the terms p∗
(
uk |X, j

)
which enter the counterfactual probability (11) are:

p̂s
(
uk |X, j

)
=

Ns
(
uk |X, j

)∑
`
Ns (uk |X`, j )

(19)

An estimator of the counterfactual gender-j probability of getting a job at rank uk is then given by:

φ̂
∗ (
uk |j

)
=

1

S

∑S

s=1

∑
`
p̂s
(
uk
∣∣X`, j

)
exp

[
X`β̂

∗
j

(
uk
)]

(20)

where β̂
∗
j (u) is an estimator of β∗j (u).

We also want to recover the counterfactuals of gender-j cumulative and density. For that purpose, we first

consider the original sample and sort wages in ascending order, denoting by wk the kth wage. It is possible to

construct an estimator of the counterfactual of gender-j cumulative at rank uk, F ∗j
(
wk
)
, from equation (12) as:

F̂ ∗j
(
wk
)

=
1∑

`
N (X`, j)

1

S

∑S

s=1
Ns
(
F ∗j
(
wk
) ∣∣X`, j

)
(21)

A counterfactual of gender-j density is obtained by smoothing and deriving the counterfactual cumulative.
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4 Context and descriptive statistics

4.1 The public sector in France

The French public sector accounts for around 20% of total salaried employment. Most public employees are females

(61%) whereas this is not the case in the private sector (44%) (Dorothee, Le Faller and Treppoz, 2013). The public

sector is divided into three subsectors: central administration which includes education (44% of employment in the

public sector), local government (35%) and public health (21%). The share of local government in employment has

increased over the last 10 years in line with the decentralization process occuring during that period (Dorothée and

Baradji, 2014).

In France, the public sector has a highly centralized pay setting compared to the private sector. A common

pay scale is applied to all subsectors, which means that the nominal value of the basic wage is the same at any

given grade through the entire public sector. However, individual differences in earnings may arise from bonuses

which are mostly related to the type of occupation. Due to budget constraints, the basic wage is constant in

nominal terms since 2010, and there has been no major change in pay scale by occupation in the past decade. As

a consequence, advancement along the pay grid is currently the main way to get a pay rise.

The French public sector is very close to the model of internal labor market proposed by Doeringer and Piore

(1985). The main recruitment process is a competitive exam with diploma requirements specific to the type of

occupation. There are as many competitive exams as types of occupations (policemen, judges, teachers, nurses,

clerks, academics, etc.), the most prestigious one leading to careers in top management in the public administration

through ENA (Ecole Nationale d’Administration). Once recruited, civil servants start their career at the bottom of

the pay scale specific to their occupation. Mobility between the public and private sectors is very limited and occurs

mainly at early stage of careers (Daussin-Benichou et al., 2014). Wage increases depend much on seniority despite

recent reforms which aim at taking into account individual performance and/or local work conditions. Promotions

are seldom events which also depend on seniority to some extent and are most often obtained through competitive

or professional exams.

4.2 The data

Estimations are conducted on the DADS Grand Format - EDP 2011 which is a panel dataset following all individ-

uals born in the first four days of October and is constructed from two difference sources (Déclaration Annuelles

des Données Sociales i.e. DADS and Echantillon Démographique Permanent, i.e. EDP). The data record all jobs

in the public and private sectors since 1976.10

The DADS are collected for tax purposes and contain details on job characteristics. They give the establishment

10Three years, 1981, 1983 and 1990, are missing because the French Institute of Statistics devoted its financial means to the 1982
and 1990 census rather than to the management of the wage data.
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identifier (SIREN number) from which we determine establishment seniority since 1992 and the status (full-time

or part-time) from which we reconstitute part-time history. We also compute the number of years individuals are

absent from the data. Absence corresponds to an interruption in the professional activity due to unemployment or

exit from the labour force. The full-time equivalent annual wage is reported. There are outliers with wage below

the minimum wage and consequently we delete observations for which the monthly wage is below 1000 euros. The

job duration (in days) is reported and we only retain jobs occupied full time on July 1st in which workers stayed for

at least 30 days during the year to focus on stable workers that are more likely to compete for all job positions. This

also means that we keep at most one job per worker every year. Finally, we use the information on administration

for public jobs to restrict the sample to those in the central and local administration but excluding teaching jobs

which management is very specific.11 We consider jobs only for workers aged 30-65 to avoid taking into account

the frequent transitions between unstable job positions that often occur at the beginning of the career. We limit

our attention to the single year 2011 as our assignment model is cross-section. Our final dataset contains 55, 881

observations and the proportion of females is 37.8%. Most individuals work in the private sector (82.6%) where

the proportion of females (35.1%) is lower than in the public sector (50.9%).

Data are also used to construct our set of explanatory variables. We consider a dummy for establishment tenure

being larger or equal to 10 years and two dummies for part-time experience being respectively between 7% (the

median) and 18% (the third quartile), and more than 18%, of job experience (less than 7% being the reference). The

location of job at the municipality level is used to construct a dummy for the job being located in the Paris region.

We also consider two dummies for the age brackets 41-50 and 50-65 (31-40 being the reference). These variables

are complemented with information on diploma and children. We construct a dummy for having a high-school

diploma or more, as well as two dummies for having respectively no child, and three children and more (one or two

children being the reference). Note that we are rather parcimonious in the number of categories. This is because we

need to estimate the gender-specific coeffi cients of polynomial function of ranks for each dummy in the empirical

application and this makes the number of coeffi cients increase fast with the number of explanatory variables.

4.3 Descriptive statistics

We report descriptive statistics on wages by sector and gender in Table 1. As usual, females have a lower average

wage than males. When pooling the two sectors, the gap is 19%. There is also a smaller wage dispersion for

females as the standard deviation is 37% lower than that of males. The gender quantile difference increases with

the rank in line with the literature, the difference being only 8% at the 5th percentile but as high as 26% at the

95th percentile. There are interesting differences between the two sectors. The public sector is characterized by

less dispersed wages, a gender wage gap (14%) which is lower than that of the private sector (19%), and a gender

11Note that jobs in the health administration are also excluded because some positions such as doctors are very specific and workers
occupying them usually do not change job for a position in another administration of the public sector.
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quantile difference which increases more slowly with the rank. These differences between the two sectors are closely

related to differences in their wage dispersion.

[ Insert Table 1 ]

We represent the gender log-wage distributions by sector. Figure 1 shows that gender distributions in the private

sector have fatter right-hand tails and lower peaks than in the public sector. In the two sectors, male distribution

is slightly to the right of female distribution, especially in the public sector.

[ Insert F igure 1]

We also investigate gender differences in observable characteristics within and across sectors. Table 2 shows that in

each sector females are more qualified than males, and have much more often long part-time experience and long

work interruption. The gender gap in part-time experience is very large and is similar across sectors. By contrast,

the gender gaps in education and work interruption are smaller in size but remain sizable, and they are larger in

the public sector.

[ Insert Table 2 ]

5 Results

5.1 Estimation of the gender probability ratio of getting a job

We compute a non-parametric estimator of the gender probability ratio of getting each job for each sector following

the procedure proposed by Gobillon, Meurs and Roux (2015). Figure 2 shows that above rank 0.05, females have

a lower propensity than males to get any job position whatever the sector. In the private sector, the female

propensity to get jobs decreases slowly until rank 0.45 and then increases before decreasing again after rank 0.65.

Non-monotonic movements can be explained by the heterogeneity of jobs as very heterogeneous industries are

pooled. At the highest quantiles, female propensity to get jobs is very low: a female has 70% less chances of getting

a job than a male. In the public sector, the gender probability ratio of getting jobs is decreasing until rank 0.4,

nearly flat for ranks in the 0.4− 0.9 interval, and then again decreasing. Interestingly, between rank 0.5 and 0.85,

female propensity to get jobs is lower in the public sector than in the private sector. Nevertheless, it ends up being

slightly higher at the highest ranks.

[ Insert F igure 2]

We then estimate the semi-parametric model (14) when introducing all our explanatory variables, including the

gender dummy but without considering its interaction with other variables, and fixing the degree of the rank of
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polynomial coeffi cients to five for each variable. Estimated coeffi cients (that of gender dummy excluded) will be

used as references in our counterfactual exercise in the scenario where conditional worker values for the two genders

are equalized.

For this simple specification, we can compare the (exponentiated) effects of dummy explanatory variables on

the gender conditional probability ratio of getting a given job between the two sectors. These effects are represented

as a function of the rank in Figure 3. The profiles for the gender dummy are consistent with the non-parametric

estimators of the gender probability ratio of getting each job. Controlling for observable characteristics thus does

not affect much the estimated gender probability ratio of getting a job.12 The effect of high-school diploma increases

more slowly at high ranks in the public sector but exhibits a sharper increase at highest rank than in the private

sector. Not surprisingly, workers with no high-school diploma have nearly no chance of getting the best-paid jobs

in the two sectors. Workers with three children and more have a higher probablity of getting best-paid jobs in

the two sectors, especially the private one. It is possible to check that this occurs mostly because of males. It is

consistent with males with three children being more stable or being ready to work when they the main provider

of the household. Job seniority is not necessary to get best-paid jobs in the private sector but it plays a large role

in the public one. This can be explained by job mobility in the private sector that can lead to the occupation of

better-paid positions. Age profiles are similar in the two sectors such that it is easier to get best-paid jobs when you

get older. The probability of getting best-paid jobs is also larger when living in the Paris region in the two sectors,

consistently with the location of best-paid jobs. Short part-time experience is mostly detrimental in the public

sector. This could be due to labor supply effects such that part-time workers in that sector are less career-oriented,

or to career rules as part-time entry jobs impede sectoral seniority which is important for promotions in the public

sector. By contrast, long part-time experience is detrimental in the two sectors. Finally, the picture is similar when

considering short/medium and long work interruptions.

[ Insert F igure 3]

We also consider a more complete semi-parametrization of conditional worker values in which we additionally

include interactions between all explanatory variables and the gender dummy. The degree of polynomial coeffi cients

including those of interactions is again fixed to five. Figure 4 shows for each sector that the non-parametric gender

probability ratio of getting a given job is in the confidence interval of the average simulated one for 100 replications

when using the semi-parametric version of the model. In fact, the two curves are nearly confounded, which suggests

12We also tried to determine to what extent the shape of the gender probability ratio of getting a job might be influenced by unobserved
individual heterogeneity. For that purpose, we added an unobserved individual heterogeneity term to the value of each worker and
assessed whether this had an influence on our non-parametric estimator of the gender probability ratio of getting a job. Unobserved

individual heterogeneity terms are drawn identically and independently in a centered normal law with variance k2.V
(
Xiβj(i)

)
, where

βj =
∫ 1
0 βj (u) du and k is a parameters that is made to vary to change the scale of the variance. Figures A2 shows that increasing k

leads to a decrease in the slope of the gender probability ratio of getting a job both in the public and private sectors. Nevertheless, k
must be large (above 1) to cause a significant decrease in the slope.
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that the semi-parametric approach is rather reliable. For each variable, Figure 5 represents the exponentiated gender

difference in the estimated coeffi cient of the variable which corresponds to the conditional gender probability ratio

of getting a given job (while holding other variables to their reference values). Except for a very few exceptions,

exponentiated gender differences in estimated coeffi cients are well below one and take lower values at higher ranks.

This suggests that females have a lower propensity to get jobs than males whatever the observable characteristics,

and the gender difference is larger for high-paid jobs than for low-paid jobs.

[ Insert F igures 4 and 5]

5.2 Decompositions and counterfactuals

We then implement the Oaxaca decomposition of the gender probability ratio of getting a given job in each sector

given by equation (9). Figure 6 shows that the explained part of this gender probability ratio is small at nearly all

ranks in the private sector. By contrast, the explained part is rather large for ranks below 0.5 in the public sector

before becoming small at higher ranks.

[ Insert F igure 6]

It is also possible to decompose the explained part of the gender probability ratio of getting a given job into

the contributions of every variable. Figure 7 suggests that it is mostly long part-time experience that has some

explanatory power. In the two sectors, long part-time experience significantly decreases female propensity to get

jobs along the wage distribution of job positions. In the private sector, its contribution represents around 30% of

the gender probability ratio of getting a given job up to rank 0.8. In the public sector, it explains all the gender

probability ratio up to rank 0.2, but its importance then decreases with the rank and becomes small after rank 0.6.

High-school diploma has a small explanatory power and increases a bit female propensity to get jobs above rank

0.5 in the private sector. We then decompose the unexplained part of gender probability ratio of getting a given

job into the contribution of each variable. Figure A2 shows that the contribution of every variable is negligible or

very small. Overall, the Oaxaca decomposition suggests that gender differences in propensity to get jobs cannot be

explained by composition effects or differences in the returns of observables.

[ Insert F igure 7]

Counterfactual gender probability ratios of getting any given job are computed in the two sectors when the two

genders are given the same conditional worker values which are fixed to their common reference. They capture gender

differences in chances of getting jobs that are only related to gender differences in observable characteristics. A major

difference between this approach and the Oaxaca decomposition is that now workers are re-assigned to job positions.

Interestingly, results represented in Figure 8 show that there are still gender differences in the counterfactual
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situation. In the public sector, female propensity to get jobs is around 18% lower than that of males for ranks

below 0.8. Descriptive statistics in Table 3 and log-wage distributions in Figure 10 show that the counterfactual

gender wage gap does not disappear as the gender average wage gap stands at 100 ∗ [1− exp(−0.0230)] = 2.3%.

These results suggest that it is important to take into account the equilibrium effects related to a reallocation of

workers across jobs when considering conterfactuals. By contrast, the pattern differs in the private sector as the

counterfactual female propensity to get jobs is only around 10% lower than that of males below rank 0.6, but it

becomes slightly higher above rank 0.8. The counterfactual gender average wage gap is now closer to zero at 0.7%.

[ Insert F igure 8 ]

[ Insert Table 3 ]

We then consider the counterfactual situation where workers in a given sector are attributed the conditional values

in the other sector. First focusing on the public sector, we can assess with this counterfactual whether females in

that sector would have a worse access to jobs and lower wages if they were assigned to jobs in a similar way as

workers in the private sector. Figure 9 shows that the counterfactual gender probability ratio of getting a given job

in the public sector is larger for ranks in the 0.5 − 0.85 interval but lower for ranks over 0.85 than in the initial

situation. In fact, it has a shape close to the one observed in the private sector.

The counterfactual gender average wage gap in the public sector reaches 100 ∗ [1− exp(−0.1494)] = 13.9% and

is only slightly higher than the raw wage gap which is 13.2%. It contrasts with the raw wage gap in the private

sector which stands at 15.3%. Differences in assignment rules between the two sectors thus only explain 0.7 points

of the gender wage gap difference which stands to 2.1 points. The rest of the gender wage gap difference between

the two sectors can be explained by gender differences in observable characteristics and the larger wage dispersion

in the private sector. Interestingly, there are also changes in the gender quantile gap that differs across ranks when

using the counterfactual assignment rule. Whereas the gender median wage gap in the public sector is 1.1 points

lower in the counterfactual situation, the gender wage gap at the last quartile and the last decile are 0.3 and 4.6

points higher respectively. Overall, the gender gap in log-wage dispersion is also higher as the gender difference in

standard deviation increases by 180% (ie. by 2.2 points).

Conversely, the counterfactual gender probability ratio of getting a given job in the private sector is lower in the

0.5 − 0.85 interval but higher for ranks over 0.85 than in the initial situation. Overwall, its profile across ranks is

similar to that of the public sector. The counterfactual gender average wage gap at 14.4% is lower than the original

gap by 0.9 points. There are also changes in the gender quantile gap that differs across ranks when changing the

assignment rule, but variations are not exactly at the opposite of those in the public sector. Indeed, the gender

median wage gap increases by 2.0 points, whereas the gender wage gap at the last quartile increases by 0.05 points

and that at the last decile decreases by 6.6 points. The gender difference in standard deviation decreases by 65%
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(i.e. by 2.2 points).

[ Insert F igures 9 and 10]

5.3 Robustness check: hourly wage and part-time work

So far, we have conducted our analysis on the subsample of full-time workers, but this can lead to biases in the

estimates if there are selection effects. It is possible that in a given sector a larger share of females ends up in part-

time jobs and ignoring them leads to an underestimation of the gender differences in the propensity to get full-time

job positions. Moreover, we use the daily wage to rank job positions whereas there can be gender differences in the

number of hours worked. If females work on average less hours in some positions than males, their daily wage is

likely to be lower and the rank of the position they hold in the job hierarchy is underestimated. Not taking into

account the number of hours worked leads to an overestimation of the gender differences in the propensity to get

job positions at some ranks, and an underestimation of this gender difference at ranks below them.

When repeating our analysis on a sample including part-time workers in addition to full-time ones while using

the hourly wage instead of the daily wage, we obtain results that are qualitatively similar although quantitatively

slightly different from those in our benchmark case for the counterfactuals in the different scenarios.13 For instance,

the gender wage gaps at the mean and at the last decile in the public sector when using the assignment rules in the

private sector are now respectively 1.4 points and 3.5 points higher than when considering the assignment rules in

the public sector (instead of 0.7 and 4.6 points respectively in the benchmark case).

6 Conclusion

In this paper, we have proposed a new way to quantify the gender wage gap which is based on a job assignment

model involving heterogeneous workers and job positions, as well as gender differences in the propensity to get

these positions. Workers differ in their observable characteristics and they are primarily interested in the best-paid

jobs. Some workers do not apply though because they consider that work constraints are too hard. Workers not

getting best-paid jobs consider jobs that are paid slightly less, and so on, until all job positions are filled. Our

model can be estimated using a flexible semi-parametric approach. It is also possible to construct counterfactuals

of gender wage distributions when changing workers’propensity to get jobs conditional on their observable char-

acteristics. Equilibrium effects characterized by the reallocation of workers across jobs are taken into account in

these counterfactuals.

As an illustration, we apply our approach to the study of gender wage differences in the public and private

13Results are also qualitatively similar when we consider a sample including both the full-time and part-time workers but we use the
daily wage, and when we consider a sample of full-time workers only but we use the hourly wage.
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sectors for full-time workers using an original administrative dataset with accurate wage information. The gender

gap in propensity to get jobs along the wage distribution is found to be rather similar in the two sectors. Overall, it

has a mostly decreasing profile with values close to zero at lowest ranks but as high as 60% at highest ranks. This

gender gap can hardly be explained by composition effects and gender differences in the influence of observable

charcteristics. It is interesting to note though that long part-time experience is significantly associated to a lower

female propensity to get jobs at low ranks. Results of a counterfactual exercise show that the gender average wage

gap would be slightly higher in the public sector if workers were attributed the same propensity to get jobs as in

the private sector conditionally on their observable characteristics.

Several extensions of this work are worthy of interest. First, workers’choice between the two sectors could be

modelled. Second, the analysis could involve a wage setting that depends on workers’observable characteristics.

Finally, the framework is static and it could be interesting to design a dynamic model similar in spirit that

incorporates both intra-firm and inter-firm mobilities.

7 Appendices

7.1 Appendix A: solution of the model

We have the following theorem showing the existence and uniqueness of the solution:

Theorem 1 Suppose that X can only take a finite number of values X`, ` = 1, ..., L; µ
(
·
∣∣X`,m

)
and µ

(
·
∣∣X`, j

)
are C1 on (0, 1] for each `; and there is a constant c > 0 such that µ

(
u
∣∣X`,m

)
> c and µ

(
u
∣∣X`, f

)
> c for

all u ∈ (0, 1] and all `. Then there is a unique 2L-uplet
{
n
(
·
∣∣X`, f

)
, n
(
·
∣∣X`,m

)}
`=1,...,L

verifying (6) where

φ (u |X, j ) is given by (4).

Proof. The proof revolves around the application of the Cauchy-Lipschitz theorem. Plugging (4) into (6), we

get for any j and k:

n′
(
u
∣∣Xk, j

)
=

n
(
u
∣∣Xk, j

)
µ
(
u
∣∣Xk, j

)∑
`,g

n (u |X`, g )µ (u |X`, g )
(22)

Introduce the vectors

µ (u) =
[
µ
(
u
∣∣X1, f

)
, .., µ

(
u
∣∣XL, f

)
, µ
(
u
∣∣X1,m

)
, ..., µ

(
u
∣∣XL,m

)]′
(23)

n (u) =
[
n
(
u
∣∣X1, f

)
, .., n

(
u
∣∣XL, f

)
, n
(
u
∣∣X1,m

)
, ..., n

(
u
∣∣XL,m

)]′
(24)

A stacked version of (22) is given by:

n′ (u) = g (u, n (u)) (25)
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with:

g (u, n (u)) =
n (u) . ∗ .µ (u)

〈n (u) , µ (u)〉 (26)

where 〈·, ·〉 denotes the Euclydian scalar product and for any two vectors V1 and V2 of same dimension, V1. ∗ .V2 is

the vector where any element i is the product of the elements i of V1 and V2.

The equation (25) is a first-order differential equation. The denominators of all elements of g (·, ·) are strictly

positive on Φ̃ = (0, 1]×
[
0, n

(
X1, f

)]
× ...×

[
0, n

(
XL, f

)]
×
[
0, n

(
X1,m

)]
× ...×

[
0, n

(
XL,m

)]
where n

(
X`, j

)
is the measure of gender-j workers with characteristics X`. This is because there is a constant c > 0 such that

µ
(
u
∣∣X`,m

)
> c and µ

(
u
∣∣X`, f

)
> c for all ` and all u ∈ (0, 1]. As µ

(
·
∣∣X`,m

)
and µ

(
·
∣∣X`, f

)
are C1 on

(0, 1] for all `, it is then straightforward to show that g (·, ·) is C1 on Φ̃. This yields that on any compact set

[ε, 1] ×
[
0, n

(
X1, f

)]
× ... ×

[
0, n

(
XL, f

)]
×
[
0, n

(
X1,m

)]
× ... ×

[
0, n

(
XL,m

)]
, g (·, ·) is Lipshitzienne and (25)

has a unique solution for n (·) on [ε, 1]. As this is true for ε arbitrarily close to zero, (25) has a unique solution for

n (·) on (0, 1].

7.2 Appendix B: consistency

The proof of consistency can be decomposed into three stages:

• We first consider a setting where β (.) is constant. This situation corresponds to successive sampling without

replacement across ranks, the individuals being drawn with varying probabilities across ranks. Whereas

Rosén (1972) establishes consistency when sampling probabilities are constant across successive samples, we

extent his results when these probabilities vary.

• We extend the results to the case where β (.) is piece-wise constant since proving consistency amounts to

doing so for every piece of the function.

• We extend again the results to the case where β (.) is continuous function after using a piece-wise constant

approximation of it.

We consider in the proof than gender enters the set of explanatory variables Xi to simplify the notations.

1/ Case of constant function β (.)

We consider a population N , where individuals i have inequal probabilities to be sampled, pi. In our setting,

the individual probability to be sampled depends on her characteristics and is proportional to Xiβ, since β is here

constant.

pNXi
=

exp (Xiβ)∑
X′ NX′ exp (X ′β)
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The subscript N refers in this notation to the population at risk, i-e in which individuals can be drawn. Note that

lim
N
NpNXi

=
exp (Xiβ)∑

X′ nX′ exp (X ′β)
=

exp (Xiβ)

EX′ exp (X ′β)
≡ pXi

which we refer as the asymptotic probability for an individual with characteristics Xs to be sampled. NX is the

number of individuals who have characteristics X in the population. Let n be the number of individuals to be

sampled, they would occupy the n first jobs in our setting. For instance, if we define n = bNuc, these individuals

occupy the jobs up to the rank u.

Following Rosén (1972), we define the function t (.) such that

N − y =

N∑
i=1

exp (−pit (y)) (27)

Adapting this definition to our setting, we define the function tN (v) such that

1− v =
∑
X

NX
N

exp
(
−NpNXtN (v)

)
≡ ENX

[
exp

(
−NpNXtN (v)

)]
where ENX (.) is the empirical expectation according to X in the population of size N . tN (.) is increasing over [0, 1[,

tN (0) = 0. and lim
v→1

tN (v) = +∞. We have t (Nv) = tN (v) /N . We are going to use this relationship to adapt

Rosén’s result to our setting.

Note that the function tN (.) can also be defined over [0, 1[ by the following differential equation:

t′N (v) =
1

ENX
[
NpNX exp

(
−NpNXtN (v)

)]
with the initial condition tN (0) = 0.

We also define the function t∞ (v) such that

1− v = EX exp (−pXt∞ (v))

Lemma 1: tN (v) almost-surely converges to t∞ (v) for any v in [0, 1]. Moreover

N
1
2 (tN (v)− t∞ (v)) N

(
0, VX

(
pXt∞ (v) +

exp (−pXt∞ (v))

1− v

))

Proof : We can decompose the expression that gives tN into
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ENX
[
exp

(
−NpNXtN (v)

)]
= EX

[
exp

(
−NpNXtN (v)

)]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
= EX

[
exp (−pXtN (v)) exp

(
−
(
NpNX − pX

)
tN (v)

)]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
= EX

[
exp (−pXtN (v))

[
1−

(
NpNX − pX

)
tN (v) +O

(
N−1

)]]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
= EX [exp (−pXt∞ (v))]

Hence,

EX [exp (−pXtN (v))]− EX [exp (−pXt∞ (v))]

=
∑
X

nX
[
−
(
NpNX − pX

)
exp (−pXtN (v)) tN (v) +O

(
N−1

)]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
Hence, since limN→∞NpNX = pX , limN→∞

NX

N = nX , for any v ∈ [0, 1[, limN→∞EX [exp (−pXtN (v))] =

EX [exp (−pXt∞ (v))] = 1 − v. Since the function f (x) = EX [exp (−pXx)] is continuous and monotonous,

limN→∞ tN (v) = t∞ (v). Moreover, it is possible to derive the asymptotic distribution of tN (v).

Note that

NpNX − pX =
exp (Xβ)∑

X′
NX′
N exp (X ′β)

− exp (Xβ)∑
X′ nX′ exp (X ′β)

=
exp (Xβ)∑

X′
NX′
N exp (X ′β)

∑
X′ nX′ exp (X ′β)

∑
X′

(
nX′ −

NX′

N

)
exp (X ′β)

= NpNX
∑
X′

(
nX′ −

NX′

N

)
pX′

= pX
∑
X′

(
nX′ −

NX′

N

)
pX′ +O

(
N−1

)
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Hence,

EX [exp (−pXtN (v))]− EX [exp (−pXt∞ (v))]

= EX [exp (−pXtN (v))]− ENX
[
exp

(
−NpNXtN (v)

)]
= EX

[
exp (−pXtN (v))

(
1− exp

(
−
(
NpNX − pX

)
tN (v)

))]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
=

∑
X′

nX′
[
−
(
NpNX′ − pX′

)
exp (−pX′tN (v)) tN (v) +O

(
N−1

)]
+
∑
X

(
NX
N
− nX

)
exp

(
−NpNXtN (v)

)
=

∑
X

(
NX
N
− nX

)
[pXt∞ (v)EX′ (pX′ exp (−pX′t∞ (v))) + exp (−pXt∞ (v))] + o

(
N−1/2

)

Hence

N1/2 (EX [exp (−pXtN (v))]− EX [exp (−pXt∞ (v))])→ N (0, VX (pXt∞ (v) (1− v) + exp (−pXt∞ (v))))

Hence,

N1/2 (tN (v)− t∞ (v))→ N

(
0, VX

(
pXt∞ (v) +

exp (−pXt∞ (v))

1− v

))
applying the delta method to the invert function of f (x) = EX [exp (−pXx)], since f−1′ (y) = 1/f ′

(
f−1 (y)

)
=

1/EX
[
exp

(
−pXf−1 (y)

)]
.

This result comes from the following:

Vas

(∑
X′

(
nX′ −

NX′

N

)
f (X ′)

)

= N−1 [...f (X ′k) ...]


nX1 (1− nX1)

−nXk
nXk′

−nX1
nXK

nXk
(1− nXk

)
nXK

(1− nXK
)




...

f (X ′k)

...



= N−1 [...f (X ′k) ...]


...

nkf (X ′k)−
∑
k′ nXk

nXk′ f (X ′k′)

...


= N−1

∑
X′

nX′f (X ′)
2 −

(∑
X′

nX′f (X ′)

)2


= N−1VX′ [f (X ′)]
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Let’s come back to Rosen’s setting. A quantity ai is associated to each individual. Let Zn =
∑
i∈n ai be the

sum of these quantities over the sampled individuals. From Rosen, we get that

EZn =

N∑
i=1

ai

(
1− exp

(
−pNi tN

( n
N

)))
+ o

(
N

1
2

)

Consider the specific case where ai is a dummy indicating if i has the characteristics X, then Zn is the number of

sampled individuals with characteristics X in the first n jobs, i-e MX
n,N .

Hence, from Rosén’s theorem 3.1, we get that

EMX
n,N = NX

(
1− exp

(
−pNXtN

( n
N

)))
+ rE (n)N

1
2

where limN→∞maxτ1N≤n≤τ2N |rE (n)| = 0 for every 0 < τ1 < τ2 < 1. Hence,

EMX
N−bNuc,N

N
=

NX
N

(
1− exp

(
−pNXtN

(
1− bNuc

N

)))
+ rE (n)N−

1
2

= nX (1− exp (−pXt∞ (1− u))) + rE (n)N−
1
2

From the lemma 1 above, we have that NX

N

(
1− exp

(
−pNXtN (1− u)

))
− nX (1− exp (−pXt∞ (1− u))) con-

verges to 0 like N−1/2. We also have that
∣∣∣u− bNucN

∣∣∣ ≤ 1
N . Hence NX

N

(
1− exp

(
−pNXtN

(
1− bNucN

)))
−

NX

N

(
1− exp

(
−pNXtN (1− u)

))
converges to 0 like N−1. Finally, in this setting, n = N − bNuc. Hence, we

can use the result of Rosen with τ1 = u and τ2 = 1− ε.

In the end, we have that

EMX
N−bNuc,N

N
= nX (1− exp (−pXt∞ (1− u))) + o

(
N−1/2

)

Define now n (u;X) = nX exp (−pXt∞ (1− u)). We have that n (1;X) = nX .

n′ (u;X) = nXpXt
′
∞ (1− u) exp (−pXt∞ (1− u))

=
pXnX exp (−pXt∞ (1− u))∑

X′
pX′nX′ exp (−pX′t∞ (1− u))

=
pXn (u;X)∑

X′
pX′n (u;X ′)

=
exp (Xβ)n (u;X)∑

X′
exp (X ′β)n (u;X ′)

which corresponds to the definition of the equation that defines n (u;X).
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since

V
(
MX
N−bNuc,N

)
=

N∑
s=1

(
1s∈X −

∑N
r=1 pr1r∈Xe

−prtN (bNuc/N)∑N
r=1 pre

−prtN (bNuc/N)

)2 (
1− e−pstN (bNuc/N)

)
e−pstN (bNuc/N) + rσ (n)

=

N∑
s=1

 1s∈X − 2.1s∈X
NXp

N
Xe
−pNXtN (bNuc/N)∑

X′ NX′p
N
X′e
−pN

X′ tN (bNuc/N)

+

(
NXp

N
Xe
−pNXtN (bNuc/N)∑

X′ NX′p
N
X′e
−pN

X′ tN (bNuc/N)

)2

(1− e−pstN (bNuc/N)
)
e−pstN (bNuc/N) + rσ (n)

= NX

[
1− 2

pXNXe
−pXtN (bNuc/N)∑

X′ pX′NX′e
−pX′ tN (bNuc/N)

](
1− e−pXtN (bNuc/N)

)
e−pXtN (bNuc/N)

+

(
NXpXe

−pXtN (bNuc/N)∑
X′ NX′pX′e

−pX′ tN (bNuc/N)

)2∑
X′

NX′
(

1− e−pX′ tN (bNuc/N)
)
e−pX′ tN (bNuc/N) + rσ (bNuc)

Hence

V

(
MX
N−bNuc,N

N

)
=

1

N


nX

[
1− 2 pXn(u;X)∑

X′ pX′n(u;X′)

]
n(u;X)
nX

(
1− n(u;X)

nX

)
+
(

pXn(u;X)∑
X′ pX′n(u;X′)

)2∑
X′ n (u;X ′)

(
1− n(u;X′)

nX′

)


+
1

N
rσ (bNuc) + o

(
1

N

)

where rσ (n) tends to 0 as n becomes large. As a result,
MX

N−bNuc,N
N =

EMX
N−bNuc,N
N +O

(
N−1/2

)
, and we deduce

that
NX
bNuc

N
=
NX −MX

N−bNuc,N

N
= n (u;X) +O

(
N−1/2

)
Note that when u comes close to zero, there might be an issue of the number of observations that become too low

for the asymptotics considerations to apply. This is the reason why we should not consider ranks too low with

respect to the number of available observations.

2/ Case of a piece-wise constant function β (.)

The knots are denoted ε < u1 < ... < uZ < 1. The exact same logic can be applied between over the interval

[uZ , 1]. We have that

lim
N
E
NX
bNuc

N
= n (u;X) ,∀u ∈ ]uZ , 1]

where

n′ (u;X) =
exp (Xβ (1))n (u;X)∑

X′
exp (X ′β (1))n (u;X ′)

with n (1;X) = nX . This proves the existence and unicity of the function n (u;X) on the interval ]uZ , 1] .

Assume now that this relationship holds up to the rank uz. Then, from the setting above, we have that
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EMX
n,bNuzc = NX

bNuzc

(
1− exp

(
−pbNuzcX tzbNuzc

(
n

bNuzc

)))
+ o

(
N

1
2

)
since individuals drawn in the ranks between uz and uz−1 are drawn with the same individual probabilities from

the population still available at rank bNuzc:

p
bNuzc
Xs

=
exp (Xsβ (uz))∑

X′ N
bNuzc
X′ exp (X ′β (uz))

and for any rank between uz−1 and uz, we have that

NX
bNuc

N
= n (u;X) +O

(
N−1/2

)
,∀u ∈ ]uz−1, uz]

where n (u;X) is defined from the following system of equations:

n (uz;X) = lim
u>uz

n (u;X)

as the initial condition, and

n′ (u;X) =
exp (Xβ (uz))n (u;X)∑

X′
exp (X ′β (uz))n (u;X ′)

, ∀u ∈ ]uz−1, uz]

By recurrence, the function n (u;X) is defined over the interval [ε, 1] and corresponds to the expectation of the

share of individuals with characteristics X who are still available for the job of rank u.

3/ Case of a continuous function β (.)

Consider a step-wise approximation βZ of β over the ranks, such that βZ (u) =
∑Z
z=1 β

(
z
Z

)
1
{
z−1
Z ≤ u < z

Z

}
.

We have that maxu

∣∣∣βZ (u)− β (u)
∣∣∣ ≤ 1

Z maxu
∣∣β′ (u)

∣∣, from the mean value theorem.

From the previous result, we can define nZ (u;X) as the measure of individuals with characteristics X still

available for the u-rank job, with an assigment mechanism defined by βZ and NX,z
bNuc the random variable that

corresponds to the number of individuals with characteristics X still available for rank u.

We prove by recurrence that for any X, z,

DiffX,Zz =
NX

bN z
Z c
−NX,Z

bN z
Z c

N
= O

(
(N/Z)

−1/2
)

+O
(
Z−1/2

)
(28)

[ DETAILS TO BE ADDED ]
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7.3 Appendix C: theoretical fundations of the simulation approach

The finite discrete counterpart of the differential equation verified by the measures of available workers (6) can be

rewritten in vector form piling up terms in the (X, j) dimension as:

−→
N ∗
(
uk
)

=
−→
N ∗
(
uk+1

)
−−→Dk+1 (29)

where
−→
N ∗ (u) =

[
N∗
(
u
∣∣X1, j1

)
, ..., N∗

(
u
∣∣XL, j2

)]′
and

−→
Dk =

[
Dk

(
X1, j1

)
, ..., Dk

(
XL, j2

)]′
with {j1, j2} =

{f,m}. It is straightforward to show recursively that:

E
[−→
N ∗
(
uk
)]

=
−→
N − E

(−→
Mk+1

)
(30)

where
−→
Mk =

∑N

`=k

−→
D` and

−→
N =

[
N
(
X1, j1

)
, ..., N

(
XL, j2

)]′
where N (X, j) is the number of gender-j workers

with characteristics X in the sample. We need a strategy to estimate the second right-hand side term. We have:

E
(−→
Mk

)
= E−→

Mk,
−→
Mk+1,...,

−→
MN

(−→
Mk

)
(31)

The expectation E
(−→
Mk

)
can thus be computed by simulation, averaging across iterations the values of

−→
Mk obtained

when drawing values of
−→
Mk,

−→
Mk+1, ..., and

−→
MN which joint law verifies:

P
(−→
Mk = −→mk,

−→
Mk+1 = −→mk+1, ...,

−→
MN = −→mN

)
(32)

=

[∏N−1

`=k+1
P
(−→
Mk = −→mk

∣∣∣−→Mk+1 = −→mk+1

)]
P
(−→
MN = −→mN

)
(33)

Draws can thus be made first drawing in the law of
−→
MN , and then sequentially in the law of

−→
Mk conditionally on

the simulated value of
−→
Mk+1 denoted

−→ms
k+1 (Gourieroux and Monfort, 1995). The law of

−→
MN =

−→
DN is simply that

of a multinomial logit which probabilities are given by:

P (1 |X, j ) =
N (X, j) exp

[
Xβ∗j (1)

]∑
`,g
N (X`, g) exp

[
X`β∗g (1)

] (34)

where N (X, j) is the number of gender-j workers with characteristics X in the sample. Denote by Ω∗j (u,X)

the random set that contains all available gender-j workers with characteristics X at rank u and
−→
Ω ∗ (u) ={

Ω∗j1
(
u,X1

)
, ...,Ω∗j2

(
u,XL

)}
. The law of

−→
Mk

∣∣∣−→Mk+1 = −→ms
k+1 is simple because

−→ms
k+1 contains all the information

necessary to determine the realization of
−→
Ω ∗ (u) that we denote

−→
Ω s (u). We have:

P
(−→
Mk = −→mk

∣∣∣−→Mk+1 = −→ms
k+1

)
= P

[−→
D` = −→mk −−→ms

k+1

∣∣∣−→Ω ∗ (uk) =
−→
Ω s
(
uk
)]

(35)
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where −→mk − −→ms
k+1 is a vector where there is only one element that takes the value one and this occurs at the

position associated to the characteristics (X, j) of the worker that gets the job, and other elements of the vector

take the value zero. The probability that the element corresponding to a given (X, j) takes the value one (and

other elements take value zero) is given by:

P s
(
uk |X, j

)
=

Ns
(
uk |X, j

)
exp

[
Xβ∗j

(
uk
)]∑

`,g
Ns (uk |X`, g ) exp

[
Xβ∗g (uk)

] (36)

where Ns (u |X, j ) = Card Ωsj (u,X) with Ωsj (u,X) the set of available gender-j workers with characteristics X.

For a given simulation iteration, we first draw for rank 1 in the law of a multinomial logit using formula (34),

and we then draw sequentially for ranks uk = (k − 1) / (N − 1) with k = N − 1, ..., 1 in the laws of multinomial

logits using formula (36). A simulated value of
−→
Mk is denoted by

−→
Ms

k. A consistent estimator of E
[−→
N ∗
(
uk
)]
when

the number of simulations tends to infinity is then given by
−→
N −

∑S

s=1

−→
Ms

k+1/S.
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Table 1: Descriptive statistics on wages by gender

Mean Std Dev P5 P10 P25 Median P75 P90 P95 N

All sectors
All 77.7 65.0 40.1 43.4 50.5 62.8 84.7 122.1 158.9 55,881

Males 83.7 73.3 41.8 45.3 53.2 66.3 90.7 133.4 175.6 34,745
Females 67.9 46.6 38.5 41.2 47.3 56.9 75.6 102.7 129.4 21,136

% diff. F-M -18.9% -36.5% -7.7% -9.1% -11.1% -14.1% -16.7% -23.0% -26.4%

Public sector
All 70.6 32.4 41.8 45.3 51.1 62.2 79.6 102.2 126.6 9,732

Males 76.2 36.0 44.4 47.9 54.8 67.2 84.7 112.6 139.7 4,781
Females 65.2 27.4 40.1 43.5 48.9 57.2 73.3 93.7 115.3 4,951

% diff. F-M -14.4% -23.8% -9.8% -9.2% -10.9% -14.9% -13.4% -16.7% -17.4%

Private sector
All 79.2 69.9 39.8 43.1 50.2 63.0 86.4 126.7 165.8 46,149

Males 84.9 77.6 41.4 45.0 52.9 66.1 92.1 137.1 180.3 29,964
Females 68.7 51.0 38.2 40.7 46.7 56.8 76.3 105.9 133.3 16,185

% diff. F-M -19.1% -34.3% -7.6% -9.4% -11.7% -14.0% -17.2% -22.7% -26.1%

Note: Statistics are computed on the daily wage. The % difference is the female value minus the male value divided by the male value.
Std Dev: Standard Deviation, PX: Xth percentile.
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Figure 1: Gender log-wage distributions in the public and private sectors
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Note: Densities are computed using the logarithm of daily wage.
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Figure 2: Gender probability ratio of getting a given job in the public and private sectors
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Note: Confidence intervals at the 5% level obtained by bootstrap using 100 replications are reported in
dotted lines.
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Figure 3: Exponentiated effects of dummy variables on conditional worker values
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Note: The graph title gives the characteristic for which the exponentiated coefficients are graphed, as well as the sector.
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Figure 4: Non-parametric and semi-parametric estimators of
the gender probability ratio of getting a given job
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Note: The non-parametric estimator is obtained by applying the empirical strategy proposed by Gobillon, Meurs and Roux (2015).
The semi-parametric estimator is obtained by applying the empirical strategy proposed in the current paper. The confidence
interval at the 5% level obtained by bootstrap using 100 replications is reported in dotted lines.
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Figure 5: Exponentiated gender difference in the effects of dummy variables on
the gender probability ratio of getting a given job
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Note: The graph title gives the characteristic for which the exponentiated gender difference in the effects of dummy variables are graphed,
as well as the sector. The category corresponding to the reference is mentioned since the corresponding curve is the same across graphs for
a given sector. Indeed, this curve represents the gender probability ratio of getting a job as a function of rank for a worker with the values
of all the observable characteristics fixed to the reference.
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Figure 6: Oaxaca decomposition of the gender probability ratio of getting a given job
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Note: “Total”: gender difference in the logarithm of the average probability of getting a given job; “Explained”: part of “Total”
that can be attributed to the gender difference in observable characteristics valued using the estimated coefficients obtained for
the whole population; “Unexplained”: part of “Total” that can be attributed to the deviation of gender coefficients of observable
characteristics from the ones of the whole population. Note that “Total” is not exactly equal to the sum of “Explained” and
“Unexplained” since it also involves a residual term due to the non-linearity of the logarithm function.
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Figure 7: Decomposition of the explained part of the gender probability ratio of getting a given job
into the contribution of each variable
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Note: The graph title gives the characteristic for which the exponentiated gender difference in the effects of dummy variables are graphed,
as well as the sector. “Total”: gender difference in the logarithm of the average probability of getting a given job; other labels in the legend
refer to the category of the variable for which the contribution is graphed.
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Figure 8: Counterfactual gender probability ratio of getting a given job
when worker conditional values are equal for the two genders
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Note: The non-parametric estimator is obtained by applying the empirical strategy proposed by Gobillon, Meurs and Roux (2015).
The curve corresponding to “Equal values” is obtained by applying the empirical strategy proposed in the current paper when
fixing, for the two genders, the conditional worker values to the same values which are obtained by estimating parameters for the
whole population. The confidence interval at the 5% level obtained by bootstrap using 100 replications is reported in dotted lines.
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Figure 9: Counterfactual gender probability ratio of getting a given job
when conditional worker values are those in the other sector
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Note: The curve corresponding to “Private Sector values” (resp. “Public Sector values”) is obtained by fixing conditional worker
values to those of the private (resp. public) sector. The confidence interval at the 5% level obtained by bootstrap using 100
replications is reported in dotted lines.
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Figure 10: Counterfactual log-wage densities in different scenarios
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Note: Densities are computed using the logarithm of daily wages generated by the model when reassigning workers to job positions.
“Private Sector values”: reassignment using conditional worker values computed for the private sector; “Public Sector values”:
reassignment using conditional worker values computed for the public sector; “Equal values”: reassignment using conditional
worker values common to the two genders which are obtained by estimating parameters for the whole population.
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Figure A.1: Counterfactual gender probability ratio of getting a given job
when unobserved individual heterogeneity is simulated
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Note: We recompute the gender probability ratio of getting a given job using the estimated parameters and adding unobserved
individual heterogeneity terms to the set of individual characteristics. These terms are drawn in a centered normal law with variance
equal to the gender-specific variance of the effect of observed individual characteristics multiplied by a parameter which is made
to vary and is reported in the graph (see text for details). The confidence interval at the 5% level obtained by bootstrap using 100
replications is reported in dotted lines.
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Figure A.2: Decomposition of the unexplained part into the contribution of each variable
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Note: The graph title gives the characteristic for which the exponentiated gender difference in the effects of dummy variables are graphed,
as well as the sector. Labels in the legend refer to the categories of the variable for which the contribution is graphed.
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