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Abstract

Research on intergenerational mobility has often treated outcomes such as

schooling and earnings as being imperfectly transmitted from one parent

to a child. But because the characteristics of both parents are important in

shaping children’s outcomes, the way in which a generation of parents is

sorted into couples is likely to be a key determinant of intergenerational

persistence. Mating patterns are assortative—that is, individuals tend to

partner with people similar to themselves—and this is typically measured

by similarity of educational attainment. I present the first estimates of the

effect of assortative mating on intergenerational persistence of schooling

and earnings. I measure assortative mating as the rank correlation of cou-

ples’ educational attainment, that is, the degree to which the most highly-

educated men partner with the most highly-educated women. Using data

on parents and children in the United States, I find that assortative mating

explains about one quarter of the observed intergenerational persistence of

schooling and earnings.
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1 Introduction

The question of why there is strong intergenerational persistence of schooling

and earnings is crucial for determining the degree to which intergenerational

persistence might be responsive to policy changes, and whether such policies

are desirable. Much of the literature on intergenerational persistence has treated

a family as having one parent. But because the characteristics—including fi-

nancial resources, genetics, attitudes, etc.—of both parents influence a child’s

outcomes, the way in which a group of parents is sorted into couples is likely to

be important in determining the degree of intergenerational persistence.

This paper studies the effect of educational assortative mating—the tendency

of individuals to marry people with educational attainment similar to their

own—on intergenerational persistence of schooling and earnings in the United

States. Using a statistical model consistent with canonical optimizing models of

intergenerational persistence, I show that more highly assortative mating will

increase the degree to which a parent’s schooling or earnings persist to a child.

In data on parents and children from the PSID, I show that assortative mating

increases intergenerational persistence of schooling and earnings. By compar-

ing observed mating patterns to a counterfactual of random mating, I find that

assortative mating can account for about one quarter of the observed intergen-

erational persistence of schooling and earnings.

The simplest way in which assortative mating affects intergenerational per-

sistence is through a mechanical or statistical effect. Consider measuring the

degree of persistence in educational attainment from fathers to sons. Suppose

that parents’ educational attainment is determined before the couple has chil-

dren, and that both father’s education and mother’s education have positive ef-

fects on the child’s educational attainment. If highly educated fathers mate with

highly educated mothers, then the effect of mother’s education on the child’s ed-

ucation reinforces the effect of father’s education, and the correlation between

father’s education and son’s education will be high. On the other hand, if highly

educated fathers mate with mothers having low levels of education (a situation

known as negatively assortative, or disassortative, mating), then the effect of the

mother’s low education is to bring the child’s educational attainment closer to
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the mean, so the correlation between father’s education and son’s education will

be lower. The statistical model in section 2 makes this point analytically.

Another important way in which assortative mating affects intergenerational

persistence is through the labor supply decisions of parents. These labor supply

decisions will affect the family’s income and the financial resources available to

the parents for investment in their children’s human capital. In the household

labor supply model of Bredemeier and Juessen (2013), couples face a special-

ization decision over market work and household production. The wife’s hours

worked are increasing in her wage relative to her husband’s wage. If couples

are randomly matched, relative wages are lowest for wives of high-earning hus-

bands, so these wives work least, and the distribution of family income is more

compressed than the distribution of husbands’ earnings. This mitigates inter-

generational persistence between fathers and children. On the other hand, if

couples are perfectly matched, then wives of high-earning husbands work about

as much as wives of low-earnings husbands, and intergenerational persistence

from fathers to children is not lessened by the pattern of wives’ labor supply.

My preferred measure of educational assortative mating, which differs from

most previous work on sorting patterns, is the degree of rank correlation be-

tween parents’ education levels. That is, mating is perfectly assortative when the

most highly-educated men partner with the most highly-educated women, and

the least-educated men partner with the least-educated women. I use Census

data to convert the number of years of education of each parent in my sample

to the parent’s percentile rank within the education distribution specific to their

sex and birth cohort. I then create an assortativity measure based on parents’

difference in percentile ranks. If mating were perfectly assortative on education,

then in each couple both parents would have the same percentile rank, so my

assortativity measure would be zero for each couple. As mating becomes less

assortative, the average rank distances within couples increase, and my assorta-

tivity measure becomes more negative.

This method of measuring educational assortative mating is a departure from

most previous research. Sociological literature tends to focus on the incidence

of homogamy—marriage between two people having the same number of years
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of education—and heterogamy—marriage in which the partners’ educational at-

tainment differs (Schwartz and Mare, 2005). However, these measures may be

changed over time by differential trends in sex-specific education distributions.

For example, suppose it were always the case that marriage was highly assorta-

tive with respect to education, in the sense that the most-educated men tended

to marry the most-educated women. In times when average educational attain-

ment was lower among women than men, then this would produce many cou-

ples with heterogamous marriages, in which the husband had more education

than the wife. If the education distributions of men and women then became

very similar, the incidence of homogamy, in which partners share the same level

education, would increase, even with no underlying changes in behaviors in the

marriage market.

More generally, my conception of assortative mating as based on the cor-

relation of partners’ education ranks reflects the fact that education is in part

a proxy for unobserved characteristics—often referred to collectively as “en-

dowments” in the literature on intergenerational persistence—such as cognitive

ability and non-cognitive skills. These unobserved characteristics are important

both for sorting patterns among a generation of parents and for how parents’

economic outcomes are transmitted to children. The sex-specific distributions of

these characteristics are likely to be much more similar than are the sex-specific

distributions of education. Therefore, using percentile ranks from sex-specific

education distributions to measure assortativity will reflect both patterns of as-

sortative mating on education, as well as unobserved assortative mating on im-

portant characteristics that are correlated with educational attainment.

In research on intergenerational transmission of education and earnings, the

most common measure of persistence is the slope coefficient from a simple re-

gression of a child’s outcome on a parent’s outcome. My measure of the effect

of assortative mating on intergenerational persistence is the degree to which

this slope coefficient is larger in families with higher assortativity. I regress the

child’s outcome on a parent’s outcome, parents’ assortativity, and an interaction

between the parent’s outcome and assortativity. If higher assortativity is corre-

lated with stronger intergenerational transmission of schooling or earnings, then
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the coefficient on the interaction term will be positive.

A major challenge in interpreting the resulting estimates, of course, is that as-

sortativity is not randomly assigned. Suppose there is a group of parents with an

especially strong preference for their children’s outcomes. This can cause inter-

generational persistence to be higher among this group, for two distinct reasons.

First, the strong preference for children’s outcomes may lead them to place more

importance on partnering with the best available mate, which increases assorta-

tive mating among the group. This raises intergenerational persistence among

the group, for the reasons explained above, and this is the effect I would like to

measure. Second, in the canonical model of intergenerational transmission with

one-parent families (Becker and Tomes, 1979), the share of the parent’s wealth

that is invested in the child’s human capital is increasing in the parent’s taste

for the child’s future earnings. Therefore, in this hypothetical group of parents,

intergenerational persistence would be higher, even before mating patterns are

considered.

To address this, I use control variables that are plausibly correlated with

preferences and are predetermined with respect to the parents’ mating deci-

sions. These controls include the parents’ birth cohort, birth region, race, and

education. The controls cannot be directly entered into the regression of child’s

outcome on parent’s outcome. Doing so would mean that the coefficient on par-

ent’s outcome represents a partial effect, conditional on controls, rather than a

total effect. Instead, I first purge the assortativity measure of the control vari-

ables in a first-step regression. The residuals from the first-step regression are by

construction uncorrelated with the controls. The second step is a regression of

child’s outcome on parent’s outcome, assortativity residuals from the first step,

and an interaction between parent’s outcome and assortativity residuals.

I find that assortativity is positively correlated with intergenerational per-

sistence. These results are more often statistically significant, and more stable

as control variables are added, for schooling persistence than for earnings per-

sistence. To estimate the overall effect of assortativity on intergenerational per-

sistence, I use the regression results to compare intergenerational persistence

at the observed average level of assortativity to the degree of persistence that
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is predicted to prevail if couples were matched randomly. For both schooling

and earnings, I find that assortative mating explains about one quarter of the

observed level of intergenerational persistence.

A large literature studies the level and causes of intergenerational transmis-

sion of schooling and earnings. (See Solon (1999) and Black and Devereux (2011)

for reviews.) The model of Becker and Tomes (1979) shows that the degree of

persistence reflects both the heritability of productive endowments and the fact

that wealthier parents invest more in their children’s human capital. Becker

(1991) notes that more assortative mating among the parent generation will in-

crease heritability of endowments and thus intergenerational earnings persis-

tence. This paper presents the first empirical evidence on the magnitude of this

effect.

Although previous research has not focused on the effects of assortative mat-

ing among the parents’ generation, some research has used differences in family

types to learn about the process of intergenerational persistence. For example,

Björklund, Lindahl, and Plug (2006) and Liu and Zeng (2009) analyze differences

in persistence between adoptees and children raised with their biological par-

ents. Under some assumptions, this is informative about the relative importance

of pre-birth and post-birth factors. Chetty et al. (2014) show that earnings persis-

tence is lower in geographic areas of the U.S. where rates of single parenthood

are higher.

A small previous literature, including Chadwick and Solon (2002), Ermisch,

Francesconi, and Siedler (2006), and Holmlund (2008), has studied a separate

role in intergenerational persistence of assortative mating among the offspring

generation: a child’s choice of partner mechanically affects how similar the

child’s family income is to the family income of the child’s parents.

There is also a literature that studies the effect of marital sorting on inequality

of household income within a generation. If marriage is perfectly assortative,

the variance of household income will be higher than if couples were formed

through random mating. Recent studies of the magnitude of this phenomenon

include Schwartz (2010), Eika, Mogstad, and Zafar (2014), Greenwood et al.

(2014) and Pestel (2014). Along similar lines, Kremer (1997) and Fernández and
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Rogerson (2001) use dynamic models, calibrated to U.S. data, to study the effect

of a permanent increase in assortative mating on steady-state inequality.

The remainder of the paper is organized as follows. The statistical model in

section 2 shows how assortative mating increases intergenerational persistence.

Section 3 discusses the data sources, and section 4 is about my measure of assor-

tative mating. Section 5 details the empirical strategy, the results of which are

presented in section 6. Section 7 concludes.

2 Statistical model

In this section I use a simple statistical model of intergenerational transmission

to clarify how assortative mating affects intergenerational persistence of human

capital and earnings. The model extends the framework of Lefgren, Lindquist,

and Sims (2012) to families with two parents and is consistent with the canoni-

cal model of Becker and Tomes (1979) showing how intergenerational transmis-

sion arises from optimizing behavior. Higher assortativity increases intergener-

ational persistence of human capital and earnings, and increases the variance of

human capital and earnings among the offspring generation. In the introduc-

tion, I discussed how assortative mating may affect intergenerational persistence

both mechanically and through changes in parents’ labor supply decisions. The

statistical model captures the first effect only, and does not attempt to model

household labor supply.

Each family consists of two parents—a father, f , and a mother, m—and a

child, c. The earnings of each family member depend on human capital and

market luck. Human capital, h, includes education and genetic endowments,

denominated in dollar equivalents. Market luck, ν, is assumed to be uncorre-

lated with each family member’s human capital and with other family members’

market luck. The earnings equations are

Y f = µ + h f + ν f ;

Ym = µ + hm + νm;

Yc = µ + hc + νc.

(1)

One contribution of Becker and Tomes (1979) was to show that parents in-
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crease their children’s human capital and earnings in two major ways. First,

higher-income parents are able to invest more in their children’s human capital.

Second, higher-income parents tend to have more favorable genetic endowments—

here, reflected in higher human capital—which are passed on to their children

through genetic and cultural inheritance. The equation describing production of

children’s human capital captures this insight:

hc = λ + πY(Y f + Ym) + πh(h f + hm) + φc, (2)

where πY > 0 is parents’ propensity to invest financial resources in the child’s

human capital, πh > 0 is heritability of human capital, and φc is white noise.

Substituting this into the child’s earnings equation, (1), yields the classic

result on intergenerational earnings transmission first described in Becker and

Tomes (1979):

Yc = (λ + µ) + πY(Y f + Ym) + πh(h f + hm) + φc + νc. (3)

Suppose that there is assortative mating on human capital. Becker (1991)

modeled assortative mating on both endowments and earnings, but assortativity

on human capital alone is plausible if matching occurs before labor market entry

or early enough in a career that values of market luck are not yet known. The

linear sorting equation that describes how parents match is

hm = h(1− r) + rh f + ψ, (4)

where h is average human capital, r is the correlation between parents’ human

capital, and the stochastic element ψ is assumed to be uncorrelated with h f .

To see how assortative mating affects intergenerational transmission, first

consider the most common measure of human capital persistence: the slope

coefficient in a simple regression of child’s human capital, hc, on father’s human

capital, h f . By substituting the earnings equations, (1), into the human capital

equation, (2), then using the sorting equation, (4), the slope estimator in the

simple regression converges to

plim β̂hc,h f = (1 + r)(πY + πh). (5)
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As assortativity, r, increases, intergenerational transmission of human capital

also increases.

Similarly, assortativity increases intergenerational transmission of earnings.

Consider a simple regression of child’s earnings, Yc, on father’s earnings, Y f . By

substituting the earnings equations, (1), into the earnings transmission equation,

(3), then using the sorting equation, (4), the slope estimator in the regression

converges to

plim β̂Yc,Y f = (1 + r)(πY + πh)
Var(h f )

Var(Y f )
+ πY

Var(ν f )

Var(Y f )
. (6)

This measure of earnings persistence is increasing in assortativity, r.

Note that the magnitude of the effect of assortativity is larger for earnings

persistence in equation (6) than for human capital persistence in equation (5).

This is due to the child’s market luck, which generates regression to the mean

because it is realized after the parents’ investments in the child’s human capital

have been made. For the same reason, estimates of the effect of assortativity will

be noisier for earnings persistence than for schooling persistence. The standard

errors of the regression coefficients are increasing in the variance of the distur-

bance in the model, and the child’s market luck increases the residual variance

of earnings relative to the residual variance of human capital.

Assortative mating also has a mechanical effect of increasing the inequality

of family income among parents. If men and women with high education and

earnings potential tend to marry, then the variance of family income will be

higher than if couples were formed randomly. This has been studied recently by

Schwartz (2010), Eika, Mogstad, and Zafar (2014), and Greenwood et al. (2014).

Using the earnings equation, (1), and the sorting equation, (4), the variance of

parents’ family income is

Var(Y f + Ym) = (1 + r)2Var(h f ) + Var(ψ) + Var(ν f ) + Var(νm), (7)

which is increasing in assortativity among parents, r.

Some of this increased inequality will persist in the children’s generation, al-

though regression to the mean will eliminate part of it. The variance of earnings

9



among children is

Var(Yc) = (1 + r)2(πY + πh)
2Var(h f ) + (πY + πh)

2Var(ψ)

+ π2
Y
(
Var(ν f ) + Var(νm)

)
+ Var(φc) + Var(vc).

(8)

3 Data

The sample of children and parents comes from the Panel Study of Income Dy-

namics (PSID), which began with a random sample of about 5,000 U.S. house-

holds in 1968. This sample was reinterviewed annually through 1997, and every

two years thereafter. Each round of the survey collects data on a wide range

of variables, including income from the previous calendar year. Children in

the original sample have been followed as they grow older and form their own

households, making the PSID a very common data source for studies of inter-

generational transmission of social and economic outcomes.

In constructing my sample, I first exclude the Survey of Economic Oppor-

tunity component of the sample (sometimes called the poverty sample) because

of strong concerns about the sample’s selection (Brown, 1996). I require that

the child and both biological parents be observed at least once beginning at age

25, so that reported schooling is likely to reflect final educational attainment.

Children whose parents were both in the survey at any time, and have a valid

schooling observation, will be included in my sample regardless of whether the

parents were married at the time of observation, and regardless of what hap-

pened to the parents’ relationship in the future. If it is not the case that both of

the child’s biological parents were observed—whether because the parents were

separated when the survey began, or one of the parents had died, etc.—then the

child is not in my sample. I also exclude children born before 1952, who were

older than 16 when the survey began in 1968, to avoid over-representing children

who remained at home longer. These restrictions yield a sample of 1,780 sons

and 1,810 daughters that are included in the results on schooling persistence.

Further restrictions are necessary for the earnings persistence sample. I drop

outlier earnings observations below $100 or above $150,000 in 1967 dollars, then

purge the remaining log earnings values of year effects. Next, consistent with
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all recent research on earnings persistence, I require multiple observations of

parent’s earnings. Solon (1992) and Zimmerman (1992) find that because of

year-to-year transitory variation in parent’s earnings, the father-son earnings

elasticity is severely attenuated if one uses a single year’s observation of the

parent’s log earnings. I estimate the parent’s permanent log earnings using a

five-year average of the parent’s annual log earnings, each observed between

ages 25 and 59. If more observations are available, I use the five observations

closest to age 40, as this is when annual log earnings are the best estimate of

lifetime permanent log earnings (Haider and Solon, 2006). Few mothers in my

sample have at least five earnings observations, so I examine only father-child

earnings persistence. These restrictions leave a sample of 1,052 sons and 1,019

daughters to be used in the results on earnings persistence.

My measure of assortative mating, which is discussed in more detail in sec-

tion 4, is based on the similarity of parents’ percentile ranks within cohort-by-

sex-specific distributions of educational attainment. The PSID is far too small to

estimate these distributions with any precision. Instead, I use the IPUMS 1940–

2000 decennial Census files and the 2008–2012 ACS five-year file (Ruggles et al.,

2010) to estimate distributions of educational attainment at the cohort-by-sex

level. Each survey year is used to find the education distributions for cohorts

who were ages 35–44 at the time of the survey, which gives sex-specific educa-

tion distributions for birth cohorts from 1896 to 1977. The oldest parent in my

sample was born in 1902, and the youngest was born in 1970.

4 Measure of assortative mating

To exploit variation across families in the degree of assortative mating, I use

a family-specific measure of assortativity. Previous literature overwhelmingly

uses years of educational attainment to measure the degree of assortative mat-

ing, so one natural family-level measure of assortativity would be some function

of the difference between the parents’ levels of educational attainment. How-

ever, the distribution of education attainment differs between males and females,

and these differences have themselves changed over time (Acemoglu and Autor,
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2011). As a result, a function of the difference between the parents’ levels of ed-

ucation would be hard to interpret, and the distribution might drift across birth

cohorts as education distributions changed, without any underlying change in

the pattern of assortativity as defined by the rank correlation of couples’ educa-

tion. This point has been made independently, and solved differently, by Eika,

Mogstad, and Zafar (2014).

To measure assortative mating, then, I begin not with individual education

levels but with education ranks. Mating is perfectly assortative when the most

highly-educated men marry the most highly-educated women, so that ranks

within sex-specific education distributions are the same for both partners in

a couple. As the degree of assortativity decreases, the average difference in

couples’ percentile ranks increases. I use Census data to compute cohort-by-sex-

specific education distributions, then convert each PSID respondent’s reported

level of education, s, to their percentile rank within the appropriate education

distribution, k.

My family-specific measure of assortative mating is the negative of the squared

difference in the parents’ educational ranks:

ri = −(k
f
i − km

i )
2. (9)

This index is constructed so that smaller negative values represent more assor-

tativity, up to a maximum of zero when the parents’ ranks within their respec-

tive education distributions are the same. The index is not affected by by sex

differences in education distributions or by changes over time in education dis-

tributions. The Spearman rank correlation coefficient, ρ, is linearly related to the

cross-family mean of the assortativity index: ρ ≈ 1 + 6r.

Table 1 summarizes the degree of parents’ assortativity among the children

in the PSID who are eligible for the empirical analysis below. The table shows the

mean of the parents’ absolute difference in education ranks, |k f
i − km

i |, and the

mean of my assortativity measure, ri = −(k
f
i − km

i )
2. On average for the children

in my sample, parents’ education ranks are about 16 percentiles apart, and r =

−0.048. There are only small differences in parents’ assortativity between white

and black children, and again only small differences across three categories of

child’s completed education. Parents’ assortativity increased over time in this

12



sample: the average difference in parents’ education ranks was 16.4 percentiles

among children born in the 1950s, and 13.6 percentiles among children born in

the 1980s. This finding is consistent with Schwartz and Mare (2005), who find

that the degree of assortative mating among new marriages was increasing from

1960–1995.

To give some context for these summary statistics, at the bottom of Table 1

I show the values of mean rank difference and mean assortativity under three

different sorting patterns. The simplest case is perfectly assortative mating, in

which each father is paired with a mother who has the same educational rank.

There are no differences in education ranks, so r = 0. If there is perfectly

disassortative (or perfectly negatively assortative) mating, then each father is

paired with a mother from the opposite position of the distribution of education

ranks: the highest-educated male mates with the lowest-educated female, and

so forth, so that km
i = 1− k f

i for all i. In this case, one can show that the average

rank distance is 50 percentiles, and that r = − 1
3 . Finally, if matching is random,

then the bivariate random variable (k f
i , km

i ) is uniformly distributed on the unit

square. One can show that the average rank distance is 33 percentiles, and that

r = − 1
6 .1 The observed level of assortativity, r = −0.048, can be interpreted as

showing that mating among parents is more than two thirds of the way toward

perfectly assortative when compared to the case of random matching.

5 Empirical strategy

In this section I describe a two-step procedure for estimating the effect of assor-

tativity on intergenerational persistence. While the procedure could be applied

to persistence of many traits, for concreteness I discuss intergenerational persis-

tence of earnings in this section. In section 6, I present results on persistence of

both schooling and earnings.

By far the most common summary measure of intergenerational earnings

persistence is the slope estimate from a simple regression in which the depen-

1An additional advantage of my assortativity measure ri, relative to using the absolute value

of rank differences, is that in the case of random matching, r is exactly halfway between its value

in the two extreme cases. This is not the case when rank distances are used.
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dent variable is child’s log earnings, yc, and the explanatory variable is father’s

log earnings, y f :

yc
i = a0 + a1y f

i + e1i. (10)

Among developed countries, the estimated intergenerational earnings elasticity,

â1, ranges from a high of between 0.4 and 0.5 in the U.S. and UK to a low of

about 0.2 in Denmark, Finland, and Norway (Corak, 2013). One minus the inter-

generational earnings elasticity is interpreted as a measure of intergenerational

earnings mobility.

To study the effect of assortativity, r, controlling for some other variables, x,

on intergenerational persistence, it is tempting to extend this approach by re-

gressing child’s log earnings on father’s log earnings, assortativity, the controls,

and interactions between father’s log earnings and each of the other regressors,

producing the regression

yc
i = b0 + b1y f

i + b2ri + x′ib3 + b4y f
i ri + y f

i x′ib5 + e2i, (11)

where b4 is the parameter of interest. However, this regression reveals how the

partial effect of father’s log earnings, controlling for the variables in x, varies

with assortativity. This is not the question I am trying to answer, and moreover

is difficult to interpret without some source of exogenous variation in father’s

log earnings.

Instead, I break up the estimation into two steps. In the first step, I regress

assortativity, r, on control variables such as father’s race and year of birth:

ri = α0 + x′iα1 + ε1i. (12)

The residuals from this regression, r̃, are by construction uncorrelated with the

control variables in x—that is, the assortativity residuals r̃ have been purged of

the controls. I then estimate the second step, a regression of child’s log earnings

on father’s log earnings, the assortativity residuals, and the interaction of these

residuals with father’s log earnings:

yc
i = β0 + β1y f

i + β2r̃i + β3r̃iy
f
i + ε2i. (13)
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Then β3 describes how the total effect of father’s log earnings varies with dif-

ferences in assortativity that are not explained by the control variables in x. If

assortativity increases intergenerational earnings persistence, then β3 > 0.

Other researchers have estimated the effects of regressors of interest on the

intergenerational earnings elasticity, but all have used a single-equation ap-

proach similar to (11), rather than the two-step procedure in this paper. For

example, Mayer and Lopoo (2008) study whether the intergenerational earnings

elasticity in the U.S. varies with state government spending, conditional on state

fixed effects, and Pekkarinen, Uusitalo, and Kerr (2009) estimate the effect of an

education reform in Finland on the intergenerational earnings elasticity, condi-

tional on child’s region and cohort indicators. These papers, then, describe how

the partial effect of father’s earnings, conditional on the control variables, varies

with the regressor of interest.

In the literature on measurement of the intergenerational earnings elasticity,

researchers face two major estimation challenges associated with mismeasure-

ment of child’s and father’s permanent log earnings. The first is that measure-

ment error and transitory variation in father’s log earnings, y f
i , create attenua-

tion bias in the estimated intergenerational earnings elasticity. This is commonly

addressed by taking a multi-year average of parents’ log earnings, which is the

strategy I follow here. See section 3 for details.

The second estimation challenge is that yearly earnings is a downwardly

biased measure of permanent earnings earlier in life, and an upwardly biased

measure of permanent earnings later in life (Grawe, 2006). This form of measure-

ment error is known as life cycle bias, and because it is non-classical, both error

in the explanatory variable, father’s permanent log earnings, and the depen-

dent variable, child’s permanent log earnings, may bias the estimated intergen-

erational earnings elasticity. The bias is smallest when earnings are measured

around age 40, because this is the age at which annual earnings are the best

estimate of lifetime permanent earnings (Haider and Solon, 2006). Therefore,

one way to address the bias is to begin from the second-step regression (13) and

add controls for a polynomial in father’s age relative to 40 at the time of earn-

ings measurement, age f
i − 40, a polynomial in child’s age relative to 40 at the
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time of earnings measurement, agec
i − 40, and interactions between this latter

polynomial and father’s log earnings. Lee and Solon (2009) use a fourth-degree

polynomial, and I follow that choice in this paper.

Because observations on educational attainment are taken after individuals

are likely to have completed schooling, the schooling variables do not suffer

from life cycle bias or, of course, transitory variation. Measurement error of

schooling may occur, but is likely to be much less severe than for earnings.

6 Results

Tables 2–5 present results on the role of assortative mating in the intergener-

ational persistence of educational attainment, as measured by years of school-

ing. For each of the four intergenerational links—father-son, mother-son, father-

daughter, and mother-daughter—there is strong evidence that higher assorta-

tivity among parents is associated with higher schooling persistence between

parent and child. This effect of assortativity is larger for mother-child persis-

tence than for father-child persistence.

In each table, the first column shows estimates of a simple regression of

child’s schooling on parent’s schooling. An additional year of parent’s schooling

is associated with an increase of about 0.4 years in the child’s schooling. In

column 2, the second step regression, (13), is run without purging assortativity

of any of the control variables. In each case, the interaction between assortativity

and parent’s schooling is positive and statistically significant at the one percent

level, indicating that more assortativity among parents is associated with higher

schooling persistence.

One way to estimate of the role of assortativity in intergenerational persis-

tence is to compare schooling persistence at the observed mean value of as-

sortativity, robs, to predicted schooling persistence at the value of assortativity

that would prevail if parents were randomly matched, rrandom. Because β̂3 is

the estimated coefficient on the interaction of assortativity and parent’s school-

ing, the difference in persistence between a regime of random matching and

the observed sorting patterns is β̂3(robs − rrandom). Recall from section 4 that

16



if matching among parents is random, then the mean values of assortativity is

rrandom = − 1
6 . The observed cross-family mean of assortativity varies slightly

depending on the sample, but is always roughly robs = −0.05.

In Table 2, the column 2 estimates indicate that intergenerational persistence

of schooling is 0.68× (−0.05− (−0.17)) = 0.08 higher under observed parent

sorting patterns than it would be if parents were matched randomly; this value is

shown at the bottom of the column of regression estimates. This represents more

than one fifth the observed father-son persistence of 0.36, reported in column

1. The estimated role of assortativity in father-daughter schooling persistence,

shown in Table 3, is slightly larger. The results suggest that the observed levels of

assortative mating, compared to random mating, increase schooling persistence

by 0.10, which is about one quarter of the observed father-daughter persistence.

The role of assortativity in mother-child schooling persistence is even larger.

Using the results in Table 4, column 2, mother-son schooling persistence is 0.16

higher than it would be under random matching, so assortative mating accounts

for about 40 percent of the observed intergenerational persistence. According to

the estimates in Table 5, column 2, mother-daughter schooling persistence is 0.13

higher than it would be under random matching, so assortative mating accounts

for about one-quarter of the observed intergenerational persistence.

Of course, the results discussed so far should be viewed as providing de-

scriptive evidence, rather than isolating the causal effect of assortativity on in-

tergenerational persistence. The major issue is that closely-matched parents may

differ from other parents in many ways that impact intergenerational transmis-

sion. As discussed in the introduction above, among parents with especially

strong preferences for their children’s outcomes, there are two reasons to ex-

pect higher intergenerational persistence. First, these parents may search harder

for the best available mate, which will increase assortativity among the group.

That, in turn, increases intergenerational persistence, and is the type of effect I

want to measure. Second, even if sorting patterns were not different among this

group of parents compared to the overall population, their strong preference

for children’s outcomes would still lead to higher intergenerational persistence.

Part of the association between assortativity and intergenerational persistence,
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then, may be driven by this latter effect, which does not operate through sorting

patterns among parents.

To the extent that there is important variation across marriage markets in

preferences about children’s outcomes, then one way to address this bias is to

use variation in assortativity within marriage markets, rather than all variation.

Therefore, I first control for interactions among birth decade, birth region, and

race for each parent, because marriage markets are often roughly segmented

along these lines. These demographic indicators are good controls because they

are plausibly correlated with parents’ preferences and are determined before the

parents’ mating decisions.

The R2 from the first-step regression of assortativity on controls illustrates

how much of the total variation in assortativity is not used in the second-step

regression. Column 3 in Tables 2–5 shows that these demographic controls alone

explain about 30 percent of the variation in assortativity. The assortativity resid-

uals from this first step, then, use a subset of the total variation in assortativity

that is noticeably different from the uncontrolled regressions in column 2.

After regressing assortativity on these demographic controls, the residuals

from this first-step regression have been purged of correlation with the con-

trols. The estimates of the second-step regressions in column 3 show that the

demographic controls tend to increase the estimated effect of assortativity in

producing father-child schooling persistence, and decrease the estimated effect

of assortativity in producing mother-child schooling persistence. In all cases, the

estimated effect of assortativity remains statistically significant.

Next, I add indicators for each parent’s decile within their cohort-by-sex-

specific education distribution, to address the concern that both assortativity

and preferences may vary with parents’ schooling. Column 4 in Tables 2–5

shows that the estimated role of assortativity in schooling persistence increases

slightly compared to the more limited set of controls in column 3.

Tables 6 and 7 present the results on the role of assortative mating in father-

son and father-daughter earnings persistence. (Few women in the sample of

parents worked enough years to have a usable estimate of permanent earnings.)

The first column shows estimates of a simple regression of child’s log perma-
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nent earnings on parent’s log permanent earnings. The estimated elasticity is

0.40 for father-son earnings persistence and 0.27 for father-daughter earnings

persistence, consistent with previous literature.

The statistical model in section 2 predicts that the role of assortativity in

earnings persistence will be smaller than its role in schooling persistence, be-

cause market luck adds variability to children’s earnings; compare equations (2)

and (3). For the same reason, estimates of the role of assortativity in earnings

persistence are likely to be noisier than in the analysis of schooling persistence.

The estimates in column 2 of Tables 6 and 7 are consistent with this. I an-

alyze the role of assortativity in earnings persistence using the same methods

just discussed for schooling persistence. The estimated effects are positive, as ex-

pected, but smaller in magnitude and noisier compared to the results on school-

ing persistence. The observed sorting patterns among parents predict that the

father-son and father-daughter earnings elasticities are 0.04 higher than would

prevail under random matching.

As controls are added, the estimated effect of assortativity rises steadily

for both father-son and father-daughter earnings persistence. Only for father-

son persistence are the estimates sufficiently precise to be statistically signif-

icant. The controls explain a great deal of the variability across families in

assortativity—over one third of the variation can be explained by the demo-

graphic controls alone, and almost half is explained when the education decile

indicators are added. After the controls are added, assortative mating accounts

for about one-quarter of the observed earnings persistence between fathers and

either sons or daughters.

7 Conclusion

This paper provides the first empirical evidence on the effect of assortative mat-

ing on intergenerational persistence of schooling and earnings. I conceptual-

ize educational assortative mating as the degree to which parents’ percentile

ranks within sex-specific education distributions are equally matched, that is,

the degree to which the most-educated men partner with the most-educated

19



women. This method is robust to sex differences in education distributions and

to changes in those education distributions over time, and naturally reflects the

fact that mating is likely to be assortative on many traits that are correlated

with education. I also show how a two-step estimation method can be used to

estimate the effect of a regressor of interest on intergenerational persistence.

I find than in the U.S., in families in which parents’ education ranks are

more closely matched, intergenerational persistence is higher. I use these results

to predict levels of intergenerational persistence if mating were random instead

of positively assortative. Observed patterns of assortative mating can explain

about one quarter of intergenerational persistence of schooling and earnings.

It is interesting to consider whether these findings might have any implica-

tions for changes over time in intergenerational persistence or for understanding

cross-country differences in intergenerational persistence. The summary statis-

tics in Table 1 show that assortative mating among parents became stronger

between the 1950s and 1980s in the U.S. Using the results in Table 6 on how as-

sortativity affects earnings persistence between fathers and sons, the change in

average assortativity over this time period predicts an increase in the intergen-

erational earnings elasticity of 0.016, which is small compared to the estimated

elasticity of 0.40. Assortative mating can explain a significant fraction of the level

of intergenerational persistence of schooling and earnings, but observed changes

in assortativity over time do not predict large changes in intergenerational per-

sistence.

The potential implications of these results for cross-country differences in

persistence is less clear. It is well-documented that intergenerational earnings

persistence is higher in the U.S. than in many other developed countries (Solon,

2002; Corak, 2013). But because the measure of assortativity in this paper is

novel, it is unknown precisely how assortative mating in the U.S., as defined

here, compares to assortativity in other countries. However, some research using

other measures of assortative mating has shown that assortativity is higher in the

U.S. than in many other developed countries (Fernández, Guner, and Knowles,

2005), notably including Britain, Canada, and the Nordic countries, for which

the best comparative evidence exists showing that intergenerational earnings
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persistence is relatively high in the U.S. This raises the possibility, which may

be an interesting direction for future research, that some of the difference in

intergenerational persistence across countries may reflect differences in sorting

patterns among parents.
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Table 1: Summary statistics on educational assortative mating

Mean of rank distance Mean of assortativity

|k f
i − km

i | ri = −(k
f
i − km

i )
2

Overall 0.156 −0.048

By child’s race:

White 0.155 −0.047

Black 0.158 −0.051

Other 0.186 −0.071

By child’s education:

High school or less 0.158 −0.049

Some college 0.163 −0.050

College or more 0.150 −0.045

By child’s decade of birth:

1950s 0.164 −0.053

1960s 0.169 −0.054

1970s 0.153 −0.046

1980s 0.136 −0.037

1990s 0.151 −0.043

Alternative sorting patterns:

Perfectly assortative 0 0

Random matching 0.333 −0.167

Perfectly disassortative 0.500 −0.333

Notes: N = 4152. For a child in family i, k f
i is the father’s percentile rank within the

distribution of completed education among males born in the same year as the father,

and km
i is the mother’s percentile rank within the distribution of completed education

among females born in the same year as the mother. The education distributions are es-

timated using decennial Census and ACS data. For precise definitions of the alternative

sorting patterns, see section 4.
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Table 2: Assortativity and father-son schooling persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.30 0.37

Second step regression

Dependent variable: child’s schooling

Assortativity residual × father’s schooling 0.68∗∗∗ 0.92∗∗∗ 1.02∗∗∗

(0.23) (0.26) (0.28)

Assortativity residual −8.85∗∗∗ −12.11∗∗∗ −13.70∗∗∗

(2.73) (3.00) (3.21)

Father’s schooling 0.36∗∗∗ 0.37∗∗∗ 0.37∗∗∗ 0.36∗∗∗

(0.02) (0.02) (0.02) (0.02)

Constant 9.12∗∗∗ 8.98∗∗∗ 9.00∗∗∗ 9.11∗∗∗

(0.22) (0.22) (0.22) (0.22)

Estimated effect of assortativity 0.08 0.11 0.12

Notes: N = 1780. Estimated effect of assortativity refers to the difference between predicted persistence at

the observed mean value of assortativity and predicted persistence at the value of assortativity that would

prevail if parents were randomly matched; see text for details. Standard errors, in parentheses, are robust to

heteroskedasticity and to clustering on PSID family ID. For tests of the null hypothesis that the regression

parameter is zero, ∗ indicates p < 0.10, ∗∗ indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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Table 3: Assortativity and father-daughter schooling persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.29 0.32

Second step regression

Dependent variable: child’s schooling

Assortativity residual × father’s schooling 0.81∗∗∗ 0.93∗∗∗ 0.93∗∗∗

(0.21) (0.25) (0.26)

Assortativity residual −10.21∗∗∗ −11.63∗∗∗ −11.48∗∗∗

(2.47) (3.09) (3.17)

Father’s schooling 0.39∗∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.39∗∗∗

(0.02) (0.02) (0.02) (0.02)

Constant 8.99∗∗∗ 8.90∗∗∗ 8.94∗∗∗ 9.00∗∗∗

(0.25) (0.24) (0.25) (0.25)

Estimated effect of assortativity 0.10 0.11 0.11

Notes: N = 1810. Estimated effect of assortativity refers to the difference between predicted persistence at

the observed mean value of assortativity and predicted persistence at the value of assortativity that would

prevail if parents were randomly matched; see text for details. Standard errors, in parentheses, are robust to

heteroskedasticity and to clustering on PSID family ID. For tests of the null hypothesis that the regression

parameter is zero, ∗ indicates p < 0.10, ∗∗ indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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Table 4: Assortativity and mother-son schooling persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.30 0.37

Second step regression

Dependent variable: child’s schooling

Assortativity residual × mother’s schooling 1.36∗∗∗ 0.89∗∗ 0.94∗∗∗

(0.26) (0.39) (0.34)

Assortativity residual −17.56∗∗∗ −12.02∗∗ −13.11∗∗∗

(3.24) (5.07) (4.50)

Mother’s schooling 0.41∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.41∗∗∗

(0.02) (0.02) (0.02) (0.02)

Constant 8.56∗∗∗ 8.69∗∗∗ 8.69∗∗∗ 8.63∗∗∗

(0.30) (0.31) (0.32) (0.31)

Estimated effect of assortativity 0.16 0.10 0.11

Notes: N = 1780. Estimated effect of assortativity refers to the difference between predicted persistence at

the observed mean value of assortativity and predicted persistence at the value of assortativity that would

prevail if parents were randomly matched; see text for details. Standard errors, in parentheses, are robust to

heteroskedasticity and to clustering on PSID family ID. For tests of the null hypothesis that the regression

parameter is zero, ∗ indicates p < 0.10, ∗∗ indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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Table 5: Assortativity and mother-daughter schooling persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.29 0.32

Second step regression

Dependent variable: child’s schooling

Assortativity residual × mother’s schooling 1.07∗∗∗ 0.55∗ 0.63∗∗

(0.27) (0.30) (0.27)

Assortativity residual −13.70∗∗∗ −6.97∗ −8.20∗∗

(3.62) (4.13) (3.75)

Mother’s schooling 0.47∗∗∗ 0.46∗∗∗ 0.47∗∗∗ 0.47∗∗∗

(0.02) (0.02) (0.02) (0.02)

Constant 8.03∗∗∗ 8.10∗∗∗ 8.07∗∗∗ 8.05∗∗∗

(0.29) (0.29) (0.30) (0.30)

Estimated effect of assortativity 0.13 0.07 0.08

Notes: N = 1810. Estimated effect of assortativity refers to the difference between predicted persistence at

the observed mean value of assortativity and predicted persistence at the value of assortativity that would

prevail if parents were randomly matched; see text for details. Standard errors, in parentheses, are robust to

heteroskedasticity and to clustering on PSID family ID. For tests of the null hypothesis that the regression

parameter is zero, ∗ indicates p < 0.10, ∗∗ indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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Table 6: Assortativity and father-son earnings persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.36 0.43

Second step regression

Dependent variable: child’s earnings

Assortativity residual × father’s earnings 0.36 0.88∗∗ 1.13∗∗∗

(0.42) (0.41) (0.40)

Assortativity residual 0.02 −0.04 −0.30

(0.26) (0.28) (0.28)

Father’s earnings 0.40∗∗∗ 0.39∗∗∗ 0.39∗∗∗ 0.39∗∗∗

(0.05) (0.05) (0.05) (0.05)

Estimated effect of assortativity 0.04 0.10 0.12

Notes: N = 1052. All second-step regressions also include a constant and control for a quartic in father’s

age relative to 40, a quartic in child’s age relative to 40, and father’s earnings interacted with a quartic in

child’s age relative to 40, in order to address lifecycle biases (see section 5 for details). Estimated effect of

assortativity refers to the difference between predicted persistence at the observed mean value of assortativity

and predicted persistence at the value of assortativity that would prevail if parents were randomly matched;

see text for details. Standard errors, in parentheses, are robust to heteroskedasticity and to clustering on

PSID family ID. For tests of the null hypothesis that the regression parameter is zero, ∗ indicates p < 0.10, ∗∗

indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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Table 7: Assortativity and father-daughter earnings persistence

(1) (2) (3) (4)

First step regression

Dependent variable: parents’ assortativity

Constant yes yes yes

Birth decade × birth region × race

indicators for each parent yes yes

Education decile indicators for each parent yes

R2 0.00 0.37 0.43

Second step regression

Dependent variable: child’s earnings

Assortativity residual × father’s earnings 0.32 0.50 0.84

(0.62) (0.84) (0.85)

Assortativity residual −0.16 0.07 −0.08

(0.35) (0.50) (0.53)

Father’s earnings 0.27∗∗∗ 0.27∗∗∗ 0.28∗∗∗ 0.28∗∗∗

(0.07) (0.07) (0.07) (0.07)

Estimated effect of assortativity 0.04 0.06 0.10

Notes: N = 1019. All second-step regressions also include a constant and control for a quartic in father’s

age relative to 40, a quartic in child’s age relative to 40, and father’s earnings interacted with a quartic in

child’s age relative to 40, in order to address lifecycle biases (see section 5 for details). Estimated effect of

assortativity refers to the difference between predicted persistence at the observed mean value of assortativity

and predicted persistence at the value of assortativity that would prevail if parents were randomly matched;

see text for details. Standard errors, in parentheses, are robust to heteroskedasticity and to clustering on

PSID family ID. For tests of the null hypothesis that the regression parameter is zero, ∗ indicates p < 0.10, ∗∗

indicates p < 0.05, and ∗∗∗ indicates p < 0.01.
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