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Abstract

The job polarization literature emphasizes the pressure technological change exerts

on middle-wage occupations that often involve routine, easily automated tasks. I argue

that technology only partially automates these tasks. Often the tasks still require

labor, but technology reduces their complexity enabling less skilled workers to do the

same job. As a result, the costs of technology adoption are not only the costs of the

technology itself but also of low-wage workers to use it. By raising the cost of low-wage

labor, the minimum wage reduces the profitability of adopting such routine-biased

technologies. To test this prediction, I exploit state variation in the minimum wage

and industry variation in complementarity between low-wage workers and computers

to identify heterogeneous effects of the minimum wage. For the average industry, I

estimate that this complementarity leads a $1 decrease in the minimum wage to raise

technology use by 30% and lower the routine share of the wage bill by 1 percentage

point (3.3%), both relative to a counterfactual with no such complementarity. Many

routine-intensive industries have high complementarity, making the minimum wage an

important policy lever to influence the pace of routine-biased technical change.

Keywords: Minimum wage; Technology adoption; Wage inequality; Job polarization
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1 Introduction

The literature on wage inequality has made great progress identifying forces driving in-

equality and estimating their effects on the wage structure. Yet there has been little consider-

ation of how these drivers interact with or affect one another. Here, I emphasize a particular

channel: the impact of the minimum wage on the profitability of adopting technologies that

automate middle-wage jobs. The large and growing body of work on routine-biased technical

change (RBTC) has shown that the expanding capabilities of information technology (IT)

has primarily replaced routine tasks, which are relatively easy to codify and automate.1 Yet

many of these technologies still require some level of human oversight; the automation is

only partial. Instead of completely replacing workers, these technologies often reduce the

skills required of workers to perform these tasks. Machines may simplify a job but still need

someone to operate them.

If IT needs an operator then the cost of technology adoption is not simply the cost of

the equipment itself but also the cost of less-skilled labor to operate it. While the declining

price of IT equipment has received considerable attention (Nordhaus, 2007), little research

has considered how the price of low-wage labor affects technology adoption decisions. Insti-

tutional forces like the minimum wage and market forces like technology adoption have often

been treated as competing explanations for rising inequality. Instead, I argue that they are

connected. A low minimum wage makes it more profitable for a firm to adopt technologies

that automate middle-wage workers’ tasks.2

To empirically test this prediction, I use a variety of data from the Census, the Current

Population Survey (CPS), and the Dictionary of Occupational Titles (DOT). The econo-

metric strategy exploits cross-state heterogeneity in the minimum wage and cross-industry

heterogeneity in complementarity between low-wage workers and technology. High comple-

mentarity industries are those where IT is beneficial for low-wage workers, enabling them

to perform routine tasks (traditionally middle-wage tasks) and compete better with higher

1See Autor, Levy, and Murnane (2003). Goos and Manning (2007) first noted that routine tasks were
concentrated in the middle of the wage distribution, which implies that technology should cause “job po-
larization”: the decline in employment and wage growth in middle-wage occupations, relative to high- and
low-wage ones. See Acemoglu and Autor (2011) and Autor (2013) for reviews, Autor, Katz, and Kearney
(2008) and Autor and Dorn (2013) for evidence from the US, and Goos, Manning, and Salomons (2014) and
Michaels, Natraj, and Van Reenen (2014) for international evidence.

2The focus of this paper is the ability of low-wage workers to use technologies to become more productive
than they otherwise would be. In that way, it is a paper about the complementarity of low-wage workers and
technology. In political debates, it is commonly argued that low-wage workers and technology are primarily
substitutes, and that raising the minimum wage will lead firms to automate low-paying jobs. Despite the
prominence of this narrative, only recently have economists formally considered such an effect (Phelan and
Aaronson, 2015). This work complements that by demonstrating that complementarities between technology
and low-wage workers also exist.
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paid workers. To measure this complementarity, I use the CPS Computer Use Supplement

to measure the share of low-skilled workers who use a computer and the DOT to measure

the share performing tasks that would benefit from a computer.3 To measure technology, I

use the employment of IT workers (Tambe and Hitt, 2012).4 Using state-year fixed effects

to account for unobserved state-wide trends and shocks correlated with the minimum wage,

and industry-year effects to account for industry-specific technology patterns, I show that

high complementarity industries adopt more technology in low minimum wage states. As

predicted by RBTC, the share of compensation paid to routine workers is also lower in these

states.5 The results imply that because of this complementarity, a $1 decrease in the mini-

mum wage increases technology use in the average industry by 30% and lowers the routine

share of the wage bill by 1 percentage point (both relative to a counterfactual with no such

complementarity).

Within the large literature on job polarization, wage inequality, and the labor market

effects of technological change, this paper is most related to three strands.6 The first is the

literature on endogenous technical change. Beaudry, Doms, and Lewis (2010) summarize

the key insight from endogenous technical change models: “When a major new technology

becomes available, it is not ubiquitously or randomly adopted... Instead, it is adopted only in

environments in which complementary factors are cheap and abundant.” Here I emphasize

that in many industries low-wage workers are a complementary factor and therefore the

minimum wage directly affects the attractiveness of technology adoption.

This paper also relates to a small literature focused on how traditionally emphasized

drivers of wage inequality affect one another. Bloom, Draca, and Van Reenen (2011) and

Van Reenen (2011) show that import competition from China increases the adoption of

labor-replacing technologies. Lewis (2011) shows that low-skilled immigration slowed man-

ufacturing plants’ technology adoption. Acemoglu, Aghion, and Violante (2001) develop a

model in which skill-biased technical change accelerates the decline of unions by undermin-

3I define “low-skill” using both wages and education to help reduce measurement error.
4Like most of the literature, my focus is primarily on computers. Below I perform extensive validation

exercises to show that IT labor is a good proxy for other measures of IT adoption.
5As shown elsewhere (e.g., Goos and Manning (2007); Autor and Dorn (2013)), routine occupations tend

to be in the middle of the wage distribution (not the bottom). Thus, the direct mechanical effect of a low
minimum wage should be, if anything, to raise the routine share of the wage bill by lowering the wages
of lower paid workers (since evidence on spillover effects suggests that they’re small (Autor, Manning, and
Smith, 2015)).

6Throughout, I focus on the effects of technology on the wage distribution. However, technological
change is not the only explanation for declining demand for routine occupations. Recent international
trade research has shown that offshoring exerts particular pressure on routine-intensive jobs (Baumgarten,
Geishecker, and Görg, 2013; Becker, Ekholm, and Muendler, 2013; Oldenski, 2012, 2014; Ottaviano, Peri,
and Wright, 2013). See Autor, Dorn, and Hanson (2015), Ebenstein et al. (2014), and Gould (2015) for
discussions of disentangling the effects of trade and technology.
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ing the ability for high-skilled and low-skilled workers to form coalitions.7 Those papers

emphasize the effects of immigration, trade, and technology which are often difficult for pol-

icymakers to influence. This work complements that by showing how specific policy choices

affect these broad market pressures.8

Finally, this work relates to a series of papers on who uses, or can use, technology. Sup-

ported by empirical evidence (Krueger, 1993), the inequality literature traditionally treats

computers as used only by high-skilled workers.9 Personal computers are commonly de-

scribed as a skill-biased technological revolution and contrasted with a “deskilling” revolu-

tion like the assembly line. Yet technology developers have strong incentives to make their

products accessible to as wide a range of potential users as possible. As computers have

become increasingly commonplace, perhaps the costs of learning to use a computer for work

have fallen and they have evolved from a skill-biased to a deskilling technology.10 Beaudry,

Green, and Sand (2013) show evidence that demand for high-skilled, college-educated work-

ers has been declining since 2000. They present a model in which cognitive tasks are a stock,

rather than a flow, so that demand for high-skilled workers increases during the adoption pe-

riod when it first becomes available but falls when the technology becomes well-established.

An alternative explanation is that over time computer technology has become as accessible

to lower skilled workers as high-skilled ones.11

7Shim and Yang (2015) show that technology adoption and job polarization between 1980 and 2009 were
concentrated in industries with high wage premia in 1980. If unions increased these wage premia, then there
would also be an effect of unions on accelerating technology adoption.

8Other evidence could be assembled on how policy choices affect market pressures like technology. For
instance, Fortin (2006) showed that states with more generous higher education funding policies slowed the
growth of the college premium. The results of Beaudry et al. (2010), then, would imply that this would
increase computer technology adoption.

9Caselli (1999) provides a useful framework for thinking about how the skill requirements of new tech-
nology determine its effects on inequality. In his model, the effect depends on the cost of learning to use a
new (more productive) technology. If it is easy to learn, it is adopted by all workers, closing the productivity
gap between the higher and lower ability workers and reducing inequality. If it is difficult to learn, only high
ability (high wage) individuals adopt the technology and inequality rises.

10In the 1984 CPS Computer Use Supplement, only 4% of respondents with less than a high school
education had a computer at home. In 2003, this figure was 44%, though still lower than among households
with more education. If computer ownership affects workers’ ability to learn to use a computer at work
(Malamud and Pop-Eleches, 2011) then it is increasingly implausible to think that lower skilled workers lack
the capacity to use a computer at work. In Figure B3 of the Results Appendix, I confirm that computers
are more commonly used by higher paid workers, but show a four-fold in the computer use among low-wage
workers during the 1980’s and 1990’s.

11To my knowledge, this is the first study to emphasize that low-skilled workers’ technology use is impor-
tant for RBTC. Nonetheless, many past studies have provided evidence consistent with this claim. Autor,
Katz, and Krueger (1998) find that industries with larger increases in computer use from 1984 to 1993 also
saw larger growth in the share of employment with less than a high school education (Table V). Using
the PSID, Cortes (2014) shows that it is the lowest paid non-routine manual workers who are most likely
to transition into routine occupations, and that this adverse selection has increased over time (Figure 4).
Several specifications in Michaels, Natraj, and Van Reenen (2014) find that industries’ information and
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The structure of the paper is as follows. Section 2 presents a range of descriptive evidence

to build intuition for the results presented later. In Section 3 I describe my econometric

strategy before describing data and measurement in Section 4. Section 5 presents my results

and summarizes several robustness checks and identification tests.12 Section 6 concludes.

2 Low-wage workers and RBTC: Descriptive evidence

This paper argues that many transformative technologies only partially automate routine

occupations. Often, instead of entirely replacing workers, technology allows firms to replace

workers with lower-skilled substitutes. Here I present descriptive evidence to suggest that

this framework helps explain important features of the data.

Consider three occupations that exemplify this process: material recording and produc-

tion clerks, statistical clerks, and photographic process workers.13 According to the Depart-

ment of Labor’s Occupational Outlook Handbook (OOH), material recording and production

clerks work in establishments like warehouses to “keep track of information in order to keep

businesses and supply chains on schedule. They ensure proper scheduling, recordkeeping,

and inventory control.” Thirty years ago, these tasks required a well-organized individual to

manage complex filing systems and coordinate dozens of incoming and outgoing shipments

daily. Today, software handles many of these complexities, and the OOH notes that materials

recording clerks “increasingly use tablets and other handheld computers.” Statistical clerks

“compile data and tabulate statistics for use in statistical studies... [and] tabulate statistics

using adding machine and calculator.” Certainly Microsoft Excel has made simplified these

tasks. Finally, photographic process workers “develop and process photographic images from

film or from digital media.” In the days of darkrooms, this required careful light restric-

tions, chemical blends, and complicated projection equipment. Compared to this, modern

processing of digital photography is relatively simple.

Yet while technology has transformed these occupations, it has not replaced them. Figure

1 uses data from the CPS Outgoing Rotation Groups (ORG) to trace employment and wages

in these occupations over time. Panel (a) shows that despite the effects of transformative

communications technology imports increase the low-skilled share of the wage bill by at least as much as the
high-skilled (Tables 5 and 6). Acemoglu (2003) finds less evidence for SBTC-driven inequality in European
countries where institutions raised the pay of low-skilled labor. Feng and Graetz (2015) show that occupa-
tions requiring the most on-the-job training in the 1970’s saw the greatest declines in workers’ education by
2008 (Figure 6).

12More robustness checks, identification tests, validation exercises, and descriptive analyses are included
in the Results Appendix. These are summarized throughout the paper.

13Occupational codes are drawn from Autor and Dorn (2013). See the Data Appendix for additional
detail. All three occupations are classified as routine by Autor and Dorn and are in the second and third
quintiles of the 1990 wage distribution.
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Figure 1: Partial automation in select occupations
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Source: Author’s calculations based on CPS ORG. Occupation codes drawn from Autor and Dorn (2013).
Among 330 occupations, the mean and median 1983 employment shares are .0030 and .0010, respectively.
For these three occupations, they are .0037, .0009, and .0011, respectively. Thus, these occupations are
fairly typical in terms of initial size. I focus on the 1983-2002 period because there are no major changes in
occupational codes (see Figure B2). To reduce noise, the figure is based on two year bins. That is, 1983 is
based on 1983 and 1984, 1985 is based on 1985 and 1986, etc.

technologies, these occupations’ employment shares were constant or rising through the

1980’s and 1990’s, a period of rapid technological change. Rather than replacing workers,

technologies seem to have simplified their skill requirements. Panel (b) shows the fraction

of workers in the bottom wage quintile, a rough proxy for being near the minimum wage.14

While employment shares were constant, the fraction of workers near the minimum wage

nearly tripled for each occupation. This is consistent with the idea that technology has not

automated these jobs, but enabled firms to replace workers with less skilled and lower paid

alternatives.

Importantly, this effect will not always occur within occupations, particularly with coding

schemes as fine-grained as Census codes. For occupations like cabinetmaker and furniture fin-

isher or seamstress and sewing machine operator, differences in skill content and technology

use lead to completely distinct codes. It is useful to consider job polarization and substitution

between occupations within the same production process (proxied for by a narrowly defined

14In principle, one could define “near-minimum” wages by calculating the fraction of workers at or below
it, but if the minimum wage raises the wages of other workers (spillover effects), this complicates the problem.
One way to define “near” is to calculate the fraction earning less than the highest (nominal) minimum wage
in place anywhere in the US. From 1979 to 2010, this fraction varies between 11% and 25%. Autor, Manning,
and Smith (2015) estimate that the minimum wage affects wages up to around the 20th percentile, although
they cannot reject the hypothesis that this is pure measurement error. Compared to an absolute (wage-
based) measure of nearness, a relative (percentile-based) measure avoids discrete jumps when the minimum
wage changes and naturally accounts for wage trends over time and across the business cycle.
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industry).15 Autor and Dorn (2013) show that wage stagnation and employment contraction

during the 1990’s was concentrated in occupations in the 20th to the 60th percentiles of the

1990 wage distribution.16 I refer to these two quintiles as “middle-wage” occupations. A

natural question is: What happened to industries that intensively employed these workers?

Using the 1990 CPS ORG, I identify all industries in which 60% or more of workers are

in these middle-wage occupations.17 Across these 26 industries, these occupations make up

over 70% of 1990 employment, more than double their employment share in other industries

(34.5%).

Figure 2 plots four series. The solid line in Panel (a) shows middle-wage occupations’

employment share in these industries. Consistent with the economy-wide trends, the share

of industry employment in middle wage occupations fell by about 5-6% from 1990 to 2006.18

The solid line in Panel (b) shows that these industries saw average log wages fall from 13 to

5 log points above those in other industries. These facts are consistent with the traditional

understanding of RBTC and the automation of middle-wage occupations.

However, the dashed lines are less straightforward. The simplest RBTC model would

imply that total industry employment would fall as these middle-wage occupations are au-

tomated. Instead, the dashed line in Panel (a) shows that these industries’ share of national

employment actually rose by 15% during this period.19 Employment expanded, not con-

tracted.20 To better understand the wage trend, I estimate a simple Mincer regression in

which log wages are modeled as a function of age, education, race, and other wage correlates,

and compare the average fitted log wage between these industries and others, plotted as the

dashed line in Panel (b).21 Since the mid-1990’s, these trends are remarkably similar. Since

15Autor and Dorn (2013) estimate that a third of job polarization can be accounted for by employment
growth across industries (specifically, in the service sector). My focus is on the within-industry component
of job polarization.

16Figure B1 uses data from Autor and Dorn (2013) to divide occupations into quintiles based on their
1990 wage, and traces the change in employment share and average wage (by quintile) from 1990 to 2005.
The second and third quntiles are the only ones with declining employment shares and these also have the
slowest wage growth.

17Since these occupations, by construction, comprise 40% of the national economy in 1990, they are at
least 50% more common in these industries than nationally.

18I focus on this period for consistency with the Autor-Dorn data and to abstract from the 2007 recession
effects.

19Certainly it is possible that expanding employment and increased automation are both driven by product
demand shocks. My emphasis is that the marginal workers in these occupations are observationally different
from the “original” workers.

20This result does not contradict the early industry level analyses of Autor, Levy, and Murnane (2003),
who study changes in the task content, not overall employment, of routine-intensive industries. Since that
work, most RBTC research has focused on occupations, abstracting from industries.

21Mincer wages are based on an OLS regression of log wages on years of education, sex, indicators for
Black and White race, age, age squared, and marital status. The estimation sample is restricted 1990-2006
and workers between the 2nd and the 98th percentile. No coefficients are allowed to vary over time.
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Figure 2: Industries intensively employing middle-wage occupations in 1990
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Source: Author’s calculations based on CPS ORG. Industry codes drawn from Autor, Dorn, and Hanson
(2013). See the Data Appendix for more detail. Employment shares are normalized to 1 in 1990 because they
are on different scales. In 1990, these industries (26 of 211) accounted for 14% of national employment (25%
of middle-wage occupations’ employment) and middle-wage occupations made up 70% of these industries’
employment. Mincer wages are based on an OLS regression of log wages on years of education, sex, indicators
for Black and White race, age, age squared, and marital status using data from 1990-2006. The estimation
sample for this Mincer regression is restricted to workers between the 2nd and the 98th percentile. None of
the coefficients are allowed to vary over time.

1993,22 the gap in average wages fell by 6 log points, while the gap in Mincer wages fell by

over 4 log points. Most of the decline in wages in middle-wage intensive industries is matched

by a decline in observable worker characteristics. Figure 2 shows that the industries hardest

hit by job polarization are employing more workers, and that these workers are of lower

“quality” along observable dimensions.23

Figures 1 and 2 suggest that RBTC and job polarization are partly driven by com-

positional changes in the types of workers holding routine, middle-wage occupations. If

technology allows less skilled workers to substitute for middle-skilled ones, then the mini-

mum wage (and prevailing low-skilled wage generally) may have important implications for

the pace of RBTC. Figure 3 shows this is the case. I combine the BEA capital stock data

with the 1980 Census and the 2005 ACS. For each of the 56 industries available in the BEA

22In 1993, the CPS changed the measurement of education. Because years of education is such an
important determinant of wages, this discrepancy may explain why the patterns diverge before 1993.

23It has long been understood that the wage changes documented job polarization literature could be
driven by the changing composition of workers. This question is taken up directly by Böhm (2015) and
Cortes (2014) who use panel data to study worker sorting. Both papers find composition changes driven by
sorting responses to routine wages, yet that the composition-adjusted wage still fell (but see also Gottschalk,
Green, and Sand (2015)). Those papers show that some of the change in routine wages is unexplained by
composition changes; my emphasis is that some of the change is explained.
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Figure 3: Time-variation in the routine-bias of technology and the minimum wage
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Source: The real minimum wage is the employment-weighted average minimum wage in national 2014
dollars. For each state, I calculate the effective minimum wage (the maximum of the state and federal
minimum wage). I convert them to real dollars. I then take a weighted average across states, weighted by
state employment shares. The routine-bias of PC capital is the estimated βt series from equation (1) in the
text. It captures time variation in the correlation between PC capital and declining routine employment. It
is normalized to be zero in 2012.

data, I calculate real PC capital (PCKit) and the change in log routine employment share

from 1980 to 2005 (∆ ln(RoutineEmpShare)i).
24

The change in log routine employment share is a time-invariant measure of how severely

an industry has been affected by RBTC. The goal of the exercise is to summarize the time

varying degree to which differential PC adoption rates map to RBTC-affected industries.

That is, when do the industries losing the most routine employment adopt the most tech-

nology? I estimate the following regression:

lnPCKit = αi + δt + βt∆ ln(RoutineEmpShare)i + εit (1)

The βt series captures variation across time in the “routine-bias” of PC adoption. When

βt is larger, routine-declining industries adopted more technology than when βt is small.25

Figure 3 plots the resulting series of the routine-bias of technological adoption along with

the real minimum wage.

24∆ ln(RoutineEmpShare)i ≡ ln(RoutineEmpShare)i,2005 − ln(RoutineEmpShare)i,1980
25Of course, with the full set of industry (αi) and year (δt) fixed effects, the levels of the βt series cannot

be identified; it has to be normalized to some year. There must be some τ such that βτ = 0 and all other βt
are relative to year τ . I choose to set τ = 2012 and identify the routine-bias of PC adoption in each year,
relative to 2012.
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Figure 3 illustrates a simple point. For industries that saw the greatest declines in

routine employment, the over-time variation in technology adoption is closely and inversely

related to the minimum wage. The periods when PC capital adoption became more heavily

concentrated in these industries were almost all periods of falling minimum wages. Though

this is only a simple time series correlation (with small T ), the results in the remainder of

the paper suggest this relationship may be causal.

3 Econometric strategy

My primary specification is as follows:

Techist = αst + δit + Z ′istγ + β(Complementarityit ×MinWagest) + εist (2)

In (2), Techist denotes technology use in industry i in state s at time t. Complementarity

is the share of low-skilled workers who benefit from using technology. In the next subsec-

tion, I discuss measurement of technology and of low-skilled/technology complementarity

in detail. Here, the important feature is that complementarity is measured at the industry

level and the minimum wage (MinWage) is measured at the state level. Because αst ac-

counts for cross-industry state-specific factors correlated with the minimum wage26 and δit

accounts for arbitrary industry patterns of technology adoption over time, identification of

β is driven solely by the interaction of complementarity and the minimum wage. Thus, β

captures the heterogeneous effect of the minimum wage on technology use, differentially for

high complementarity industries. While the advantage of this is that it makes weaker iden-

tification assumptions than a specification which assumes the minimum wage is exogenous,

the disadvantage is that it does not identify the direct effect of the minimum wage, only

heterogeneous effects. This is discussed in more depth below.27

26Allegretto, Dube, and Reich (2011) find that the minimum wage tends to be raised during periods
of declining low-wage employment, though Sabia (2014) argues that this is at odds with research on the
political determinants of minimum wage changes. While it may seem unlikely that minimum wage changes
respond to shocks in technology use, because of the relationship between technology and inequality, states
responding to trends in inequality may inadvertently respond to changes in technology adoption. Moreover,
for political reasons, changes in the minimum wage may be correlated with changes in banking regulation or
tax policy, both of which might affect investment in IT capital.

27This issue is common in wage inequality research. Much of the literature focuses on the effects of time-
varying pressures (e.g., technology, Chinese imports, etc.) that are heterogeneous across different units (e.g.,
industries, commuting zones, etc.). The data is typically two dimensional (industry-year, state-year, etc.)
and it is common to include a year fixed effect. As a result, one dimensional variation is perfectly absorbed
and direct effects of time varying technology availability, for instance, can never be identified. Here, the data
is three dimensional (industry-state-year), and the fixed effect scheme perfectly absorbs two dimensional
variation.
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For the intuition behind the identification strategy, consider two firms within the same

industry but in different states. If industry codes are sufficiently precise, then both firms are

engaged in the same economic activity and face the same production possibilities frontier.

The chosen methods of production will depend on local factor prices. In equation (2), an

estimate of β < 0 indicates that industries where low-wage workers benefit heavily from

technology use less technology in states with a higher minimum wage (after αst accounts

for any sources of state heterogeneity that affect all industries equally). Note that this

identification strategy is purely cross-sectional (identification comes from within st and it).28

Figure 4 communicates both the identification strategy and the results in two different

ways. Panel (a) shows technology adoption across the minimum wage distribution for a

set of industries with high complementarity and a set with low complementarity.29 In my

context, Panel (a) is comparable to a difference-in-difference plot, where “treatment” in-

dustries are those with high complementarity and “control” industries are those with low

complementarity. The “parallel trends” assumption is that the groups are similar when the

treatment is irrelevant (“pre-treatment”). This can be seen in the far right of the graph:

when the minimum wage is sufficiently high, the extent to which low-wage workers benefit

from technology is irrelevant because low-wage workers are so expensive. The difference

between the treatment and control group is irrelevant, and technology use is similar for

both sets of industries. As the minimum wage declines, however, the benefits from having

high complementarity lead to a widening technology adoption gulf; high complementarity

industries begin to use technology at a much higher rate than low complementarity ones.

Panel (a) flexibly captures state heterogeneity in the minimum wage, but imposes a lot of

structure on industry heterogeneity by combining industries into only two groups. Panel (b)

presents a complementary summary, which is restrictive in state heterogeneity, but flexible in

industry heterogeneity. For each industry-year (it) in my main estimation sample, I regress

technology in state s on the minimum wage in state s in the following specification:30

28In light of the Sorkin (2015) critique of the minimum wage literature (that technological adjustment
takes time and, therefore, the long-run effects of the minimum wage are likely quite different from the short-
run), a cross-sectional identification strategy has strong advantages. Most of the minimum wage variation
that I use is persistent across states over time, allowing me to more credibly identify long-term effects.

29As discussed in the next section, my preferred measure of technology is IT workers per 100. Panel (a)
shows this measure for a single year (2000) across states with different minimum wages (rounded to the
nearest 50 cents) for two sets of industries: 45 industries which have below average low-wage/technology
complementarity across all four of my metrics (described in detail below), and 31 industries that have above
average complementarity across the four metrics.

30This estimating equation is similar to my main specification (equation (2)). Equation (2) includes
state-year fixed effects that account for sources of heterogeneity that are correlated with the minimum wage
and affect technology in all industries equally, and imposes that βit varies linearly across complementarity.
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Figure 4: Graphical intuition for the identification strategy
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(b) Tech. gradients across complementarity

Panel (a) presents technology, measured as IT workers per 100, across the real minimum wage for the year
2000. As described below, nominal minimum wages are converted to real using both the Consumer Price
Index and cross-state price deflators. Figures used in the plot correspond to 2014 national dollars, rounded
to fifty cents for graphical purposes. Low complementarity industries have below average complementarity
across all four measures described below; high complementarity industries have above average complemen-
tarity across all four measures. Panel (b) plots the slope coefficients (β’s) from the following regression,
separately estimated for each industry-year: Techist = αit+βitMinWagest+εist. The horizontal axis is the
CUS-based complementarity among workers with less than a high school education (the primary measure
used in the econometric analysis, described below). The curve is a restricted cubic spline with three knots,
and the shaded area is the 95% confidence interval.

Techist = αit + βitMinWagest + εist (3)

The estimated βit is a linear summary of the technology adoption gradient in industry i

and year t across states with heterogeneous minimum wages. Panel (b) then plots these esti-

mated slopes across my main measure of complementarity, along with a non-parametric fit.

The figure shows that very low complementarity industries exhibit little relationship between

technology adoption and the minimum wage. As complementarity rises, however, industries

begin exhibiting significantly negative slopes, indicating less technology adoption in higher

minimum wage states. Panel (b) also provides support for the identification assumption:

The only industries that systematically respond to cross-state minimum wage differences are

those with significant complementarity. My econometric strategy essentially formalizes the

insights from Figure 4.

My identification strategy is, of course, not perfect. The minimum wage is politically

contentious and therefore highly endogenous. Causal inference has proved difficult for the

literature. The key identification assumption is that the 205 private sector industries in
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the Census industry codes are precise enough that firms within the same industry-year are

engaged in the same economic activity and face the same production possibilities frontier.

The biggest threat to identification is that these firms are not valid counterfactuals for one

another. In this case, rather than reflecting how the input mix responds to factor prices while

holding the production function constant, observed differences in technology might result

from firms (within industry-year) being engaged in more technology-intensive production in

states where the minimum wage is lower.

Because of the state-year fixed effects, the direction of this bias is difficult to assess (it

must be state heterogeneity that differentially affects high complementarity industries). One

plausible expectation is that the structure of economic activity is more technology-intensive

in high minimum wage states, and that this is particularly true in industries with more

low-wage/technology complementarity.

This sort of unobserved heterogenetiy would impart a positive bias upon β̂, biasing me

against finding β < 0. In section 5.4, I look at cross-state variation in industrial composition

and find suggestive evidence for this sort of heterogeneity. Though non-significant, the point

estimates suggest that within-industry heterogeneity in economic activity, if anything, biases

me against finding input mix responses (i.e., biases me against finding β < 0). I find no

evidence that such heterogeneity “explains” or drives my results.

4 Data and Measurement

4.1 Measuring technology

Following Tambe and Hitt (2012), I proxy for technology using the share of employment

in IT occupations.31 Specifically, I use three occupations: computer scientists, computer

software developers, and repairers of data processing equipment.

There are three concerns in using this variable. The first is the possibility that IT workers

are directly affected by the minimum wage. However, Table B1 of Section B.2.1 in the

Appendix shows that these workers are well-paid and well-educated, and therefore unlikely

to be directly affected. The second is that the minimum wage affects total employment,

the denominator of the IT labor share, and thereby affects my technology measure without

affecting actual technology. This seems unlikely given the small employment effects found

in the minimum wage literature. Also, as discussed below, I control for an industry-state-

year employment and the fraction of industry employment near the minimum wage, further

31Section B.2.1 of the Data Appendix describes some advantages of a technology measure based on labor
data, relative to other sources used in the literature.
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mitigating these concerns.32 Moreover, in robustness checks in the Results Appendix, I use

different normalizations including one in which IT worker counts are divided by an exogenous

measure of “potential” employment at the industry-state level. All of my results are robust

to alternative normalizations (see Table B7).

The third concern with a technology measure based on IT labor is whether or not it

correlates with other more standard measures of technology. Tambe and Hitt (2012) use

firm-level data and show that IT labor is highly correlated with IT capital stock measured

by Harte-Hanks. In section B.2.1 of the Appendix, I present several additional confirmatory

analyses. I use the BEA’s industry level data on IT capital stock and computers per worker

(for 53 industries), and estimate elasticities of IT capital with respect to IT labor that are

highly significant and range from 0.6-0.9, depending on the specification.33 As noted by

Tambe and Hitt, it is not obvious that IT capital is a better measure of technology. Results

to a survey conducted by the technology magazine InformationWeek show that salaries and

benefits comprise 32-35% of IT spending, the largest single component of IT budgets and

more than double that of “new product/technology purchases.” Unsurprisingly, then, when I

combine InformationWeek ’s estimates of total IT spending for 19 industries with my IT labor

measure they are highly correlated.34 Finally, Section B.2.1 also shows that the geographic

variation in IT labor (after adjusting for cross-state differences in industrial composition) is

highly correlated with the geographic variation in adjusted PC’s per worker used by Beaudry

et al. (2010) and Autor and Dorn (2013).

4.2 Measuring complementarity

I define industries to have high complementarity between low-skilled workers and technol-

ogy if low-skilled workers’ productivity is significantly enhanced by technology availability.

In measuring this variable, there are two challenges: defining complementarity and defining

low-skill. I discuss these briefly before turning to the benefits of leveraging multiple mea-

sures to address measurement error. Regardless of the definition of “low-skill” or source used

to measure individual level complementarity, my industry level measure is the fraction of

low-skilled workers who are computer complements.

32“Controlling” for total employment does not solve the problem because employment enters the IT labor
share measure non-linearly (specifically as the denominator).

33One important result from the exercises in Section B.2.1 is that IT labor is a much stronger proxy
in the cross-section than over time. While IT capital has increased dramatically over the last 30 years,
IT employment has risen only slightly. Fortunately, my identification strategy exploits only cross-sectional
variation.

34The InformationWeek sample is not representative. However, when the same survey asked respon-
dents what steps they have taken to optimize business efficiency, around 80% reported “increased use of
automation” (more than any of the other ten options) so it is certainly a sample of interest.
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4.2.1 Defining complementarity

Consider a simple model in which capital costs are equal across all industries. Profit-

maximizing firms will equalize the marginal benefit and marginal cost of capital investment.

In industries where low-skilled workers benefit more from computers, firms will be more will-

ing to undergo the investment cost. Thus, one can infer industry heterogeneity in the extent

to which low-skilled workers benefit from computers by observing industry heterogeneity in

how many low-skilled workers actually use a computer.

I use the Computer Use Supplement (CUS) to the CPS, which asks respondents if they

“directly” use a computer at work.35 I exploit industry heterogeneity in the share of low-

skilled workers (defined below) who report using a computer directly at work.36 The benefit

of the CUS measure is that it is transparent and fairly straightforward to interpret as evidence

that low-skilled workers benefit from using a computer. The disadvantage is that it is only

asked during one month every five years, yielding small samples.

I complement this measure with a subjective measure of the potential for workers to

benefit from a computer based on variables from the 4th edition of the Dictionary of Occu-

pational Titles (DOT). The DOT provides a wide range of information about occupations.

One set of variables refers to work fields, defined as “organizations of specific methods ei-

ther characteristic of machines, tools, equipment, or work aids, and directed at common

technological objectives, or characteristics of the techniques designed to fulfill socioeconomic

purposes.” In other words, work fields describe specific tasks (methods and characteristics

of techniques) involved in an occupation.

Each respondent selects up to four work fields from a list of 100. These 100 are combined

into 28 groups, and I subjectively select three of these groups to represent complementarity:

1. Receiving, storing, issuing, shipping, requisitioning, and accounting for stores of ma-

terials

2. Preparing and maintaining verbal and/or numerical records

3. Providing, or effecting the transmission of, information to other persons, indirectly (by

electrical or electronic media) or directly (by voice or written statement)

I believe one could perform these tasks far more effectively and efficiently using a com-

puter. For each occupation in the DOT, I calculate the fraction of respondents that report

35The CUS is not available in every year. Table A1 shows how I map CUS years to Census years.
36In an influential paper, Krueger (1993) used this data to show that computer use increases as wages

rise. Figure B3 in the Appendix shows computer use over the wage distribution for 1983, 1994, and 2003.
In each year, the conclusions of Krueger hold: Higher wage individuals are more likely to use a computer.
Yet while attention has focused primarily on the slope of the computer use-wage gradient, the intercept is
non-trivial and rising appreciably over time. In 1984, only 5-10% of workers earning less than $10 per hour
(about the 25th percentile of wages) used a computer. By 2003, this had increased to 20-30%.
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at least one of these work fields.37 and merge these occupation level measures with the CPS

ORG. I then calculate the fraction of low-skilled workers in an industry-year which have a

“complementary” occupation. Note that the set of occupations does not change over time,

but the fraction of low-skilled workers in these occupations might change. Thus, this measure

of complementarity is still allowed to change over time.

Selecting appropriate work fields for a given purpose is inherently subjective, and the

criticism of Autor (2013) is worth repeating: “While I have found that the task measures

distilled from DOT and O*NET can serve as powerful proxies for occupational tasks, I am

at best only moderately comfortable with these tools because their complexity and opacity

places little discipline on how they are applied and interpreted.” This criticism certainly

applies to this work. For transparency, Table A3 lists all 100 available work fields. In

addition to subjectivity, Autor (2013) points out that occupation level task measures ignore

within-occupation heterogeneity and changes over time both in the set of tasks that make up

occupations.38 Nonetheless, the DOT complementarity measure is useful for understanding

the degree to which an occupation’s tasks can benefit from computer availability.

4.2.2 Defining low-skill

With these measures in hand, it is still necessary to define “low-skilled workers” to

calculate the industry level complementarity measures described in Section 3. In the wage

inequality literature, it is common to identify different skill levels using education, and I

follow that approach here, defining “low-skilled” workers as those with less than a high

school education.

However, in a study of the effects of the minimum wage, it also seems natural to use a

definition of low-skill based on the wage. The challenge in doing so is that the minimum

wage affects the wage distribution (both directly and through spillovers). Consider, for

example, two identical workers, one who earns $9.75 in a state with a $6 minimum wage and

one who earns $10.25 in a state with a $9.50 minimum wage. Their wages differ only due

to the minimum wage in place (by assumption, they are identical workers). A wage-based

definition of low-skill which draws a line at, say, $10 would classify only one of these workers

as low-skill. This would induce measurement error in the complementarity variable that is

correlated with the minimum wage in the states in which an industry locates.

37The 4th edition of the DOT has around 60,000 respondents. Occupations are based on 1970 codes. See
the Data Appendix for more detail.

38Autor and Handel (2013) provide evidence of within-occupation task heterogeneity. See Autor et al.
(2003) and Autor and Dorn (2013) for detailed discussions of changes in occupations’ task composition. Note
that the 4th edition of the DOT was revised in 1991 and replaced by O*NET in 1998, but that these datasets
do not have work field variables comparable to the ones used here.
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To address this concern, I develop latent wages based on a method proposed by Autor,

Manning, and Smith (2010).39 Section B.1.4 of the Appendix describes this method in detail

and summarizes the results. In short, it involves assuming that the latent wage distribution

(the wage distribution which would prevail without a minimum wage) is log-normal and

using wages in the 50th-75th percentiles to estimate the parameters of the state-year wage

distribution. Under the assumption that employment effects are small and that spillovers

monotonically decline away from the minimum wage (which implies that there are no rank

reversals), the percentiles of the observed state-year wage distribution can be used to create

a one-to-one mapping from observed wages to latent wages. I then define low-skilled workers

to be those with an estimated latent wage below $9.50, the point at which the effects of the

minimum wage are less than 5% of the latent wage (see Figure B7). On average, this is just

over 20% of the population.

4.2.3 Combining multiple measures

In total, then, I develop four industry level measures of low-skill computer complemen-

tarity: two based on the CUS and two based on the DOT; and two based on workers with

less than a high school education and two based on workers with latent wages (estimated)

below $9.50. These multiple measures help me address two important types of measurement

error. First, there is “conceptual” measurement error. It is not straightforward to define

complementarity and the measures described above have important limitations. The second

is “population” measurement error. Worker skills are high dimensional and continuous, and

identifying “low-skilled” workers is inherently problematic. My preferred specification uses

DOT complementarity among low-wage workers as an instrument for CUS complementarity

among low-education workers, helping eliminate both types of measurement error simulta-

neously.

39Autor, Manning, and Smith (2010) are interested in revising estimates from Lee (1999) of the wage
inequality effects of the falling real value of the federal minimum wage during the 1980’s. They propose
two approaches to estimating the minimum wage effects at a given percentile of the wage distribution: one
reduced form (similar to Lee, with additional corrections for endogeneity and unobserved heterogeneity) and
one parametric (the approach used here). They find similar results for both methods. Because findings are
so similar, the more recent version of the paper (Autor, Manning, and Smith, 2015) abandons the parametric
approach I use here and includes only the reduce form approach (which requires fewer assumptions). For
my purposes, unlike for the research question that Autor, Manning, and Smith focus on, the reduced form
approach is not a viable substitute. Thus, I take comfort in the fact that the two approaches yield such
similar results in Autor et al. (2010), lending credence to the validity of the parametric approximation.
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4.3 Additional data details

The final dataset is based on IT labor measured in the 5% public-use samples of the

1980, 1990, and 2000 Census and the 2005 American Community Survey and the CPS ORG

from 1980-2006.40 The main estimation sample is that for which at least 10 respondents are

available for each measure of complementarity is available (109 industries and 327 industry-

years).41 Note that this implicitly restricts my sample to industries with a non-trivial number

of low-skilled workers.

My independent variables of interest are the interaction of industry level complementarity

measures and the state level minimum wage. For simplicity later, let

Xist ≡ Complementarityit ×MinimumWagest

I am, specifically, interested in how the technology effects of the minimum wage differ by

the extent to which low-skilled workers benefit from computers. To ensure that my results

are not driven by the differential response of industries with lots of low-wage workers or

by industries where everyone benefits from technology, I control for the interaction of the

minimum wage with the low-wage employment share and with complementarity measured

among non-low-skilled workers. Because total employment appears in the denominator of

the IT labor-based technology measure, I control for log employment.

Finally, I adjust all wages to be in real dollars not only using the CPI, as is standard,

but also using state price deflators from the BEA (Aten and D’Souza, 2008). These price

indices are available only at one point in time, so nominal (state level) wages are converted

to real (national) wages by multiplying by a single state-specific factor (in addition to a

year-specific price index for inflation). State-specific price indices have not been used in past

minimum wage research, likely because they are only available at a single point in time. In

40Public-use census data and ACS data are from the Integrated Public Use Microdata Series (Ruggles
et al., 2010). Decennial Census years are different than CUS years, and this is discussed in the Data
Appendix. Industry codes are from Autor, Dorn, and Hanson (2013) and minimum wage data is from Meer
and West (2013). I use the NBER version of the ORG (Feenberg and Roth, 2007). Several industries (e.g.,
IT consulting) were excluded because IT labor is an ineffective proxy for IT capital (as discussed in Section
B.2.1). My sample ends in 2005 because the CUS has not collected data on computer use at work since
2003. For better or worse, this means that my estimation sample excludes the most recent round federal
minimum wage increases (see Clemens and Wither (2014) for a discussion) and the large structural RBTC
adjustments occuring during the Great Recession (see Jaimovich and Siu (2014) or Foote and Ryan (2014)
for a discussion).

41In robustness checks, I relax this restriction, including any industry with at least one respondent avail-
able for each measure of complementarity. The results are similar. Consistent with significant measurement
error, the coefficients are smaller and the standard errors are somewhat larger. Weighting by the respondent
count, unsurprisingly, brings the results closer to those of my main specification. See Table B8 of the Results
Appendix.
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the standard state-year difference-in-difference models a state-specific price index provides no

information that can be separated from the state fixed effect (indeed, if the logged minimum

wage is used, the state effect is perfectly colinear with the log price index). With industries

as an additional dimension of variation, this is not the case. Variation in price levels creates

minimum wage variation that has differential effects on different industries and which is

not entirely absorbed by the state fixed effect. Because my identification strategy exploits

cross-sectional variation in the minimum wage to trace out differential technology adoption

patterns (rather than time series variation to identify the effect of minimum wage changes),

this additional variation is very useful. From 1980-2005, the federal minimum wage was

binding during at least one month in anywhere from 37-49 states (including the District of

Columbia). However, these states have very different price levels. The BEA state level price

index estimates allow me to use this information.42 Section B.1.3 of the Appendix provides

additional information about how real wages are computed and the effect of state level price

variation on observed minimum wages.

5 Results

5.1 Summary statistics and key correlations

Table 1 presents the summary statistics for the main estimation sample. As seen in Figure

5, there is substantial variation in complementarity across industries. For each of the four

measures, 16-29% of low-skilled workers in the average industry are computer complements,

and the interquartile range is at least as large (with the 90-10 range being nearly twice as

large). Also note that many of these industries have high routine employment (on average,

34% of employees and 30% of the wage bill).

Finally, Table 1 highlights two important limitations of my empirical approach. First,

the share of employment in IT occupations is fairly low (around .75% on average), which ne-

cessitates reliance on decennial Census data rather than, say, the CPS.43 Second, the sample

sizes available for the CUS are somewhat small, particularly for low-wage workers.44 Those

42Handbury and Weinstein (2014) use detailed price scanner data to show that accounting for the avail-
ability of goods is important for comparing prices across cities, and they highlight that BEA estimates cannot
account for this. While the BEA estimates are imperfect, they provide some useful information and are bet-
ter than assuming constant prices across states. Price indices as detailed as those calculated by Handbury
and Weinstein are not yet available at the state level (or for a sufficiently large set of cities). Figure B5 in
Section B.1.3 of the Appendix shows that the BEA’s price indices are highly correlated with state variation
in the residual nominal wages of routine workers (correlation: .85). Thus, though imperfect, they do well in
capturing variation in the prices of the inputs most relevant for this analysis.

43While median IT employment is zero, 48.9% of observations have positive IT labor.
44Sample sizes are about 25% higher for the less than high school population for two reasons. First,
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Table 1: Summary statistics

Percentiles
Variable Mean SD 10th 25th 50th 75th 90th

Complementarity, CUS, w < w̄ .204 .203 0 .053 .144 .289 .497
Complementarity, CUS, < HS .158 .154 .016 .053 .114 .211 .368
Complementarity, CUS, any wage .369 .233 .092 .173 .340 .525 .708
CUS sample size, w < w̄ 93 220 14 21 44 90 184
CUS sample size, < HS 117 222 18 28 55 114 223
Complementarity, DOT, w < w̄ .288 .178 .086 .143 .250 .419 .538
Complementarity, DOT, < HS .235 .174 .065 .105 .173 .337 .524
Complementarity, DOT, any wage .260 .133 .103 .155 .235 .362 .445
DOT sample size, w < w̄ 1548 3322 211 387 732 1443 2840
DOT sample size, < HS 1077 1973 137 257 500 1042 1832
Routine emp. share, w < w̄ .386 .234 .108 .227 .358 .513 .697
Routine emp. share, any wage .340 .201 .103 .215 .299 .438 .594
Low-wage employment share .286 .174 .077 .146 .247 .427 .539
Less than HS employment share .195 .121 .052 .110 .175 .259 .372
Real minimum wage 7.96 1.36 6.35 7.03 7.81 8.63 10.01
IT workers per 100 employees .753 1.91 0 0 0 .711 2.13
Routine share of wage bill .296 .198 .092 .161 .246 .379 .575

Descriptive statistics are based on the main estimation sample of 14,152 industry-
state-years. See Data Appendix for discussion of sample selection, and Sections
4.1-4.3 for discussion of variable measurement. While median IT employment is
zero, 48.9% of observations have positive IT labor.

available for DOT complementarity are much higher since all that is required is occupational

codes. Thus, in addition to the sources of measurement error discussed above, for the CUS

variables I am additionally concerned about measurement error caused by sampling variabil-

ity. As a result, my preferred specifications are based on using DOT complementarity to

instrument for CUS complementarity, rather than the converse.

Table B5 of the Appendix contains the first stage regressions corresponding to this in-

strumentation scheme (as well as potential alternatives). The intuition, however, is better

captured by Figure 5. Panel (a) shows that DOT complementarity is highly correlated with

CUS complementarity, whether it is based on low-wage workers (dots) or low-education

workers (crosses). At the same time, there is substantial deviation from the 45◦ line due

to measurement error in defining complementarity. Panel (b) shows that complementarity

among low-wage workers is highly correlated with complementarity among low-education

education is observed for any CUS respondent, whereas wages require that the respondent be successfully
merged with the ORG. Second, education is almost never imputed, whereas wages are frequently imputed,
particularly in more recent years (Hirsch and Schumacher, 2004). Following the literature, I do not use
imputed wages. See the Data Appendix for more.
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Figure 5: Correlations between multiple measures of low-skill complementarity
0

.2
.4

.6
.8

1
C

o
m

p
le

m
e
n
ta

ri
ty

 (
D

O
T

)

0 .2 .4 .6 .8 1
Complementarity (CUS)

Low−wage Low−education 45 deg.

(a) Complementarity measures
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(b) Skill measures

Panel (a) shows the relationship between DOT complementarity (y-axis) and CUS complementarity (x-
axis) for industry-years in the main estimation sample. Panel (b) shows the relationship between computer
complementarity among low-wage workers (y-axis) and complementarity among low-education workers (x-
axis), also for the main sample.

workers, whether complementarity is based on the CUS (dots) or the DOT (crosses) mea-

sure. Again, much of the deviation from the 45◦ line is due to measurement error in defining

low-skill.45 My instrumentation strategy helps eliminate both types of measurement error

at once.

A final important note is that my measures of complementarity are not unrelated to

the Autor-Dorn routine indicator. In fact, they are positively correlated. Table 2 presents

individual (columns 1 and 2) and occupation (columns 3-6) level regressions of computer use

(columns 1-4) and DOT complementarity (columns 5 and 6) on the routine indicator from

Autor and Dorn (2013). Individuals in a routine occupation are 1/3 more likely to use a

computer. For low-wage workers, being in a routine occupation makes one 2/3 more likely.

For the DOT-based measure of complementarity, the relationship is even more stark. Routine

occupations have 3-4 times the DOT-based complementarity of non-routine occupations.

Initially, this seems to suggest that these are not valid measures of complementarity.

The routine measure, after all, was developed to identify tasks and occupations for which

technology was a substitute. However, the division between benefiting from technology and

being replaced by technology is sometimes ambiguous. For instance, consider an accounting

45The CUS-based measure has significantly more variation from the 45◦ line than the DOT measure.
Some of this is likely due to the fact that it is based on smaller samples than the DOT-based measure, and
thus has more sampling error. My preferred specification is to instrument for CUS complementarity using
DOT complementarity, rather than the other way around, to reduce the influence of this type of measurement
error.
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Table 2: Correlation between complementarity and routineness

DV : Computer Use DOT Compl.

Individual level Occupation level

(1) (2) (3) (4) (5) (6)

Routine 0.133* 0.090* 0.076** 0.117*** 0.204*** 0.243***
(0.070) (0.049) (0.035) (0.043) (0.036) (0.062)

Constant 0.398*** 0.143*** 0.396*** 0.172*** 0.085*** 0.079***
(0.043) (0.020) (0.021) (0.021) (0.012) (0.020)

N 154390 29380 330 106 330 106
R2 0.057 0.031 0.014 0.074 0.121 0.148
Sample All Low-wage All Low-wage All Low-wage
Year effects Yes Yes

* p < .10, ** p < .05, *** p < .01. Occupation codes and routine indicator are taken
from Autor and Dorn (2013). Low-wage is defined at the individual level as a latent
wage below $9.50 and at the occupation level as at least 16% of workers with latent
wage below $9.50 (approximately the mean). At the occupation level, computer use
corresponds to the fraction of respondents who report using a computer. For individual
level regressions, standard errors are clustered at the occupation level.

department 40 years ago which might have had five accountants using pencils and paper

ledgers. Today, that department might have one accountant with Microsoft Excel. While

the computer has automated four accountants, it has also made one accountant five times

as productive. Additionally, I have argued here that technology often allows traditional

medium-skilled tasks to be performed by low-skilled workers with technology. To the extent

that this technology-enabled deskilling happens within occupation codes (as in Figure 1),

we would expect to see workers in routine occupations benefiting from technology use, and

expect this effect to be particularly strong among low-wage workers. This is exactly the

pattern presented in Table 2. I do not believe that these positive correlations invalidate

my measures of complementarity, but rather that they underscore the importance of partial

automation of routine tasks that is the focus of this research.

5.2 Technology effects of the minimum wage

Table 3 presents my main results, estimating the differential effect of the minimum wage

on technology adoption among high complementarity industries. In column (1), comple-

mentarity is measured as the fraction of workers with less than a high education who use a

computer, and X<HS
CUS denotes its interaction with the minimum wage.46 As predicted, the

46See Table B6 of the Appendix to see each of the four measures.
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Table 3: Technology effects of the minimum wage

DV: IT Labor (1) (2) (3) (4) (5) (6)

X<HS
CUS -0.634*** -0.524*** -1.440**

(0.205) (0.194) (0.619)
Xw<w̄

DOT -0.755** -0.480 -0.253
(0.324) (0.308) (0.360)

RTw<w̄
it ×MWst -0.187** -0.015

(0.085) (0.087)
RTw<w̄

it ×Xw<w̄
DOT -0.551**

(0.251)
N 14152 14152 14152 14152 14152 14152
R2 0.732 0.731 0.732 0.730 0.731 0.732
Fixed effects it, st it, st it, st it, st it, st it, st
Controls Yes Yes Yes Yes Yes Yes
IV Xw<w̄

DOT

F Stat. 20.829

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard errors, at the state
(n = 51) and industry (n = 109) level, are shown in parentheses. “IT labor” refers to
IT workers per 100 employees, measured at the industry-state-year level. X variables
are the interaction between the state level minimum wage and an industry level mea-
sure of complementarity between low-skilled workers and technology. The superscript
refers to the definition of low-skill (w < w̄ indicates low-wage, < HS indicates less
than high school education) and the subscript refers to the measure of complementarity
(described in Section 4.2). Controls include total employment and the minimum wage
interacted with the employment share of low-skilled workers and technology complemen-
tarity measures among non-low-skilled workers. The reported F statistic corresponds to
the excluded instrument in the first stage regression, presented in the Results Appendix.

coefficient is negative, suggesting that industries in which low-skilled workers are more com-

plemented by technologies tend to use less technology when the minimum wage is higher.

Column (2) confirms this finding, now interacting the minimum wage with complementar-

ity among low-wage workers according to the DOT-based measure. Coefficient magnitudes

can be approximately compared, since the complementarity measures have similar standard

deviations (see Table 1). I provide a more detailed interpretations of coefficient magnitudes

below.

Column (3) includes both measures. While both coefficients shrink somewhat, the fact

that they remain at least half as large in magnitude suggests that both measures contain

significant independent variation. My interest, however, is in the common variation. Column

(4) instruments for X<HS
CUS using Xw<w̄

DOT . The first stage of this regression is presented in Table

B5 of the Results Appendix, but the corresponding F-statistic is over 20, suggesting that this
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is a highly relevant instrument. As discussed above, this instrumentation strategy reduces

measurement error both in the measurement of complementarity and in the definition of

low-skilled labor. This more than doubles the coefficient on X<HS
CUS . While the standard

error also increases, the coefficient remains different from zero at the 5% level of significance.

Because the identification strategy includes state-year and industry-year fixed effects,

the estimates can only be interpreted as heterogeneous effects of the minimum wage. It

is helpful to return to the summary statistics in Table 1 and compare a high complemen-

tarity industry (at the 75th percentile of computer use among workers with less than high

school education) to a low complementarity industry (at the 25th percentile). In the high

complementarity industry, 21.1% of low-skilled workers are technology complements, while

in the low complementarity it is only 5.3%. A $1 decrease in the minimum wage (slightly

less than one standard deviation), then, is expected to increase technology use in the high

complementarity industry by .227 IT workers per 100 employees relative to the low comple-

mentarity industry.47 This effect is about 30% of the mean of IT labor, large yet plausible.

It suggests that the minimum wage is an important driver of technology decisions for high

complementarity industries.48

As discussed above, my measures of complementarity are highly correlated with existing

measures of routineness. A natural question is how routine-intensive industries respond to the

minimum wage. Column (5) includes the share of low-wage workers in routine occupations,

interacted with the minimum wage.49 Because the standard deviation of the low-wage routine

share is slightly larger than that of the complementarity measures, we might expect the

coefficient to be somewhat smaller. Yet the coefficient is less than a third the size of those in

columns (1) and (2). When including Xw<w̄
DOT and their interaction in column (6) it is clear that

the significance of the routine effect is driven by the highly complementary industries. The

mechanism driving the results seems to be the differential response of industries where low-

skilled workers benefit from technology, although Column (5) suggests that routine-intensive

industries often do have such workers. At the same time, the effects of complementarity are

clearly stronger when routine workers are present.

A number of robustness checks are presented in the Results Appendix (see Section B.4).

I briefly describe them here, leaving more detailed interpretations in the appendix. Table

B6 presents the effect of each of the four complementarity measures. All are negative and

47.227 = (.211− .053)× 1.440
48Note that because the mean of the CUS-based complementarity among less than high school educated

workers happens to be the same as its interquartile range, the magnitudes calculated by comparing industries
at the 25th and 75th percentiles are the same as the magnitudes calculated by comparing the average industry
with what would prevail without any complementarity.

49Other measures of routine intensity (e.g., among all employees, among low-education employees) produce
very similar results.
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three are statistically significant, with Xw<w̄
CUS having the smallest coefficient, consistent with

having more measurement error because of the small samples. Table B6 also presents IV

results for two alternate instrumentation strategies. Instrumenting for Xw<w̄
CUS with X<HS

DOT

yields a slightly smaller coefficient than that in column (4) of Table 3; instrumenting for

Xw<w̄
DOT with X<HS

CUS yields a larger (more negative) coefficient. I prefer the instrumentation

scheme used in Table 3 to this alternative because I find it easier to interpret the CUS-based

measure (computer users) and because the first stage is stronger.

Table B7 of the Results Appendix presents analogies to Table 3’s columns (1) and (4),

the main results. It uses two alternative normalization of the IT labor variable. First, it

uses employment with a high school education or more in the denominator, as these workers

are less likely to be directly affected by the minimum wage. The results are nearly identical.

Second, it normalizes IT labor by “synthetic employment,” which is the product of industry

employment nationwide with the state’s share of total employment. This is the share of

employment that would result if every industry’s employment were identically distributed

across states. Thus, the denominator normalizing IT labor is even less likely to be affected

by the minimum wage. The estimated coefficients (and their standard errors) are larger

(more negative), suggesting that employment effects, if anything, dampen the estimates.

Finally, my main estimation sample is restricted to that for which at least 10 respondents

are available for each of the four complementarity measures. This is meant to reduce noise in

measuring complementarity. Table B8 expands the sample to include any industry-year for

which at least one respondent is available for each complementarity measure (196 industries).

As expected, the coefficients shrink towards zero and some lose significance. Weights based

on the number of respondents available increases the coefficients and shrinks their standard

errors, making them similar to those in Table 3.

5.3 Routine wage bill effects of the minimum wage

Next, I turn to the second prediction of the partial automation framework. If the tech-

nology effects estimated in Table 3 are relevant for the automation of medium-skilled tasks,

then by slowing technology adoption a higher minimum wage should raise the wage bill share

accruing to routine workers in high complementarity industries.50 Because the DOT measure

of complementarity is so highly correlated with the Autor-Dorn measure of routine (see Table

2), I prefer to rely only on the CUS-based measure of complementarity. Columns (1)-(3) of

Table 4 replicate columns (1), (2), and (4) of Table 3, using IT labor as a dependent variable

50Again, since routine occupations tend to be in the middle of the wage distribution and spillover effects
are small, there is no reason to suspect that the direct mechanical effect of the minimum wage would be to
raise the routine share of the wage bill.
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Table 4: Impact on routine share of wage bill

(1) (2) (3) (4) (5) (6)

X<HS
CUS -0.634*** 0.026***

(0.205) (0.009)
Xw<w̄

CUS -0.087 -1.004*** 0.010 0.042***
(0.178) (0.337) (0.009) (0.015)

DV IT Labor IT Labor IT Labor Rt. Share Rt. Share Rt. Share
N 14152 14152 14152 14152 14152 14152
R2 0.732 0.731 0.728 0.913 0.913 0.912
Fixed effects it, st it, st it, st it, st it, st it, st
Controls Yes Yes Yes Yes Yes Yes
IV X<HS

CUS X<HS
CUS

F Stat. 89.275 89.275

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard errors, at the state (n =
51) and industry (n = 109) level, are shown in parentheses. Dependent variable in columns
(1)-(3), “IT Labor,” is IT workers per 100 employees (measured at the industry-state-year
level) and in columns (4)-(6), “Rt. Share,” is routine share of wage bill (the share of all
labor income in the industry-state-year paid to workers in routine occupations). The
reported F statistic corresponds to the excluded instrument in the first stage regression,
presented in the Results Appendix.

and instrumenting for Xw<w̄
CUS using X<HS

CUS . The results are very similar to those of Table 3.

A similar calculation based on the differential effect of a $1 minimum wage decrease on an

industry at the 75th percentile of complementarity, compared to one at the 25th percentile,

suggests an increase in technology of .237 (31% of the IT labor mean).

Columns (4)-(6) of Table 4 then present the same specifications using the routine share

of the wage bill as a dependent variable. The coefficients on both complementarity measures

are positive, though only that on X<HS
CUS is statistically significant. Again, measurement

error likely biases both coefficients, expecially that of Xw<w̄
CUS toward zero. The IV results in

Column (6) increase the magnitude considerably. Now, a $1 decrease in the minimum wage

leads to a .99 percentage point decrease in the share of wages paid to routine worker, about

3.3% of the mean. This result suggests that the technology adoption decisions driven by the

minimum wage have important labor market ramifications.

5.4 Identification tests

My goal is to hold fixed production possibilities (by looking within narrowly defined

industries) and to see how the choice of inputs is affected by the minimum wage. The
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key identification assumption is that there is no cross-state unobserved heterogeneity in the

economic activity performed by firms within the same narrowly defined industry such that

firms in high complementarity industries naturally use more technology in low minimum

wage states. If industry-year fixed effects are not sufficiently narrow, then it is possible

that my results are driven by differences in economic activity and heterogeneous production

possibilities, which I falsely attribute to differences in the chosen input mix. Here, I describe

two tests that support my identification assumption.

First, a stronger version of this identification assumption is that there is no heterogeneity

within the narrowly defined industries used here. This assumption obviously does not hold,

but to understand the magnitude of violations I turn to the NBER-CES Manufacturing

Industry Database (MID). The number of manufacturing industries in the Census codes

(74) is similar to the number of manufacturing industries in 4-digit NAICS codes (86), but

much smaller than the number in detailed 6-digit NAICS codes (473). In Appendix Table

B4, I consider four technology-relevant variables from the MID and show that only 10-20%

of variation across the 473 6-digit NAICS industries occurs within 4-digit NAICS. Thus, the

level of details used in my analyses (based on Census industry codes) is sufficient to capture

the vast majority of variation in the technology-intensity of economic activity.

However, the assumption that there is no within-industry heterogeneity is sufficient but

not necessary to justify my econometric approach. Within-industry heterogeneity will only

drive my results if firms in low minimum wage states naturally use more technology, and dif-

ferentially so for high complementarity industries. This cannot be directly tested. However,

if the composition of economic activity in these industry-state-years were naturally more

technology-intensive within 3-digit industries, one might expect the same pattern within 2-

digit industries. Because I can observe state heterogeneity in 3-digit industrial composition

within 2-digit industries, this latter assumption can be tested.

To measure state heterogeneity in the 3-digit industrial composition, I proceed as follows.

First, I calculate the average IT labor share for each 3-digit industry-year (averaging over all

states). Formally, let ITist and Eist be IT labor share and employment, respectively, in state

s in year t in industry i (with Eit being total industry employment). My 3-digit measure of

average IT labor share is simply

ĪT it =
Eist

Eit

Ns∑
s=1

ITist

Just as (lower case) i denotes 3-digit industry, let (upper case) I denote 2-digit industry.

I then measure industrial composition within 2-digit industries (I) by taking a weighted
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Table 5: Effects of the minimum wage on industrial composition

DV: ĨT Ist (1) (2) (3) (4)
X<HS

CUS 0.323 0.137 0.987
(0.275) (0.184) (0.665)

Xw<w̄
DOT 0.715 0.616

(0.523) (0.466)
N 10995 10995 10995 10995
R2 0.966 0.966 0.966 0.965
Fixed effects It, st It, st It, st It, st
Controls Yes Yes Yes Yes
F Stat. 36.709

* p < .10, ** p < .05, *** p < .01. Two-way clustered
standard errors, at the state (n = 51) and industry
(n = 68) level, are shown in parentheses. See equa-
tion (4) in the text for the definition of ĨT Ist. X vari-
ables are the interaction between the state level min-
imum wage and an industry level measure of comple-
mentarity between low-skilled workers and technol-
ogy. The superscript refers to the definition of low-
skill (w < w̄ indicates low-wage, < HS indicates less
than high school education) and the subscript refers
to the measure of complementarity (described in Sec-
tion 4.2). Controls include total employment and
the minimum wage interacted with the employment
share of low-skilled workers and technology comple-
mentarity measures among non-low-skilled workers.

average of ĪT it within 2-digit industry, with weights corresponding to employment shares:

ĨT Ist =
∑
i∈I

Eist

EIst

ĪT it (4)

The resulting ĨT Ist is a measure of the technological-intensity of industrial composition,

where technology use is fixed to mechanically shut off changes in the choice of input mix

within 3-digit industries (because ĪT it is used). Variation in ĨT Ist comes only from variation

in economic activity in the form of observable differences in industrial composition.

In Table 5, I use this industrial composition measure in an adaptation of my primary

specification:

ĨT Ist = αst + δIt + Z ′Istγ + β̃(ComplementarityIt ×MinWagest) + εIst (5)
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If higher minimum wage states naturally had a less IT-intensive composition of production

within 3-digit industries (and especially for high complementarity industries) then this would

bias β (from equation (2)) to be negative. This sort of unobserved heterogeneity within 3-

digit industries should be matched by observed heterogeneity within 2-digit industries: one

would expect high minimum wage states to have a less IT-intensive composition of 3-digit

industries (particularly for high complementarity 2-digit industries). In this case, β̃ should

be negative.

Table 5, replicating my main results in columns 1-4 of Table 3, shows this is not the case.

None of the estimated coefficients are significantly different from zero. All point estimates

are positive. Four of the five estimates are smaller in absolute value than their counterpart in

Table 3. Overall, there is no evidence that high complementarity 2-digit industries have less

IT-intensive economic activity (measured by 3-digit industrial composition) in high minimum

wage states. This casts doubt on an interpretation of my estimated β̂ that attributes it to

bias induced by differences in economic activity, and supports my interpretation that it

captures responses in the choice of input mix.

6 Conclusions

I have argued here that many of the transformative technologies implicated in the au-

tomation of middle-wage jobs do not fully eliminate the labor requirement. They entail only

partial automation, reducing the skills required of workers to perform particular tasks. As

a result, the cost of adopting labor-replacing technologies is not only that of the equipment

itself, but also of low-wage workers to use it.

Exploiting state variation in the minimum wage and industry variation in low-

skilled/technology complementarity, I have estimated one channel through which the min-

imum wage affects labor-replacing technology. Because of this complementarity, I estimate

that a $1 decrease in the minimum wage increases technology use in the average industry by

30% and decreases the routine share of the wage bill by 1 percentage point.

My identification strategy is, obviously, imperfect. I cannot fully rule out the possibility

that there is some unobserved state heterogeneity that biases my results. However, for this

bias to drive the results above, an omitted variable that increases technology use must satisfy

the following four criteria:

1. It must vary within narrowly defined industry, although Table B4 suggests that only 10-

20% of the observable variation in technology measures occurs within these industries.

2. It must disproportionately affect high complementarity industries (or it would be ab-

sorbed by the state-year fixed effect).
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3. This unobserved technology driving force must be negatively correlated with the min-

imum wage.

4. Any difference in the content of economic activity must be fundamentally different

at low levels of industry aggregation than at higher ones (because Table 5 finds no

evidence that observable industrial composition favors technology in high complemen-

tarity industries in low minimum wage states).

My results suggest that the minimum wage should be part of the ongoing conversation

about the labor market implications of technology change.51 Card and Dinardo (2006)

argue that a shortcoming of the technology-inequality literature is that it “has turned up

surprisingly few insights into appropriate policy responses.” Here, I identify one such policy

lever. In popular press, it is commonly argued that raising the minimum wage will help the

middle class (Holzer, 2015; Krugman, 2015), though the mechanism for this effect is often

vague and the existing literature finds that spillover effects are small (Autor, Manning, and

Smith, 2015). I identify a particular channel for that effect and suggest that the spillover

effects likely are not instantaneous. My results show that the choice of technology responds

to differences in the effective minimum wage which may have long-term implications for labor

demand and the wage structure.52

The pressures from ongoing technological advances are unlikely to relent anytime soon,

and there is no “silver bullet” in a policymaker’s arsenal. Like most policies, the minimum

wage has diverse and sometimes unforeseen effects. Nonetheless, I have argued here for a

new set of considerations in deciding the role of the minimum wage in labor policy.

51It is tempting to conduct a full welfare analysis based on the results developed here. I believe this is
premature. First, even without technology adoption effects, the minimum wage has a number of complicated
effects (Hirsch, Kaufman, and Zelenska, 2015). A complete welfare analysis would be sensitive to assumptions
regarding effects as diverse as the response of public programs (Boadway and Cuff, 2001), the incidence of
price effects (MaCurdy, 2015), the effects on employment volatility (Brochu and Green, 2013; Gittings and
Schmutte, 2014), the pace of structural transformation (Acemoglu, 2001), and the rate employer-provided
training (Acemoglu and Pischke, 1999). Even valuing seemingly straightforward effects such as hiring rates
for young workers (Meer and West, 2013) depends on whether markets for entry-level workers are efficient
(Pallais, 2014), whether learning from employment spells is public (Kahn, 2013; Schönberg, 2007), and the
non-market effects of youth employment (Gelber, Isen, and Kessler, 2014; Leos-Urbel, 2014). Even if one
were to focus solely on the minimum wage effects emphasized here, the welfare implications of slowing
technology adoption depend on the effects of technology on GDP and TFP growth (Graetz and Michaels,
2015), how declining labor demand affects public program dependency (Autor et al., 2013, 2014), and how
inequality relates to geographic sorting and local amenities (Diamond, 2015). A full welfare analysis would
be a complex ordeal that would depend on critical assumptions, with little transparency or discipline in its
execution.

52In this way, my emphasis is similar to Sorkin (2015), who shows that slow technology responses can
lead to large differences between the short- and long-run effects of the minimum wage.
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A Data Appendix

A.1 Basic data setup

Here I discuss the key data sources:

1. CPS ORG (Feenberg and Roth, 2007)

2. CPS CUS

3. Minimum wage data (Meer and West, 2013)

4. Census data (Ruggles et al., 2010)

5. DOT

6. BEA capital stock data

I also discuss issues in occupation and industry codes, and how various years were mapped

to one another.

A.1.1 CPS ORG

The foundational data for the analyses above is the NBER extracts of the CPS ORG. I

restrict the sample to those age 16-64 who are employed for pay in the private sector. For

workers paid by the hour, I use the reported hourly wage. For other workers, I use usual

weekly earnings divided by usual hours worked per week if available and hours worked last

week otherwise. I never use allocated earnings variables. Wages are converted to real terms

using the methods described in Section B.1.3. All calculations are based on the included

earnings weights.

Because I am interested in low-wage workers, I do not drop or Winsorize low wages as is

sometimes done with the CPS ORG. For my purposes, wages are primarily important only

for determining whether workers are above or below the $9.50 latent wage cutoff.

To define workers with less than a high school education, prior to 1992, I use those whose

highest grade attempted was less than 12 or who did not complete grade 12. For 1992

and afterward, “less than high school eductaion” also includes those who did highest grade

completed was grade 12, but who do not have a diploma. It does not include those with

a GED. This means that a GED holder who completed only 11th grade will be “less than

high school” before 1992, but not after. Conversely, someone who completed 12th grade but

without the credits necessary to receive a high school diploma will be “less than high school”

after 1992, but not before. Since my identification strategy is entirely cross sectional, this is

unlikely to be an issue.
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A.1.2 CPS CUS

I use the Computer Use Supplements (CUS) for 1984, 1989, 1993, 1997, 2001, and 2003,

obtained from ICPSR. The CUS has been conducted since 2003, but has not asked about

computer use at work. I use the question “Do you directly use a computer at work?” See

Krueger (1993) for a discussion of the CUS design. The specific question I use has not

changed since.

To calculate computer use among workers with less than a high school education, I use

full CUS sample that is employed in the private sector and the same education variables

described above for the ORG. To calculate computer use among low-wage workers, I need to

merge the CUS with the ORG, since wage data is not included in the CUS. Unfortunately,

only one fourth of the CUS sample is expected to appear in the ORG, since the ORG is only

conducted among respondents in their fourth or eighth wave of CPS interviews.53

To address this issue, I perform out-of-sample merging between the CUS and the ORG. I

merge each CUS with the nearest ORG response if all individual identifiers and the industry

of employment are unchanged. In other words, if an individual has their first interview in

October 1989, I merge their October 1989 computer use response with their January 1990

wage response if they report the same industry in both surveys.54 Because the merged wages

and computer use responses are never more than three months apart, this is unlikely to

induce much bias and it more than doubles the sample size.55

A.1.3 Other data

I use minimum wage data from Meer and West (2013), publicly available from Jonathan

Meer’s website. It is worth noting that Meer and West (2013) highlight several important

limitations of previously used minimum wage datasets and take great care to provide a de-

tailed monthly series. In aggregating to yearly data, I take a simple average of the minimum

53This issue is not addressed by Krueger (1993) because it is less important for the analyses therein. He
is interested in whether wages are increasing in computer use after controlling for other observables. Thus,
the full sample of wage earners is relevant and using only the ORG sample interviewed in October still leaves
him with around 13,000 respondents per year. Sample size issues are more concerning for my analyses for
two reasons. First, I focus specifically on usage by low-wage workers, which is obviously a minority of all
wage earners. Second, I am interested in calculating industry-level averages for precise industries. This puts
more strain on the data than documenting the relationship between wages and computer use, and so sample
size constraints are more important.

54I only merge wave 4 wages with computer use from waves 1-4, and only merge wave 8 wages with
computer use from waves 5-8. This is because there are eight months between wave 4 and wave 5. I never
merge across this large gap.

55The CPS redesigns make it impossible to do some out-of-sample merging. For instance, respondents
to the October, 1993 CUS were not administered the ORG until January, 1994, and the 1994 redesign
changed the individual identifiers, making it impossible to merge October 1993 respondents with January
1994 respondents.
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wage in effect during each month. Wages are converted to real terms using the methods

described in Section B.1.3.

Census data, used in calculating IT labor and the change in routine employment share (for

Figure 3 only), is from the Integrated Public Use Microdata Series (IPUMS) (Ruggles et al.,

2010). I use the 5% PUMS for 1980, 1990, and 2000, and the 2005 American Community

Survey (ACS). I define IT occupations as explained in the text and Section B.2.1 below,

and calculate share share of respondents in the industry-state-year who are employed in

an IT occupation, using person weights to calculate shares. Using the same weights, I also

calculate the total share of wage and salary income reported by respondents holding a routine

occupation.

I use the Dictionary of Occupational Titles obtained from Inter-University Consortium

for Political and Social Research (ICPSR) as Study 7845 (originally published in 1977). For

each occupation code (defined by 1970 Census codes), I calculate the fraction of respondents

who report at least one of the three activities listed in the text (the DOT allows respondents

to report up to four activities; I do not take into account the order in which activities are

listed). I define this share of the DOT-based measure of complementarity. Note that this, as

a share, is a cardinal and continuous measure. For Autor-Dorn occupation codes that have no

matching 1970 Census code, I impute complementarity as an employment-weighted average

of complementarity among other occupations within the same two-digit code (two-digit codes

are available in the Appendix of Autor and Dorn (2013)).

To validate IT labor as a proxy, as well as for some calculations for Figure 3, I use the

BEA’s capital stock data, which includes PC capital (along with a chained price index to

convert to real) for 56 industries from 1982 onward. Industry codes roughly correspond

to two digit NAICS industries (with some more detail in, for instance, the manufacturing

sector). To combine with labor data, I create a crosswalk between these codes and the

Autor-Dorn-Hanson codes based on the ACS from 2003-2012 (also obtained from IPUMS),

where many respondents are co-classified according to Census industry codes and NAICS.

This works well because the industry codes in the BEA data are so coarse anyway, but would

not work well for detailed NAICS codes.

A.1.4 Final years

Not all datasets are available for the same years. In particular, the CUS is not conducted

in the same years as the census. Because IT labor is a small share of the total economy, and

my identification strategy relies on relatively precise industry codes and separate technology

measures for different states, the CPS is not a viable alternative to the Census (even the

ACS is considerably noisier than the decennial Censuses). Table A1 shows how years were
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combined in the final analysis data.

Table A1: Years used for data construction

IT labor year Minimum wage year CUS years DOT years
1980 1980 1984 1980-1984
1990 1990 1989, 1993 1989-1993
2000 2000 1997, 2001 1997-2001
2005 2005 2003 2002-2006

A.2 Sample selection

The Autor-Dorn-Hanson (ADH) industry codes include 205 private sector industries.

With 51 states and four years, the potential sample size is 41,820. Here, I describe how

I arrive at my main estimation sample. Table A2 presents the effects of each step of this

selection process.

Not all industries are observed in all states. The set of industry-state-years with at

least one Census respondent is 40,059. Based on the validation exercises above, I drop

industries for which IT employment is a bad proxy for either IT spending or IT capital. These

include (with ADH codes) telecommunications (440-442), computer and data processing

services (732), and manufacturing of computers and related equipment (322) or machinery

not specified (332). These are industries where minimum wage effects on IT labor likely do

not reflect automation technology adoption, the underlying process in which I am interested.

Next, I drop industry-state-years with fewer than 30 Census respondents. One inter-

pretation would be that these are very small industry-state-years and that any reasonable

weighting scheme would nearly exclude them anyway. An alternative interpretation is that

these are industry coding errors. As shown in Table A2, this is the most binding restriction.

Table A2: Effects of sample selection criteria

Criteria Industry-state-years Industries
Potential 41,820 205
Positive Census emp. 40,059 205
Drop ind. where IT labor is poor proxy 39,042 200
At least 30 Census respondents 26,894 200
Non-missing on all compl. measures 24,991 196
Too large industry-state-years 24,923 196
At least 10 complementarity respondents 14,152 109
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It drops over 12,000 industry-state-years, though no industries are entirely dropped. This

is not unreasonable. Industries are not uniformly distributed across the country. Many are

only minimally present in certain states, particularly states with low population or popula-

tion density. The fact that around two thirds of potential industry-state-year cells are filled

with non-trivial employment is actually surprising.

Next, I restrict to the sample which is non-missing for each of the four complementarity

measures described in the text. This implicitly drops industries with no employment of less

than high school workers and no low-wage workers.

Next, I drop industry-state-years in which a single state accounts for more than 20% of

national industry employment. The identification assumption is that industry level produc-

tion processes do not respond to policy changes in a particular state (this is required for

industry-state-years in the same industry with different minimum wages to be valid counter-

factuals for one another). If a single state accounts for a large share of industry employment,

this assumption may not be satisfied. This drops a trivial number of industry-state-years

(68), which are mostly readily understandable examples (e.g., the motion picture industry

in California).

This comprises the sample used for robustness in Table B8. My preferred estimation

sample, however, makes one additional restriction. I restrict to the sample with at least 10

respondents available on which to base the four complementarity measures. This reduces the

sample by 10,000 industry-state-years (though again, the main results are robust to a broader

sample), mostly from 2005 and 1980, since there is only one wave of the CUS available for

those years (see Section A.1.4).

This restriction has two benefits. First, it reduces measurement error in the comple-

mentarity variables, which are already fraught with it. Second, it disproportionately drops

industries with few low-skilled workers. My identification strategy includes a number of

controls (including state-year effects), which capture the ways in which different types of

industries might experience heterogeneous state level forces that affect technology adop-

tion (e.g., state education systems) and may be correlated with the minimum wage (the

state-year fixed effect captures forces that are constant for all industries). The industries

driving the results are those with non-trivial shares of low-skilled workers. Thus, if I do

not allow enough flexibility in how I control for other cross-state forces, I might be con-

cerned that the coefficients on my “control” variables do not adequately “control” for the

way high-complementarity industries respond. Restricting to industries with non-trivial low-

skilled labor shares implictly allows for every coefficient (and the state-year fixed effects) to

take different values for industries with and without significant low-skilled labor (since this

flexibility would lead identification of the coefficients of interest to be entirely driven by the
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industries with low-skilled labor), giving the specification additional flexibility and providing

extra assurance that the estimated effects are causal.

In other words, the state-year fixed effect accounts for any force that affects all industries

equally. From an identification standpoint, reducing the estimation sample is equivalent to

allowing the state-year fixed effects to take different values for industries with and without

low-skilled labor. It reduces sample size and precision, but with the benefit of making weaker

identifying assumptions. The results suggest that the remaining precision is adequate. Table

B8 shows that the results are robust to including the observations dropped in the last step.

A.3 DOT Work Fields

Table A3 presents the full set of potential work fields available in the DOT. For more

information, see U.S. Department of Labor (1972), or Appendix I of ICPSR Study 7845,

which offers the following summary “The Work Fields, as listed below, have been organized

into groups on the basis of similar technology, or overall socioeconomic objective.” Codes

used in this paper are denoted in bold.

Table A3: DOT Work Fields

Work Field Description

Hunting-Fishing

Logging

Cropping

Mining-Quarrying-Earth Boring

Blasting

Gardening

Securing, producing, or cultivating raw materials, products,

or animals (livestock or game) on or below the surface of the

earth; usually outdoor work

Loading-Moving

Hoisting-Conveying

Transporting

Pumping

Moving materials (in solid, liquid, or gaseous form) or people,

by hand and/or machine power

Stationary Engineering Producing and/or distributing heat, power, or conditioned air

Cleaning

Ironing

Lubricating

Butchering

Cleaning and maintainence work

Filling

Packing

Wrapping

Packing materials or products for distribution or storage

Abrading

Chipping

Boring

Shearing-Shaving

Milling-Turning-Planting

Sawing

Machining

Working with machines and/or other handtools to cut or

shape wood, metal, plastics, or other materials, or objects

made from these materials. Can also involve assembly of ob-

jects.
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Table A3: DOT Work Fields

Work Field Description

Fitting-Placing

Folding-Fastening

Gluing

Assembling materials, usually light

Bolting-Screwing

Nailing

Riveting

Assembling part or materials, usually of metal, wood, or plas-

tics, by means of screws, nails, or rivets

Welding

Flame Cutting-Arc Cutting

Soldering

Bonding or cutting materials by means of a gas flame, electric

arc, combination welding process, or soldering

Masoning

Laying

Troweling

Calking

Working with brick, cement, mortar, stone, or other building

materials (other than wood) to build or repair structures, or

to assemble structural parts.

Upholstering

Structural Fabricating-Installing-Repairing

Electrical Fabricating-Installing-Repairing

Electronic Fabricating-Installing-Repairing

Mechanical Fabircating-Installing-Repairing

Electro-Mechanical Fabricating-Installing-Repairing

All-round fabricating, installing, and/or repairing of interior

fittings; structures; and electrical, electronic, and mechanical

units. Involves combinations of other Work Fields.

Melting

Casting

Heat conditioning

Pressing-Forging

Die sizing

Molding

Compounding, melting, heat conditioning, and shaping metal

and plastics, by any method in which heat is a factor

Baking-Drying

Crushing

Mixing

Distilling

Filtering-Straining-Separating

Cooking-Food preparing

Processing-Compounding

Processing various materials, in sold, fluid, semi-fluid, or

gaseous states, during production process or to prepare for

distribution

Immersing-Coating

Saturating

Brushing-Spraying

Electroplanting

Coating or impregnating materials and products to impart

decorative or protective finish or other specific quality, as de-

scribed under separate Work Field sections.

Combing-Napping

Spinning

Winding

Weaving

Knitting

Processing fibers from thread to fabric

Sewing-Tailoring
Joining, mending, or fastening materials with needle and

thread and fitting and adjusting parts

Eroding

Etching

Engraving

Cutting designs or letters into materials or products by sand-

blasting (eroding), applying acids (etching), or action of sharp

pointed tools (engraving)

Printing

Imprinting

Transferring letters or designs onto paper or other materials,

by use of ink or pressure, includes setting type and preparing

plates.

Photographing

Developing-Printing
Taking pictures and developing and processing film

Appraising

Weighing

Evaluating or estimating the quality, quantity, or value of

things or data; ascertaining the weight of materials or objects
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Table A3: DOT Work Fields

Work Field Description

Stock checking
Receiving, storing, issuing, shipping, requisitioning,

and accounting for stores of materials

Recording

Accounting-Recording

Preparing and maintaining verbal and/or numerical

records

Laying out

Drafting

Surveying

Engineering

Plotting, tracing, or drawing diagrams and other directive

graphic information for use in design or production; designing

and constructing machinery; structures, or systems

Research

Controlled exploration of fundamental areas of knowledge, by

means of critical and exhaustive investigation and experimen-

tation
Writing

Painting

Composing

Styling

Creative work

Investigating

Litigating

Dealing with people to gather information to carry out busi-

ness or legal procedures

System communicating

Information-Giving

Provides, or efects the transmission of, information to

other persons, indirectly (by electrical or electronic

media) or directly (by voice or written statement)

Accomodating

Merchandising

Protecting

Healing-Caring

Administering

Teaching

Entertaining

Undertaking

Dealing with people to provide services of various types

B Results Appendix

B.1 Descriptive analyses

B.1.1 Industry and occupation codes: Consistency and characteristics

Much of this analysis is based on occupation codes from Autor and Dorn (2013) and

industry codes from Autor, Dorn, and Hanson (2013) both obtained from David Dorn’s

website.56 Figure B1 shows job polarization using data on these occupations. Occupations

are classified into quintiles by their 1990 average wage, and the figure displays the average

change in employment shares and real wages from 1990-2005. During this period, the average

occupation from the lowest or highest two quintiles increased its employment share by 4-5%,

56I thank David Dorn for his transparency and for making so many valuable resources publicly available.
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while occupations in the 20th-60th percentiles shrank. Further, these shrinking occupations

have seen relatively stagnant wage growth, contributing to the “hollowing out” of the wage

distribution.

Figure B1: Labor market changes by 1990 occupational wage quintile
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Source: Author’s calculations based on data from Autor and Dorn (2013). Figure is based on 330 consistently
defined occupations and wages and employment shares drawn from the 1990 Census and the 2005 American
Community Survey. Quintiles are weighted by 1990 employment share so that each quintile represents
approximately 20% of 1990 employment. Average wage and employment changes are also weighted by 1990
employment.

Figure B1 helps explain why recent research on wage inequality has decisively shifted

attention towards market forces. Wage growth in the bottom quintile has far outpaced

changes in the minimum wage, and while deunionization might slow wage growth in middle-

wage occupations, it is not obvious how it could explain declining employment. The similar

patterns in wage and employment changes in Figure B1 suggest the importance of labor

demand and recent research has focused on the decline in demand for middle-wage workers.

Although the Autor-Dorn and Autor-Dorn-Hanson codes create a balanced panel, there

are still inconsistencies when the census changes coding schemes.

One way to illustrate this problem is as follows. For each occupation or industry i, I

calculate the change in estimated employment share from year t − 1 to t (EmpShareit −
EmpShareit−1). For each year, I then calculate the standard deviation of this one-year

employment share change across all occupations or industries. This measure of the annual

“dispersion” of employment growth is plotted in Figure B2.

The figure exhibits clear spikes, when the dispersion of employment growth increases by
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Figure B2: Evidence of inconsistencies in occupation and industry codes

0
.0

0
0

5
.0

0
1

.0
0

1
5

.0
0

2
S

ta
n

d
a

rd
 d

e
v
ia

ti
o

n

1980 1985 1990 1995 2000 2005 2010
Year

SD of change in industry employment share

SD of change in occupation employment share
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Autor-Dorn-Hanson industry codes.

100-350% over its normal level, in 1983, 1992, and 2003 (all years during which the CPS

changed its coding scheme). This implies that there are large breaks in the series; when

the CPS codes are revised, many occupations and industries experience implausible shifts in

their employment shares.

Shim and Yang (2013) and Smith (2013) have excellent discussions of the challenges in

creating consistent occupational codes over time. Unfortunately, the solutions developed

there (probabilistic crosswalks between different coding schemes) do not readily lend them-

selves to my application and the Autor-Dorn occupation and Autor-Dorn-Hanson industry

codes remain the best available.

B.1.2 Computer use and wages

It is useful to consider how computer use relates to wages, and how this relationship

has changed over time. The solid line of Figure B3 shows the use of computers across

the wage distribution from 1984-2003 (along with the DOT complementarity measure as a

dashed line). As emphasized by Krueger (1993), computer use clearly increases across the

wage distribution. However, computer use among low-wage workers is not trivial, and it has

increased appreciably over time. In 1984, only 5-10% of workers earning less than $10 per

hour (about the 25th percentile of wages) used a computer. By 2003, this had increased to

20-30%.
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Figure B3: Computer complementarity across the wage distribution
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Source: Author’s calculations based on CPS ORG. As described below, nominal minimum wages are con-
verted to real using both the Current Population Index and cross-state price deflators. Figures used in the
plot correspond to 2014 national dollars, rounded to integers for graphical purposes. See text for description
of CPS and DOT measures of complementarity.

B.1.3 Real wages

The Meer and West (2013) minimum wage data and ORG wage data are both in nominal

terms. I convert them to real terms in two steps. First, the BLS publishes regional consumer

price indices (CPI’s) for four regions. These indices capture differences in inflation across

the regions, though they are not designed for comparison across regions. I use these CPI’s

to put all figures in 2014 dollars. In practice, the effects of using a regional CPI rather than

the national are trivial. Regional variation in inflation is tiny.

The second step is far more consequential. I use BEA estimates of Regional Price Parities

(RPPs), state level price indices that are explicitly desgined to compare prices across states

(Aten and D’Souza, 2008). The RPPs are, essentially, only available for a single point in

time (2005-2006). I use the 2005 state price index to convert all wages (the minimum wages

and the wages paid to workers) to national dollars.

The effects of this approach are shown in Figure B4. Using both sets of price indices does

slightly increase the standard deviation of the minimum wage, but much more important

than its effect on the level of variation is its effect on the sources of variation. Two particular

features of Figure B4 are useful to illustrate this point.

First, note the highlighted and labels state-years. The clearly separated line at the top

of the figure is West Virginia. Like many states, West Virginia is often bound by the federal

minimum wage. But prices are very low in West Virginia. The BEA estimates, for instance,
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Figure B4: Real minimum wage with and without state level price adjustments
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Figure plots the real minimum wage adjusted by state and time price indices (that used in the analysis)
against the real minimum wage adjusted by the time price index only.

that the price level is more than a third lower than that of Virginia, another state often

bound by the federal minimum wage. Using the national CPI alone makes it seem as though

West Virginia has a quite typical minimum wage, but its low prices mean that the federal

minimum wage actually exerts much more extreme pressure than elsewhere. Conversely, the

District of Columbia and Alaska often have very high minimum wages. Yet these states are

very expensive. Accounting for the different price levels adjusts the observed real minimum

wage to be closely aligned with that of other states (they are outliers on the x-axis, not on

the y-axis). Their high minimum wages are far less extreme. Thus, the advantage of the

RPPs is not so much to increase overall variation in the real minimum wage, but to adjust

that variation to more meaningfully reflect the underlying economic forces.

The second important advantage of the RPPs is shown by the series of perfectly vertical

dots. These correspond to the federal minimum wage. Because my identification strategy is

purely cross-sectional, using only the national CPI (or the minimally varying regional CPIs)

to adjust for inflation would leave me with no usable identifying variation within the large

set of states bound by the federal minimum wage. However, because these states have very

different price levels, the RPP allows for meaningful variation for comparing across different

states with the same nominal minimum wage at the same time. This is seen in the graph as

the spread along the y-axis of points with the same value on the x-axis.

Because this paper focuses on firm decisions, state price indices are appropriate to use

if and only if they represent the factor prices facing firms. To assess how reasonable this
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assumption is, I estimated the following regression using only workers in routine occupations

in the 1980-2006 ORG:

lnwn
it = αs(i) + γo(i) + δt +X ′itβ + εit (6)

where lnwn
it is the log nominal wage of individual i in year t, Xit is a vector of individual

characteristics,57 the δt are year fixed effects accounting for inflation, the γo(i) are occupation

dummies to further reduce unobserved between individual heterogeneity, and the αs(i) are

state fixed effects.

Under the strong assumption that all cross-state heterogeneity is absorbed by γo(i) and

Xit, then the estimated αs(i) series corresponds to the state level price indices specific to

routine employment. This strong assumption is surely violated (e.g., education quality differs

across states), yet it provides a useful αs(i) series for a rough assessment of how well the BEA

RPPs capture the relevant factor prices. Figure B5 plots these state fixed effects against the

RPPs. An OLS regression yields an R2 of .73; the series are clearly highly correlated. This

suggests that the variation captured in the BEA RPPs is captures labor price variation that

is meaningful for firm decisions.

Figure B5: Routine labor prices and state price indices
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Figure plots the estimates state fixed effects (the αs(i) series) from equation (6) against the BEA’s state
price indices (or RPPs) described above (Aten and D’Souza, 2008). In estimating equation (6), the sample
is restricted to routine workers since, for the purposes of this paper, this is the most relevant factor price
facing firms.

57These include years of education, sex, indicators for Black and White race, age, age squared, and marital
status.
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B.1.4 Latent wages

To estimate the complementarity between low-wage workers and technology, I first iden-

tify “low-wage” workers in an industry and then calculate either the DOT-based or the

CUS-based complementarity measure among them. The most obvious way to do this is to

define all workers with wage below some w̄ as low-wage. As discussed in the text, however,

since the minimum wage affects the wage distribution (potentially pushing some workers

above w̄) this approach would induce measurement error in the composition of low-wage

workers in an industry that is a function of the minimum wage in the states in which the

industry is located. To mitigate this issue, I use latent wages that (ideally) purge the wage

distribution of the effects of the minimum wage.

I follow the approach developed in Autor, Manning, and Smith (2010) to estimate the

latent wage. Five assumptions are important:

1. The latent wage distribution (that which would occur in the absence of a minimum

wage) is log-normal, at least for wages below the 75th percentile.58

2. The parameters (mean µst and standard deviation σst) of a particular state’s wage

distribution may vary over time, but only linearly.

3. The minimum wage has no effects on above-median wages.

4. The minimum wage has small, if any, employment effects.

5. The wage effects of the minimum wage decline as wages are further from the minimum.

The first two assumptions puts sufficient structure on the latent wage distribution that

it could be estimated with a sample of unaffected workers. The third assumption (which

finds empirical supported in the reduced form results in Autor, Manning, and Smith (2010,

2015)), combined with the first, states that workers from the 50th to the 75th can be used

to estimate this distribution. And the last two assumptions imply that, given estimates of

the parameters of the latent wage distribution, a worker’s percentile in the observed wage

distribution can be used to create a unique mapping to their latent wage.

Consider a set of workers indexed by j, observed in state s at time t. Let p(j) be j’s

percentile in the state-year wage distribution and consider the sample such that .5 ≤ p(j) ≤
.75, which can be used to estimate:

lnwjst = αs + δst+ βszp(j)st + γszp(j)stt+ νjst (7)

where zp(j)st is the z-score corresponding to p(j) in the standard normal distribution.

The results of equation 7 can then be used to calculate the underlying parameters µst

58Autor et al. (2010) note that very high wages have much thicker tails than the normal distribution
would imply.
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and σst of the latent wage distribution because:

µst = αs + δst (8)

σst = βs + γst (9)

Because they show that the minimum wage has no effect on above-median wages, they

use workers who’s wage is between the 50th and the 75th percentiles of the state-year wage

distribution to estimate Equation 7. With the parameters of the latent wage distribution

known, there is a one-to-one mapping of an individual’s percentile in the state-year wage

distribution (observed) to that individual’s latent wage.

The intuition for the latent wage method is given by Figure B6 which plots the observed

and latent wage distributions for Virginia and Washington. Because these states have simi-

lar observed wages between the 50th and 75th percentiles, they are estimated to have similar

latent wages, shown in dashed lines. However, in 2006, the last year before the most re-

cent wave of federal minimum wage increases, they had very different minimum wages, with

Washington’s set about 45% higher than Virginia’s (the vertical lines). As such, Washing-

ton’s observed wage distribution is much more compressed in the $9-$11 region, just above

Washington’s minimum wage ($8.60). This compression, if ignored, would lead me to under-

count low-wage workers in Washington relative to Virginia because more would be pushed

just over the $9.50 threshold.59

Further results are shown in Figure B7, which plots the “direct” and “total” effect of the

minimum wage, on average, across different values of the latent wage.

The direct effect is the difference between the minimum wage in effect and the estimated

latent wage (if this difference is positive), and the total effect is the difference between the

observed wage and the latent wage. The figure shows the minimum wage spillover effects.

For individuals with a latent wage as low as $4, the minimum wage raises wages by an

average of $1.75, which is entirely due to the direct effects. However, as the latent wage

increases to the $7-$9 range, spillovers (the total effect which is in excess of the direct effect)

become more substantial. For an individual with an $8 latent wage, the direct effects are

only about 25 cents, but the total effect is three times this (and a 10% increase in the wage).

These effects are not huge, consistent with the rough calculations presented in the Theory

Section, but they are not trivial either. Importantly, the slope of the wage percentile curve

is steep in this region, suggesting that a significant mass of workers are near an $8 hourly

59An alternative approach would be to define a certain percentile of the wage distribution to be low-
skilled, say the bottom 20%. While less parametric, fixing the low-skilled employment share to be constant
across states shuts off quality differences in state education, for instance, or any other factor that drives
between-state skill differences.
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Figure B6: Observed, latent, and minimum wages in two states
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The figure shows observed real wages and estimated nominal wages for Virginia and Washington in 2006.
The vertical bar shows the effective real minimum wage. In Virginia, this was $5.97 ($5.15 in nominal terms);
in Washington it was $8.60 ($7.63 in nominal terms).

Figure B7: Minimum wage effects across latent wages
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Figure displays the observed wage (and percentile) and minimum wage, both minus the estimated latent
wage, across the latent wage. Latent wages are rounded to fifty cents for graphical purposes. All dollars
correspond to national 2014 dollars (see Section B.1.3).
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wage. The calculations underlying Figure B7 are the basis for my choice of $9.50 as the

cutoff latent wage to identify “low-wage” workers. Based on the average total effects, by

latent wage with latent wages rounded to 10 cents (rather than 50, as used in the figure), the

minimum wage effects at $9.50 amount to about 5% of the latent wage, before continuous

to decline monotonically.

B.2 Validation exercises and identification tests

B.2.1 IT labor as a proxy for technology

The identification strategy requires technology data at the industry-state level for precise

industry codes. The precision of industry codes is important because the identification

assumption that firms in the same industry but different states are only valid counterfactuals

for each other will only be met if industries are defined narrowly enough. Much previous

work has used Bureau of Economic Analysis (BEA) capital accounts data, but this data is

not available at the state level. While the BEA publishes some industry-state level data,

such as GDP and total compensation, none of the measures are ideal and the data is available

only for coarse industry codes. Moreover, like the Harte-Hanks data use in some previous

work examining geographic variation in technology adoption (Autor and Dorn, 2013; Beaudry

et al., 2010), the BEA data is based on NAICS/SIC industry codes. 60 However, my measures

of complementarity are based on labor data (either the CPS Computer Use Supplement or

DOT variables for census occupation codes), where industries are coded using census industry

codes. Thus, if technology is measured for NAICS/SIC industries, I would need a crosswalk

to census industries, and these crosswalks require significant aggregation of industries. Using

labor data to solves this problem.

I choose three occupations based on Autor-Dorn occupation codes to classify IT workers:

computer scientists, computer software developers, and repairers of data processing equip-

ment. Table B1 shows these occupations, their years of education, and their location in the

state-year wage distribution. Even the least-educated, lowest-paid occupation (repairers)

are well-education and well-paid. Median years of education is 14 and 95% are above the

28th percentile of the wage distribution (recall that I estimate around 20% of workers to be

significantly affected by the minimum wage). The other two occupations (which account

for nearly 90% of IT workers) are even better educated and more highly paid. Thus, it is

unlikely that employment in these occupations is “directly” affected by the minimum wage.

Rather, changes in IT employment likely reflect changes in technology use.

60Caselli and Coleman (2001) use imports of computer technology to measure adoption. US import data
is only available at the industry-state level since 2005, and is also based on NAICS/SIC codes.
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Table B1: Wages and education of IT workers

CS Develop. Repairer
Wage percentile

5th .462 .410 .280
25th .753 .717 .559
50th .874 .850 .731
75th .939 .925 .852

Yrs. education
5th 12 12 12
25th 14 14 12
50th 16 16 14
75th 18 18 15

Share .505 .382 .113

As described in the text, survey results conducted by the technology magazine Informa-

tionWeek (2006) suggest that salaries and benefits comprise the largest share of IT budgets,

more than twice the size of equipment. The article also reports, for 21 industries, the median

respondents’ IT budget as a share of revenue for 2002-2006. I use the ACS to calculate IT

labor share for these broad industry aggregates. Figure B8 shows that reported IT budget

shares are highly correlated with IT labor shares. Excluding outliers or accounting for year

effects makes this correlation even stronger.

The biggest limitations of the IT budget data are that it is based on extremely coarse

industry aggregates and that it is based on survey data without well-understood representa-

tiveness of businesses (though as mentioned in the text, it is certainly a sample of interest).

To augment this exercise, I combine industry level IT labor shares from the CPS with

the BEA’s data on PC capital stock (in real terms) for 56 industries from 1982 to 2006.61

Initial inspection of the data showed that there were three industries in which the correla-

tion was particularly and unacceptably bad. Both “Computer systems design and related

services” and “Information and data processing services” were clear outliers in IT labor

share, unsurprisingly. “Computer and electronics manufacturing” was a clear outlier in IT

capital. These industries are excluded from both this validation exercise and from the main

estimation sample (see Section A.2.

Table B2 presents the correlation with PC capital per worker and IT labor share. Column

(1) shows that the two are highly correlated. IT labor share explains 21% of the variation in

PC’s per worker. Including year effects in column (2), the R2 rises and the coefficient on IT

labor share remains large and statistically significant (t = 2.93). Because the identification

61Results for broader definitions of IT capital are similar. In recent decades, the PC’s share of total IT
capital has grown to 70%.
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Figure B8: IT budgets and IT labor
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IT labor from American Community Survey (ACS). IT budgets from InformationWeek. Figure based on
19 broad industries from 2002-2006. I exclude two industries reported in the original InformationWeek
data: “Consumer Goods” (which has no clear analog in either the Census or NAICS industry codes in
the ACS) and “Information Technology” (a clear outlier with IT labor share of over 50%). Abbreviations
“B&F,” “El. Man.,” and “Tel.” stand for Banking and Financial Services, Electronics Manufacturing, and
Telecommunications, respectively. Excluding Electronics manufacturing and Telecommunications raises the
R2 to .453. These outlier industries are excluded from the main estimation sample; see Section A.2 for a
discussion.

strategy exploits cross-sectional variation only, this is the correlation of interest. Nonetheless,

in the interests of completeness, column (3) includes industry effects and column (4) includes

both industry and year effects. It is encouraging that the correlation in column (4) remains

so strong (t = 2.41), suggesting that IT labor and computer capital increase together as

industries become more technology intensive. Of course, as discussed above, there are many

reasons to think that IT labor is a better measure than computer capital of technology

upgrading, in its own right. Nonetheless, these validations are encouraging.

Panel A of Table B2, based on the levels of PC’s per employment and IT labor share is the

appropriate validation exercise because the actual analysis uses IT labor share in levels and

because the PC capital has numerous zeros (IT labor also has a few), which are informative

about the extensive margin of technology adoption. Nonetheless, the magnitudes are difficult

to interpret. Thus, Panel B presents the same specifications based on the logs of IT labor

and PC capital.

The coefficients in Panel B correspond to the elasticity of computer capital with respect

to IT labor, evaluated at the intensive margin (PCk
it > 0). Column (1) shows this elasticity is

statistically indistinguishable from 1. This estimate is based on both cross-industry variation
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Table B2: Correlation between IT labor share and PC’s per worker

(1) (2) (3) (4)
DV : PC’s per 100,000 employment
IT labor share 0.583*** 0.407*** 1.007*** 0.537**

(0.143) (0.139) (0.215) (0.223)
N 1431 1431 1431 1431
R2 0.213 0.468 0.409 0.608
DV : ln(PC’s per 100,000 employment)
ln(IT labor share) 1.094*** 0.631*** 2.120*** -0.007

(0.094) (0.074) (0.222) (0.044)
N 1191 1191 1191 1191
R2 0.238 0.880 0.384 0.965
Year FE Yes Yes
Ind. FE Yes Yes

* p < .10, ** p < .05, *** p < .01. Standard errors clustered at
the industry level (n = 53) are shown in parentheses.

and general time trends. Column (2) includes year effects. While the elasticity falls (to .631)

it remains large and highly significant (t = 8.53). This demonstrates IT labor is a useful

proxy to understand the cross-sectional variation in technology adoption. Figure B9 presents

this specification in graphical form, plotting residual log PC’s per worker against residual

log IT labor share (both net of year effects). The correlation is not driven by outliers.62 My

empirical strategy assumes that this high cross-industry correlation implies an equally high

cross-state correlation. Columns (3) includes industry effects. The results are consistent

with Panel A. Column (4) includes industry and year effects. The coefficient on log IT

labor share drops to zero. The discrepancy between Panels A and B suggests that much

of the information content in IT labor is about the extensive margin of computer capital

purchases. I reiterate that the identification strategy is purely cross-sectional, since it is

based on industry-year and state-year fixed effects, so column (4) should not cause concern.

The cross-industry correlation shown in Table B2 and Figure B9 is necessary but not

sufficient to validate my use of IT labor as a proxy for technology because it does not establish

whether IT workers are located where the PC capital is. Consider a multi-establishment firm

that operates in multiple states. It may make technology use decisions for each establishment

based on the factor prices in that state, and it may acquire PC capital for the establishments

where it chooses more technology-intensive production processes, but it the IT workers to

support those processes may be entirely concentrated in the firm’s headquarters, rather than

62I choose this plot because the log transformation is useful in separating out the small numbers, and
because the clustering of multiple industry-years at zero is graphically unhelpful.
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Figure B9: Cross-industry variation in PC’s and IT labor
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Figure displays residual log computer capital and IT labor, both net of year effects. These results correspond
to column (2) of Panel B of Table B2.

the technology-intensive establishments’ states. There may be perfect correlation between IT

labor and PC capital at the industry level, but there may be no relationship in the geographic

variation, making it inappropriate to use IT labor to study geographic heterogeneity in

technology use.

To test this hypothesis, I use data from Autor and Dorn (2013). They use Harte-Hanks

survey data which measures PC’s per worker for many establishments at the Commuting

Zone (CZ) level. Following Beaudry et al. (2010), who use the same data at the MSA

level, they first regress PC’s per worker on a full set of dummies for industry by year by

establishment size. They then aggregate this adjusted measure of PC’s per worker over

establishments within a CZ. This is a purely geographic measure of PC intensity, adjusted

for variation in industrial composition.

I first take a population weighted mean of CZs within each state to produce an adjusted

state level measure of PC capital. I then create an adjusted state level measure of IT

labor by regressing my industry-state-year measure of IT labor share on industry-year fixed

effects, calculating residual IT labor share, and taking an employment weighted average

over all industries within a state-year. Like the Autor-Dorn PC capital measure (aggregated

to states), this is a purely geographic measure of IT labor share, adjusted for variation in

industrial composition.

Figure B10 shows that these state level measures are highly correlated. It plots both

series for the 48 states and 2 years (1990 and 2000) with non-missing PC measures in the
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Table B3: Correlation between IT labor share and PC’s per worker

DV: Residual IT labor (1) (2) (3) (4) (5) (6)

Residual PC’s per worker 4.418*** 4.081*** 4.142*** 3.818*** 4.753*** 4.348***
(0.722) (1.230) (0.886) (0.843) (1.373) (1.004)

N 48 48 96 48 48 96
R2 0.360 0.206 0.237 0.363 0.305 0.303
Weights None None None Pop. Pop. Pop.
Years 1990 2000 1990,

2000
1990 2000 1990,

2000

* p < .10, ** p < .05, *** p < .01. Robust standard errors shown in parentheses.

Autor-Dorn data. Within both years, there is a strong positive correlation. This is formalized

in the regressions displayed in Table B3.

Figure B10: Cross-state variation in PC’s and IT labor
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Figure displays residual PC’s per worker and IT labor share, adjusted for industry-year fixed effects, across
48 states for 1990 and 2000. PC data from Autor and Dorn (2013).

Importantly, the units of the measures are not easy to interpret because both correspond

to averages of residuals (after removing industry fixed effects). However, the coefficients are

quite consistent across the two years and significantly and robustly positive, particularly

after weighting by state population. Figure B10 and Table B3, along with the industry level

exercises above, confirm that IT labor is an excellent proxy for technology use.
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B.2.2 The degree of within-industry variation

Here I provide some support for my identification assumption. The identification as-

sumption is that the Autor-Dorn-Hanson (ADH) industry codes based on Census industry

codes are sufficiently precise that firms within the same industry are valid counterfactuals

for one another (i.e., engaged in sufficiently similar economic activity and facing the same

production possibilities frontier). This assumption is inherently difficult to test.

To gain some traction, I turn to the NBER-CES Manufacturing Industry Database

(MID), based on the Annual Survey of Manufacturing (Bartlesman and Gray, 1996). I

use the MID based on NAICS codes. The 6-digit codes in the MID are very precise, dividing

manufacturing into 473 industries (462 of which are available before the NAICS system was

adopted in 1997). These are much more precise than the ADH codes which have only 74

manufacturing industries. However, the 4-digit NAICS are very similar, with 86 manufac-

turing industries. One way to test how much variation exists within the ADH codes is to

test how much of the 6-digit variation (across 473 industries) occurs within 4-digit NAICS

codes (only 86 coarse industries).

To determine this, I estimate the following regressions:

lnYit = αIt + εit (10)

where Y is an industry characteristics relevant for technology and wage inequality (dis-

cussed below), t denotes year (1980-2005, like my main sample), i denotes 6-digit NAICS

code, and I denotes 4-digit NAICS code. Table B4 shows the R2 from these regressions

for four technology-relevant industry characteristics: Production workers share of employ-

ment (Berman et al., 1994), Average annual pay per worker,63 Value added per worker, and

Capital-labor ratio.

Panel A of Table B4 show that relatively little variation across 6-digit NAICS industries

occurs within 4-digit industries. For production share of employment, for instance, only 17%

of variation occurs within 4-digit NAICS (.172 = 1 − .828). This supports the claim that

ADH Census-based industry codes (which are nearly as precise as 4-digit NAICS codes) are

sufficiently narrow that firms within them serve as valid counterfactuals for one another. The

variation in economic activity within these codes (at least that which is observable at the

6-digit NAICS level) is relatively small. Across the 4 technology/wage inequality relevant

measures, between 80% and 90% of 6-digit variation is explained by the 4-digit codes.

63Hours worked is only available for production workers. Thus, it is not possible to calculate average
hourly wage of workers. Results are similar when based on hour wages under the assumption that all
non-production workers work 40 hours per week.
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Table B4: Variation across 6-digit NAICS within 4-digit NIACS

DV
(logs):

Production
share

Average
wage

Value added per
worker

Capital-labor
ratio

Panel A: Annual

R2 0.828 0.897 0.810 0.830
N 12,111 12,111 12,111 12,111
Nind 473 473 473 473

Panel B: 25-year changes

R2 0.599 0.657 0.506 0.780
N 462 462 462 462

Panel A displays R2 resulting from regressing 6-digit technology measures for a panel of 473
industries over 26 years (1980-2005) on 86 fixed effects for 4-digit industries by year (see equation
(10) in the text). With the exception of 9 industries unavailable before 1997, the sample is a
balanced panel. Panel B displays R2 from regressing 25-year changes for 462 6-digit industries
on 86 fixed effects for 4-digit industries (see equation (11) in the text). All regressions weight
by employment.

For understanding technology adoption, it is also important to understand how well

the codes explain changes in these measures during the sample period. I calculate 25-year

changes from 1980 to 2005 (after smoothing over consecutive years to reduce measurement

error) as follows:

∆ lnYi ≡
lnYi,2004 + lnYi,2005 + lnYi,2006

3
− lnYi,1979 + lnYi,1980 + lnYi,1981

3

and then estimate:

∆ lnYi = αI + εi (11)

where all notation follows that used in equation (10). Note that using differences, rather

than levels, is a more difficult test.

While the R2 values are lower, a sizeable share of the change is still explained by the

4-digit industry codes. Less than half of the variation in long-run changes (and as low as

22% in the case of the capital-labor ratio) occurs within these coarse industry codes. This

supports that the identification assumption is not unreasonable.
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B.3 First stages

Table B5 presents the first stages for all instrumental variables regressions contained in

the paper. Odd columns exclude controls; even columns include them. All columns include

fixed effects. Columns 1 and 2 instrument for X<HS
CUS using Xw<w̄

DOT (my preferred specification).

Columns 3 and 4 instrument for Xw<w̄
CUS using X<HS

DOT (IV results shown in Column 5 of Table

B6). Column 5 and 6 instrument for Xw<w̄
CUS using X<HS

CUS (the specification used in Table 4 of

the main paper). All instruments are relevant (p < .01). While F-statistics are not shown

in Table B5, they are all over 10 and are shown in every table presenting IV results.

Table B5: First stage regressions

(1) (2) (3) (4) (5) (6)

Xw<w̄
DOT 0.436*** 0.524***

(0.069) (0.115)
X<HS

DOT 0.551*** 0.474***
(0.108) (0.106)

X<HS
CUS 1.084*** 0.631***

(0.053) (0.067)
N 14152 14152 14152 14152 14152 14152
R2 0.991 0.995 0.990 0.996 0.995 0.997
Fixed effects it, st it, st it, st it, st it, st it, st
Controls No Yes No Yes No Yes
DV X<HS

CUS Xw<w̄
CUS Xw<w̄

CUS

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard errors, at the state
(n = 51) and industry (n = 109) level, are shown in parentheses.

B.4 Robustness checks

Here, I discuss a series of robustness checks and supporting regressions that complement

the results presented in Section 5 of the text. First, Table B6 presents my main specification,

separately estimated with each of the four potential complementarity measures (columns 1-

4). The results are similar for each, with the exception of Xw<w̄
CUS . This is unsurprising, since

this measure is based on, by far, the smallest samples and therefore likely has the most

measurement error. Instrumenting with the other measures to account for this measurement

error brings the coefficient magnitude in line with the others. This can be seen using X<HS
CUS

as an instrument in column 3 of Table 4 in the text, or using X<HS
DOT as an instrument in

column 5 of Table B6 (though here it is not statistically significant).
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Table B6: Minimum wage effects for all complementarity measures

(1) (2) (3) (4) (5) (6)

Xw<w̄
CUS -0.087 -1.031

(0.178) (0.626)
X<HS

CUS -0.634***
(0.205)

Xw<w̄
DOT -0.755** -2.777***

(0.324) (0.982)
X<HS

DOT -0.488*
(0.283)

N 14152 14152 14152 14152 14152 14152
R2 0.731 0.732 0.731 0.731 0.728 0.727
Fixed effects it, st it, st it, st it, st it, st it, st
Controls Yes Yes Yes Yes Yes Yes
IV X<HS

DOT X<HS
CUS

F Stat. 20.124 15.856

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard errors, at the
state (n = 51) and industry (n = 109) level, are shown in parentheses.

Column 6 of Table B6 uses X<HS
CUS to instrument for Xw<w̄

DOT , the converse of my preferred

instrumentation strategy. The coefficient is larger (more negative) than my preferred speci-

fication, but similar. I prefer my instrumentation strategy because I find the CUS comple-

mentarity measure easier to interpret and because the CUS is more subject to measurement

error, making it a weaker instrument in the first stage.

Table B7 presents robustness checks which replicate the main effects, the heterogeneous

effect of the minimum wage on technology adoption, given in columns 1 and 4 of Table 3 in

the text. Columns 1 and 3 give OLS estimates; columns 2 and 4 give IV estimates (all with

the same specification as in Table 3). The difference is in the normalization of IT labor. To

reiterate the issue at hand, in the text IT labor is normalized by total employment in the

industry-state-year. One might be concerned that the measured effects of the minimum wage

on IT labor share are operating through employment effects, rather than through technology

adoption (and the associated increase of IT employment).

Columns 1 and 2 normalize IT labor by employment with a high school education or

more, since these workers are less likely to be directly affected by the minimum wage. The

coefficients are nearly identical, suggesting that the estimated effects are driven by changes

in the numerator (IT labor) rather than the denominator.

Columns 3 and 4 take an even stronger view. For each industry-state-year, I calculate
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Table B7: Robustness

DV: IT labor (1) (2) (3) (4)

X<HS
CUS -0.637*** -1.407** -1.116*** -2.140**

(0.218) (0.662) (0.298) (1.038)
N 14152 14152 14152 14152
R2 0.700 0.699 0.539 0.537
Fixed effects it, st it, st it, st it, st
Controls Yes Yes Yes Yes
DV mean 0.855 0.855 0.829 0.829
IV Xw<w̄

DOT Xw<w̄
DOT

F Stat. 20.829 20.829
Normalization Emp. with ≥HS ed. Synthetic emp.

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard
errors, at the state (n = 51) and industry (n = 109) level, are
shown in parentheses. The reported F statistic corresponds to
the excluded instrument in the first stage regression, presented
in Table B5 of the Results Appendix.

potential or “synthetic” employment as follows. Let Empist be employment in industry i in

state s in year t, and let Empst =
∑

iEmpist be total state employment (across all industries)

and Empit =
∑

sEmpist be total industry employment (across all states). I define synthetic

employment as:

˜Empist ≡
Empst∑
sEmpst

Empit

In other words, synthetic employment allocates to each state the share of each industry’s

employment that corresponds to the state’s share of national employment. It assumes that

each industry is identically distributed across states. The advantage of this measure is that

the denominator is even more likely to be exogenous to minimum wage effects, since it

abstracts from the employment responses of particular industries in particular states. The

disadvantage is that industries are not identically distributed across states. Constructing a

denominator as if they were adds lots of noise to the dependent variable, and the estimates

become much less precise.

Columns 3 and 4 present the results based on IT labor normalized by synthetic em-

ployment. The standard errors increase by 50-70% over their levels in Table 3 of the text.

Nonetheless, the coefficients remain negative and statistically different from zero. In fact, the

coefficients increase (become more negative), though they are not statistically distinguishable

from the point estimates in Table 3.

As a last robustness check of my main specification, I show that my results are robust to
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the sample selection criteria Described in Section A.2. As noted there, I exclude all industry-

years for which less than 10 respondents were available to calculate the complementarity

measures. Table B8 shows the main results (columns 1, 2, and 4 of Table 3) estimated on the

full sample for which at least one respondent was available to calculate the complementarity

measure (the sample size effect of requiring at least one respondent is small; see Table A2 of

the Data Appendix). The coefficients are negative, but only about two thirds as large as those

in Table 3, consistent with expectations that measurement error biases coefficient estimates

towards zero. The standard errors also shrink, but not by as much as the coefficients, so

that most estimates become statistically insignificant.

Table B8: Full sample effects with and without weights

(1) (2) (3) (4) (5) (6)

X<HS
CUS -0.404*** -0.766 -0.636*** -0.787**

(0.143) (0.530) (0.184) (0.374)
Xw<w̄

DOT -0.323 -0.376*
(0.225) (0.205)

N 24923 24923 24923 24923 24923 24923
R2 0.738 0.737 0.737 0.700 0.700 0.700
Fixed effects it, st it, st it, st it, st it, st it, st
Controls Yes Yes Yes Yes Yes Yes
DV mean 1.066 1.066 1.066 1.066 1.066 1.066
Weights No No No Yes Yes Yes
IV Xw<w̄

DOT Xw<w̄
DOT

F Stat. 18.294 36.646

* p < .10, ** p < .05, *** p < .01. Two-way clustered standard errors, at
the state (n = 51) and industry (n = 196) level, are shown in parentheses.
Weights are based on the number of respondents available for calculating the
complementarity measures. See equation (12).

A less knife-edge way of dealing with small samples is to construct weights based on the

number of respondents available for calculating the two primary complementarity measures.

I use the following weights:

w =

(
1

N<HS
CUS

+
1

Nw<w̄
DOT

)−1/2

(12)

These would be the efficient GLS weights if X<HS
CUS and Xw<w̄

DOT were the dependent vari-

ables, although standard justifications for weighting do not include small samples for the

independent variables (which, in particular, do not solve measurement error). This approach

gives very little weight to industries with few low-skilled workers available for complementar-

ity. The smallest value the weights can take is in this extended sample .71 (.71 = 1/
√

1 + 1)
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when only one respondent is available for each measure, while the smallest value they can

take in my main estimation sample is 2.23 (2.23 = 1/
√

1/10 + 1/10), more than three times

as large.

Thus, the weighting approach is a less knife-edge way to address measurement error

caused by small samples in measuring complementarity. This is not my preferred specification

because it also weights the “intensive” margin of low-skilled employment. Consider, for

instance, two industries that are the same size. This weighting scheme gives strictly more

weight to the one with more low-skilled employment (since they have more complementarity

respondents) which, by construction, gives less weight to industries with more non-low-skilled

employment, which are precisely the industries that are useful for studying routine-biased

technical change and job polarization.

The results in columns 4-6 are very similar to those in columns 1-3, but the standard

errors are much smaller and all coefficients are statistically different from zero. The coeffi-

cient magnitudes themselves are smaller than those in the main results (Table 3). This is

consistent with the claim that giving more weight to industries with more low-skilled workers

(controlling for total employment) is less informative about routine-biased technical change.
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