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Abstract

I investigate how variations in peer groups across time can be used to identify and

estimate peer effects in the presence of sorting and other confounding factors. I propose

a simple estimator for the linear-in-means model of peer effects that can be extended

to more general models of social interactions and to cases where there is feedback from

past outcomes to current covariates or peer group assignment. In order to establish the

asymptotic properties of the proposed estimators, I also develop an asymptotic framework

for cross-sectional dependence characterized by time-varying cluster membership and for

estimators that use non-nested two-way fixed effects transformations. As an empirical

application, I evaluate the importance of accounting for peer-effects in models of student

learning using administrative student achievement data from North Carolina.
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1 Introduction

Peer effects are hard to identify with observational data because similarities in the behavior of

peers could be due to peer effects or to selection into peer groups based on common unobserved

characterisitcs (homophily), or to factors that affect all peers in a peer group (confounding

factors). This issue was dubbed the reflexion problem by Manski (1993).

In this paper I show that variations in peer groups over time can be used to identify peer

effects. I start with a model which has the model in Manski (1993) as a special case and

show that when this model is observed over time and peer group assignment varies over time,

peer effects are identified even in the presence of homophily and confounding factors, as long

as some restrictions are imposed on these phenomena. I define a simple estimator for peer

effects from this model which is consistent and asymptotically normal under an assumption of

mean independence of the transitory shocks and efficient under an additional assumption of

homoscedasticity and serial uncorrelation, hence this estimator can be dubbed parsimonious

and locally efficent. The framework I use is relatively flexible and can accomodate the presence

of feedback from past outcomes to current covariates or current peer group assignment. As

an empirical application I evaluate the importance of accounting for peer effects in models of

student learning using administrative data on student achievement.

Peer effects have generated a large amount of work both in the empirical literature and

in the econometric literature. Because of the issues of identification pointed out in Manski

(1993), experimental or quasi-experimental designs have often been used in empirical work.

Among many other papers, Sacerdote (2001), Zimmerman (2003), Graham (2008), Duflo et al.

(2011), Aral and Walker (2011) use data where peer groups are randomly assigned. Imberman

et al. (2012) use hurricane Katrina as an exogenous source of variation in peer groups, Dahl

et al. (2014) exploit a regression discontinuity design in outcome to identify peer effects. In

one of the few papers using natural experiments and panel data that I am aware of, Aral et al.

(2015) use variations in weather for peers who live in different geographical areas as sources

of exogenous variation in outcome to identify peer effects.

With observational cross-sectional data, Lee (2007), Bramoullé et al. (2009), and Davezies
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et al. (2009) showed that peer effects are identified in the presence of specific forms of ho-

mophily and confounding factors when a slight modification to the model of Manski (1993)

is used (namely when leave-one-out averages are used instead of averages) and when the size

of peer groups varies. I show that, with panel data, peer effects are identified with more

general forms of homophily and confounding factors, independently of whether a model with

leave-one-out averages or averages is used, which hopefully addresses some of the concerns of

weak instrumental variables and identification by functional form voiced in Angrist (2014) for

instance. Aral et al. (2009) used an estimator that accounts for general forms of homophily as

long as it is based on observed covariates only, in the absence of confounding factors. In our

model, no restriction is imposed on the relationship between peer group assignment and un-

observed (and observed) characteristics. This is a desirable feature to study student learning

since previous evidence has shown that unobserved characteristics account for a large part of

the heterogeneity in student learning, which makes it likely that unobserved characteristics

also play an important role in peer group assignment.

With panel data, Manresa (2015) studies the identification and estimation of peer effects

using data on many observations over many time periods when peer relationships are not

assumed to be observed, but are assumed to be stable over time and relatively few. Here I

consider the case where observations span only a few time periods and the composition of peer

groups changes over time, but the existence of a peer relationship is assumed to be observed.

Hence the analysis presented in this paper can be seen as complementary to the work in

Manresa (2015). For the empirical study of peer effects in student learning, a framework with

few time periods is necessary since students are typically observed only for a few years while

in school.

Arcidiacono et al. (2012) also consider a model of peer effects with panel data and few

time periods. They consider a model without confounding factors and without observed

covariates and propose a non-linear least square estimator that estimates simultaneously peer

effects and individual unobserved heterogeneity. They provide conditions under which their

estimator does not run into an incidental parameters issue. However, as is known from earlier
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panel data literature (see Wooldridge (2010) for instance), so-called fixed effects estimators,

which relie on the estimation of parameters with dimension proportional to sample size, are

consistent for parameters of interest only in very specific special cases. In this paper I take

a different approach which consists in transforming peer effects models so that a method of

moments approach can be used. As a result, the estimator proposed in this paper can not only

accomodate observed covariates and confounding factors, but is also easily extended to models

where there is feedback from past outcomes to current covariates or peer group assignment.

In addition, conditions for the efficiency of the simple estimators proposed in this paper are

easily characterized. Feedback from past outcomes to current covariates is often very likely to

be present when using observational panel data. In the case of models of student learning for

instance, past educational inputs are likely to have an effect on current and future learning.

Empirically, Andrabi et al. (2011) found that allowing for feedback in student learning yielded

very different results from results obtained after imposing the ex-ante restriction that no

feedback exists or that feedback does not decay with time. Dynamic peer group assignment

is also likely to be present jointly with peer effects when using observational panel data.

Indeed if peer effects have a significant role in determining outcomes, past outcomes might

affect decisions on what peers an observation should be exposed to. Goldsmith-Pinkham and

Imbens (2013) considered models where the dynamics in peer group assignment is assumed

to be correctly specified. We will show that an additional advantage of our approach is that

it allows us to be agnostic about the form of the dynamics in peer groups assignment when

confounding factors are not included in the model, although some restrictions will have to be

imposed when confounding factors are included in the model.

The estimators I propose take the general form of instrumental variable estimators where

a transformation of the data is used to remove non-nested two-way fixed effects and where

cross-sectional dependence is present. The cross-sectional dependence takes the form of clus-

ter dependence in a given time period, but since cluster membership changes over time,

asymptotic results for independent non-identically distributed cannot be applied. I show that

asymptotic results for spatial data can be used for this case and present sufficient condi-
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tions for the proposed estimators to be
√
n-asymptotically normal, where n is the number of

cross-sectional observations. Regarding non-nested two-way fixed effects estimation, unlike in

Abowd et al. (1999) I consider the case where an incidental parameter problem arises from

estimating either of the fixed effects, not only from estimating one of the fixed effects (namely

worker fixed effects in Abowd et al. (1999), as opposed to firm fixed effects which are assumed

to be finite-dimensional in Abowd et al. (1999)). I show that conditions are needed on the

assignment process to categories for the quantities entering commonly used estimators to sat-

isfy laws of large numbers and central limit theorem. I also generalize the estimator to the

case where dynamics are present in the covariates, which would invalidate existing estimators.

Section 2 presents the simplest form of the model and compares it to other models that

have been used in the econometric literature. It also contains the basic result of lack of

identification of peer effects in the absence of variations in peer groups over time. Section

3 shows how a simple estimator for peer effects is obtained, and provides conditions under

which this estimator is consistent and asymptotically normal. It also extends the results to

the presence of feedback from past outcomes to current covariates and peer group assignment.

Finally it shows that the approach presented in this paper can be extended to any model in the

so-called class of spatial models of social interactions. Section 4 applies the methods outlined

in the previous section to the emprical study of peer effects in models of student learning.

2 The model

First consider a model for i = 1, ..., n, t = 1, ..., T that can be written as:

yit = ci + xitβ0 + (γ0 − 1)
1

npit

∑

j∈pit

(cj + xjtβ0) + uit (2.1)

E(uit|x, p) = 0 (2.2)

where i is a cross-sectional observation, t a time period, ci is unobserved heterogeneity, xit

are observed covariates (but not necessarily finite dimensional, see next section), uit are

unobserved shocks, pit is the peer group of observation i in period t, x = {xit}i=1,2,...,t=1,...,T
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and p = {pit}i=1,2,...,t=1,...,T . We also impose γ0 ̸= 0 as is standard in the rest of the literature

on peer effects.

γ0 is the social multiplier, i.e. the effect of a policy raising xβ0 for all observations by

one unit on average outcomes. In the absence of peer-effects, the effect of such a policy on

average outcomes would be one, with positive peer-effects it would be greater than one and

with negative peer-effects it would be less than one.

Homophily is captured by the dependence between group membership pit and unobserved

heterogeneity ci. Unobserved shocks that vary over time, uit, are assumed to be mean inde-

pendent of the past, current, and future values of the covariates and of peer group membership

for now, but this is relaxed in later sections.

x contains covariates that might be specific to an observation i and affect observation

i’s peers through peer effects and also contains confounding factors that might be common

to all observations in a specific peer group, although we will see later that we will assume

that these confounding factors are not an exact function of group membership, i.e. they

either vary within groups or they are common to different groups over time. In our empirical

application for instance, cofounding factors that are common to all students in a classroom

will be interpreted as being the effect of teacher quality on student achievement and some

restriction will be imposed on how teacher quality changes over time (teacher quality not

changing over time being the simplest of such restrictions).

Comparison with the model of Manski 1993 In the absence of time variation, Manski

(1993) showed that the model given by (2.1) and (2.2) is not identified.

Indeed, for a particular time period, the model given by (2.1) and (2.2) can be recast as

in Manski (1993). (2.1) and (2.2) can be rewritten as:

E(yit|x, p) = E(ci|x, p) + xitβ0 + (γ0 − 1)
1

npit

∑

j∈pit

(E(cj |x, p) + xjtβ0) (2.3)

If E(ci|x, p) = E(ci|pit), which would be true for instance if x were independent of both
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group membership and unobserved heterogeneity, then the the above equation becomes:

E(yit|x, p) = γ0E(ci|pit) + xitβ0 + (γ0 − 1)
1

npit

∑

j∈pit

xjtβ0 (2.4)

which for any particular time period t corresponds to equation (5) in Manski (1993).

The purpose of this paper is to show that time variations in peer groups can be succesfully

used to identify this model.

Comparison with the model of Graham (2008) Graham (2008) also considers the case

where only cross-sectional data is available. In Graham (2008), homophily is assumed away,

so that E(ci|pit) = E(ci). Systematic differences across peer groups other than those due

to peer effects are still present in the form of group level confounding factors. The running

example in Graham (2008) is that classroom level heterogeneity is due to differences in teacher

quality, and the assignment of teachers to classrooms is assumed to be at random.

In our model we could have xit = {1[dit = d]}d=1,...,D where dit is student i’s teacher in

time period t, and D is the number of teachers observed in the data. Hence our equation

(2.1) would be written:

yit = γ0edit + ci + (γ0 − 1)
1

npit

∑

j∈pit

cj + uit (2.5)

where edit is the component of β0 corresponding to d such that 1[dit = d] = 1.

No restriction other than mean independence is imposed on uit in (2.1) and (2.2), so that

a special case for uit is:

uit = vit + (γ0 − 1)

∑

j∈Pit
vjt

npit

E(vit|x, P ) = 0
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in which case, redefining ϵit = ci + vit, we have:

yit = edit + ϵit + (γ0 − 1)

∑

j∈pit
ϵjt

npit
(2.6)

which, for any particular time period t, corresponds to equation (1) in Graham (2008).

Unlike in Graham (2008) however, the dependence between edit , pit, and ci is not restricted,

so that homophily (selection into peer groups) and correlated confounding factors (matching

of teachers to classrooms) are present in the model. One important caveat with our approach

is that some restriction has to be imposed on how teacher quality changes over time. Here

and throughout the paper we use the assumption that teacher quality does not change over

time, but this could be relaxed to a more flexible restriction.

Linear-in-means model with averages or leave-one-out averages Instead of the

model given by (2.1) and (2.2), one could consider the model:

yit = ci + xitβ0 + η0
1

npit − 1

∑

j∈pit,i ̸=j

(cj + xjtβ0) + λ0
1

npit − 1

∑

j∈pit,i ̸=j

E(yit|x, p) + uit

(2.7)

E(uit|x, p) = 0 (2.8)

which is considered in Arcidiacono et al. (2012) for λ0 = 0 and xit = ∅.

While for simplicity I concentrate on the specification with averages given by (2.1) and

(2.2) in most of the paper, Section 3.3 shows that the results can easily be extended to the

leave-one-out average specification to estimate β0, η0 and λ0 consistently, and efficiently under

some additional conditions. In fact any model in the class of so-called spatial models of social

interactions can be accomodated by the framework presented here.

Therefore, provided that peer groups vary over time, the approach presented in this pa-

per addresses concerns of identification by functional form or of weak instrumental variables

that were present when working with cross-sectional data, as expressed in Angrist (2014) for

instance.
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Non-identification in the absence of variation in peer groups

Proposition 1. For β0 = 0, γ0 is not identified in the model given by (2.1) and (2.2) if peer

groups do not change over time or if E(ci|x, p) does not change across individuals.

Proof. If peer groups do not change over time, with β0 = 0, one can redefine ci = ci + (γ0 −

1) 1
npit

∑

j∈pit
cj and γ0 = 1 so that a model with no peer effects is observationally equivalent

to a model with non-zero peer effects. If E(ci|x, p) does not change across individuals, one

can redefine ci in the same fashion.

3 Identification and Estimation

Note that, for γ0 ̸= 0, from (2.1) we have:

γ0 − 1

γ0

1

npit

∑

j∈pit

yit = (γ0 − 1)
1

npit

∑

j∈pit

(cj + xjtβ0) +
γ0 − 1

γ0

1

npit

∑

j∈pit

ujt (3.1)

Let ȳit =
1

npit

∑

j∈pit
yit and ūit =

1
npit

∑

j∈pit
uit, then:

yit −
γ0 − 1

γ0
ȳit = ci + xitβ0 + uit −

γ0 − 1

γ0
ūit (3.2)

E(uit −
γ0 − 1

γ0
ūit|x, p) = 0 (3.3)

Note that, for γ0 ̸= 0, there is a one-to-one mapping from γ0−1
γ0

to γ0, so that our objective

will be to estimate η0 ≡ γ0−1
γ0

instead of γ0.

As mentioned above, xit is not restricted to be finite dimensional. We write xit = [zit, wit]

and β
′

0 = [e
′

, θ
′

0] where θ0 is finite-dimensional but the dimension of e = [e1, ..., eD ]
′

can

depend on sample size n. For simplicity, since our empirical objective here is to estimate a

model of student achievement, we will restrict our attention to the case where zit is a vector

of mutually exclusive indicator functions, which in our application will be indicator functions

for which teacher teaches student i in time period t among all teachers observed in the data,

zit = [1[dit = d]]d=1,...,D. However the following reasoning could be extended to the case where

zit is a more general vector of explanatory variables of growing dimension if needed.
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We can rewrite:

yit − η0ȳit = ci + edit + witθ0 + uit − η0ūit (3.4)

E(uit − η0ūit|x, p) = 0 (3.5)

Because of homophily, it is likely that peer group membership pit is not independent of an

observation’s unobserved heterogeneity ci. In addition, it is likely that wit is directly related

to edit or that ci is related to edit , which then would likely imply that pit is not independent of

edit . Hence we cannot treat ci and edit as unobserved shocks that would be mean independent

of w and p.

On the other hand, we also cannot estimate e and c = [c1, ..., cn]
′

since, as their dimension

grows proportionally with sample size, estimators for e and c would be inconsistent, resulting

in an issue of incidental parameters.

Hence our objective is to estimate η0 and θ0 consistently in the presence of arbitrary

dependence between xit, pit and ci, edit .
1

Let git = [[1[dit = d]]d=1,...,D, [1[i = s]]s=1,...,n], let g = [git]i=1,...,n,t=1,...,T , y = [yit]i=1,...,n,t=1,...,T ,

ȳ = [ȳit]i=1,...,n,t=1,...,T , w = [wit]i=1,...,n,t=1,...,T , ü = [uit − η0ūit]i=1,...,n,t=1,...,T .

Hence with this new notation we have:

y − η0ȳ = g[e
′

, c
′

]
′

+ wθ0 + ü (3.6)

E(ü|x, p) = 0 (3.7)

Define Mg = I − g(g
′

g)−g
′

, where A− is a generalized inverse of A.2

1In a second step we might also be interested in recovering information on the distribution of ci and edit ,
see the empirical application below.

2Lemma 1 in the appendix shows that the estimator defined here is algebraically identical no matter which
generalized inverse of g

′

g is used.
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Then:

Mg(y − η0ȳ − wθ0) = Mgü (3.8)

E(Mgü|x, p) = 0 (3.9)

The unfeasible estimator for η0 and θ0 proposed in this paper is:

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

= (z
′

Mg[ȳ, w])
−1z

′

Mgy

z = [zit]i=1,...,n,t=1,...,T

zit = [E(ȳit|x, p), wit]

From (3.1) and (2.2):

E(ȳit|x, p) = γ0(w̄itθ0 +
1

npit

∑

j∈pit

(E(edjt |x, p) + E(cj |x, p)))

= γ0(w̄itθ0 + E(edit |x, p) +
1

npit

∑

j∈pit

E(cj |x, p))

But [1[dit = d]]d=1,...,DMg = 0. Hence redefine zit = [w̄itθ0+E(c̄it|x, p), wit], we still have:3

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

= (z
′

Mg[ȳ, w])
−1z

′

Mgy

3Papers such as Lee and Yu (2010) considered spatial panel data models with fixed effects that are in
some ways similar to the peer effects model considered in this paper, but where the location of observations
(which would in some ways correspond to an observation’s peer group in our model) is assumed to be fixed
over time, so that identification is obtained from time-varying covariates that are assumed to have non-zero
coefficients. It is interesting to note that, when the location of an observation is assumed to be fixed over
time, E(c̄it|x, p) in these models would be constant over time, i.e. a linear function of [1[i = s]]s=1,...,n. Since
[1[i = s]]s=1,...,nMg = 0, that quantity would also vanish from zit. Here however, E(c̄it|x, p) will be necessary
to obtain an efficient estimator, as shown in Proposition 4.
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in addition, from (3.6) we have:

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

=

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

+ (z
′

Mg[ȳ, w])
−1z

′

Mgü (3.10)

Next we list assumptions that will guarantee that

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

is a consistent and
√
n-asymptotically

normal estimator for

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

.

Let Sit = {(j, s) : j = 1, ..., n, s = 1, ..., T, j = i ∨ (t = s ∧ pit = pjt)} be the set of all

observations that are either observations on i at different time periods or classmates of i in

time period t.

Assumption 1. ∀ i, j = 1, ..., n, ∀ t, s = 1, ..., T , 1 ≤ npit ≤ M < ∞, and, if (j, s) /∈ Sit, then

D(uit, ujs|x, p) = D(uit|x, p)D(ujs|x, p).

This first assumption implies that, conditional on the observed covariates, the transitory

shocks uit are independent across groups in a given time period or across time for different

observations. Such dependence structure would exist for instance if uit could be decomposed

between a classroom component and a student specific component: uit = eppit,t + esit and

{epp,t}t,p ⊥ {esit}i,t|x, p, e
p
p,t ⊥ ep

p,t′
|x, p for t ̸= t

′

, esit ⊥ es
i′ t′

for i ̸= i
′

.

For any d = 1, ...,D and d
′

= 1, ...,D, define ndd′ =
∑

i=1,...,n

∑

s,t=1,...,n 1[dit = dj−1]1[dis =

dj] to be the number of students that have had both d and d
′

as teachers. Then define

bd,d′ = min{k : ∃{d1, ..., dk−1} s.t. ndj−1dj > 0∀ j = 1, ..., k, d0 = d, dk = d
′} where as a

convention we set min{∅} = 0, to be the number of steps on the shortest path from d to d
′

,

where two teachers are connected if they have had at least one student in common, and where

we set bdd′ = 0 if there is no path linking d to d
′

. Finally define bn = maxd,d′=1,...,D{bd,d′ } to

be the maximum number of steps separating any two teachers in the data that are connected.

If we see all of the teachers in the data as vertices, and whether two teachers have taught at

least one student in common as edges, bn is called the diameter of the resulting graph.
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Assumption 2. For any random sequence {an}n=1,2,... where an is (n+D)× 1:

a) λmin(
1
n

∑

i,tE((zit − gitan)
′

(zit − gitan))) > c > 0 ∀n > N

b) λmin(
1
nV ar(

∑

i,t(zit − gitan)
′

üit)) > c > 0 ∀n > N

For some random variable B ∈ (0,+∞) with E(B) < ∞:

c) ∀n, ∀ i, j = 1, ..., n, E(|ci|4+δ) ≤ C < ∞, E(|uit|4+δ|x, p) ≤ B, |zit[k]|4+δ ≤ B a.s.

d) E(Bb4+δ(MT 2)(4+δ)b) < C < ∞

Assumption 2a) implies that, after student and teacher level variations are removed, there

are still linearly independent variations in the variables in zit. For simplicity, consider the

case where there is no time-varying covariates, wit = ∅ (but x can include any time constant

variable that can help predict ci). Then zit = E(c̄it|x, p) = 1
npit

∑

j∈pit
E(cj |x, p) and Assump-

tion 2a) implies that the variations in 1
npit

∑

j∈pit
E(cj |x, p) cannot be perfectly predicted by

teacher and student level variations. For Assumption 2a) to be satisfied, 1
npit

∑

j∈pit
E(cj |x, p)

should change across time for many students and teachers. If peer groups do not change over

time for instance, then 1
npit

∑

j∈pit
E(cj |x, p) does not change over time for students, even

though it might change over time for teachers. If E(ci|x, p) does not change across individu-

als, then 1
npit

∑

j∈pit
E(cj |x, p) changes over time for neither students nor teachers. If teachers

are always assigned students with the same average ability level, then 1
npit

∑

j∈pit
E(cj |x, p)

does not change over time for teachers, even though it might change over time for students.

These three situations would be cases where Assumption 2a) is violated when there is no

time-varying covariates or θ0 = 0.

Assumption 2b) is a standard assumption of asymptotic ignorability of any particular

summand (zit−gitan)
′

üit. Assumption 2c) is also standard and bounds the higher moments of

uit and zit. Assumption 2d) bounds the diameter of the graph formed by teachers as decribed

above in expected value. This assumption is needed to guarantee the existence of higher

moments of transformed variables from removing both student and teacher effects. With a

model that contains only student effects ci and finite dimensional covariates, Assumption 2d)

would not be needed.

Assumption 3. All observations can be split into R groups and D({{xrj , prj}j=1,...,Nr}r=1,...,R) =
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∏R
r=1D({xrj , prj}j=1,...,Nr). In addition,

Rmax{nr}r=1,...,R

n = O(1) and R → ∞ as n → ∞.

This last assumption imposes a relatively mild restriction on the cross-sectional depen-

dence of the covariates ... It is composed of three parts: independence across groups, the

number of groups grows unboundedly, the size of each group in general grows at the same

rate. This assumption is relatively mild because no restriction is imposed on the dependence

of observations inside each group and on the rate at which R grows compared to n. R could

increase very slowly compared to n, so that groups with unrestricted within-dependence could

be very large, but the asymptotic rate of convergence of the estimator we propose will still

be
√
n. This is because Assumption 1 and Assumption 3 can be combined to show that our

estimator has
√
n rate of convergence. Assumption 3 fits our empirical application well since

our data can naturally be split into 115 school districts, with a maximum enrollment of around

47,000 students and an average enrollment of around 4,000 students.

Under these three assumptions, the estimator defined above is consistent and asymptoti-

cally normal.

Proposition 2. Under (2.1) and (2.2) and Assumptions 1-3, we have:

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

p→

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

(3.11)

and:

√
nV

− 1
2

n An(

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)
d→ N(0, I)

An =
1

n
E(z

′

Mgz)

Vn =
1

n
E(z

′

Mgüü
′

Mgz)

The next proposition is concerned with the conditions under which η̂, θ̂ is efficient for

estimating η0, θ0. We can first note that, with regard to the estimation of θ0, η0, the model

given by (3.6) and (3.7) is equivalent to the model given by (3.8) and (3.9) since there is no

14



restriction imposed on the conditional distribution of c, e. Indeed (3.6) and (3.7) are implied

by:

E(Pg(y − wθ0 − η0ȳ)− g

⎡

⎢

⎣

c

e

⎤

⎥

⎦

|x, p) = 0 (3.12)

E(Mg(y − wθ0 − η0ȳ)|x, p) = 0 (3.13)

and the first equation can be written:

gE(

⎡

⎢

⎣

c

e

⎤

⎥

⎦

|x, p) = g(g
′

g)−g
′

E(y −wθ0 − η0ȳ|x, p) (3.14)

For any θ, η,

gξ = g(g
′

g)−g
′

E(y −wθ − ηȳ|x, p) (3.15)

holds by setting ξ = (g
′

g)−g
′

E(y − wθ − ηȳ|x, p), and E(

⎡

⎢

⎣

c

e

⎤

⎥

⎦

|x, p) is an n + D × 1 vector

of unrestricted unknown functions. Hence (3.12) does not provide any restrictions on η0, θ0

that could be used for estimation, and we can restrict our attention to estimating θ0, η0 from

(3.13).

Assumption 4 considers a specific covariance structure for uit obtained from homoscedastic,

serially uncorrelated shocks with the same peer effects structure as the one that applies to

the observed covariates and the unobserved heterogeneity.

Assumption 4. uit = vit + (γ0 − 1) 1
npit

∑

j∈pit
vjt, Cov(vit, vjs|x, p) = σ2

v1[i = j, t = s].

Then under Assumption 4, the next proposition shows that the instruments z are the best

choice of instruments in terms of efficiency

Proposition 3. Consider any (K +1)×nT function Z of x, p, define Bn = E( 1nZ
′

Mg[ȳ, w])

and Wn = ( 1nV ar(Z
′

Mgü)).

15



If λminBn > c > 0 for all n > N and Assumption 4 holds then:

D = B−1
n WnB

−1
n −A−1

n VnA
−1
n (3.16)

is positive semi-definite.

SinceB−1
n WnB−1

n would be the asymptotic variance of an estimator defined by (Z
′

Mg[ȳ, w])−1Z
′

Mgy

provided that regularity conditions apply so that this estimator is
√
n-asymptotically normal,

the result of this proposition implies that z is the vector of optimal instruments for estimating

η0, θ0 from (2.1) and (2.2) under Assumption 4. Note that considering exactly identifying in-

struments Z is without loss of generality since it accounts for the case where over-identifying

instruments are used with optimal weighting already applied.

The last proposition shows that standard errors are consistent under Assumptions 1-3.

Proposition 4. Define V̂n = 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃js ˆ̈uit ˆ̈ujs, ˆ̈uit = yit − η̂ȳit − witθ̂.

Under (2.1) and (2.2) and Assumptions 1-3 we have:

√
nV̂

− 1

2
n (

1

n
z
′

Mg[ȳ, w])(

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)
d→ N(0, I) (3.17)

The estimator

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

is unfeasible since E(c|x, p) is unknown. In order to implement the

estimator, one should replace E(c|x, p) with an estimable predictor of c based on x, p. As in

Verdier (2015), one can use an auxiliary model that makes use of the cross-sectional depen-

dence likely induced by sorting on unobservables to obtain a stronger predictor of c based on

x, p. A simple auxiliary model for E(ci|x, p) could be chosen to be ET (ci|x, p, δ) from:

E1(ci|x, p, δ) = δ10 + wi1δ11 + w̄i1δ12

Et(ci|x, p, δ) = δt0 + wi2δt1 + w̄itδt2 + δt3Et−1(ci|x, p, δ) + δt4
1

npit

∑

j∈pit

Et−1(cj |x, p, δ)

{δtj}t=1,...,T,j=0,...,4 could be estimated by a non-linear regression of Mg2(y − η̂prelimȳ −

16



wθ̂prelim) on Mg2 [ET (ci|x, p, δ)]i=1,2,...,n,t=1,2,...,T , where

⎡

⎢

⎣

η̂prelim

θ̂prelim

⎤

⎥

⎦

is a consistent preliminary

estimator that could be obtained for instance by using {δ̂tj,prelim}t=1,...,T,j=0,...,4 obtained from

a non-linear regression of Mg2y on Mg2 [ET (ci|x, p, δ)]i=1,2,...,n,t=1,2,...,T .

As in Verdier (2015), the resulting estimator will be efficient if Assumption 4 holds and

the auxiliary model ET (ci|x, p, δ) actually coincides with E(c|x, p) for some δ, but even if

one or both of this conditions are violated, the resulting estimator will be consistent and

asymptotically normal, and will be close to being efficient if Assumption 4 and the auxiliary

assumption are good approximations for the true form of the conditional variance matrix of

ü and the true form of E(c|x, p).

3.1 Extension to sequentially exogenous covariates

The above analysis can be extended to models where feedback from past outcomes to current

covariates is present. In this section we consider models that can be written:

yit = ci + edit + witθ0 + (γ0 − 1)
1

npit

∑

j∈pit

(cj + wjtθ0) + uit (3.18)

E(uit|zt, g, p) = 0 (3.19)

where zt = {z1, ..., zt} and zt = {zit}i=1,2,.... Here again we also impose γ0 ̸= 0.

A simple example would be wit = zit = yit−1 for instance, which would lead to the dynamic

model with peer effects:

yit = ci + edit + θ0yit−1 + (γ0 − 1)
1

npit

∑

j∈pit

(cj + θ0yjt−1) + uit

E(uit|yt−1, g, p) = 0

17



The model can be transformed as in the previous section:

yit − η0
1

npit

∑

j∈pit

yjt = ci + edit + witθ0 + üit (3.20)

E(üit|zt, g, p) = 0 (3.21)

However since the set of instruments is increasing with time rather than being constant

over time as in the previous section, we cannot use the transformation used in the last section

to obtain moment conditions that do not involve ci or edit .

Since E(ci|zT , g, p) is unrestricted, the information found in (3.20) and (3.21) for estimat-

ing η0 and θ0 is equivalent to the information found in:

ẏit − η0 ˙̄yit − ẇitθ0 = ġ2ite+ ˙̈uit

E( ˙̈uit|zt, g, p) = 0

where ẋt = (T−t+1
T−t )

1

2 (xt − 1
T−t+1

∑T
s=t xs) for any variable xt.

Stacking over cross-sectional observations, define mt,0 = ẏt − η0 ˙̄yt − ẇtθ0, so that for any

t, (3.20) and (3.21) can be written:

E(mt,0 − ġ2te|zt, g, p) = 0 (3.22)

The information on E(e|zt, g, p) that is obtained from (3.20) and (3.21) for s = t+1, ..., T−

1 is contained in:

E(mt+1
0 − ġt+1

2 e|zt+1, g, p) = 0 (3.23)

This is equivalent to:

E(e|zt+1, g, p) = (ġt+1′
2 ġt+1

2 )−ġt+1′
2 E(mt+1

0 |zt+1, g, p)

+ (I − (ġt+1′
2 ġt+1

2 )−ġt+1′
2 ġt+1

2 )ξt

where ξt is a function of zt+1, g, p that is unrestricted.

18



Hence the information for estimating η0, θ0 found in (3.22) given (3.20) and (3.21) for

s = t+ 1, ..., T − 1 is the same information found in:

E(mt,0 − ġ2t((ġ
t+1′
2 ġt+1

2 )−ġt+1′
2 mt+1

0

+(I − (ġt+1′
2 ġt+1

2 )−ġt+1′
2 ġt+1

2 )ξt)|zt, g, p) = 0 (3.24)

which in turn is equivalent to:

E(M
ġ2t(I−(ġt+1′

2 ġt+1
2 )−ġt+1′

2 ġt+1
2 )

(mt,0 − ġ2t(ġ
t+1′
2 ġt+1

2 )−ġt+1′
2 mt+1

0 )|zt, g, p) = 0 (3.25)

since ξt is unrestricted.

Let At = [−M
ġ2t(I−(ġt+1′

2 ġt+1
2 )−ġt+1′

2 ġt+1
2 )

ġ2t(ġ
t+1′
2 ġt+1

2 )−ġt+1′
2 , M

ġ2t(I−(ġt+1′

2 ġt+1
2 )−ġt+1′

2 ġt+1
2 )

],

Xt = [ ˙̄ys , ẇis]s=T−1,...,t, Yt = [ẏs]s=T−1,...,t, Ut = [ ˙̈us]s=T−1,...,t, and Zt = At[E( ˙̄ys|zt, g, p) , E(ẇs|zt, g, p)]s=T−1,...,t

Our proposed estimator is:

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

= (
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtXt)

−1
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtYt (3.26)

Note that E( ˙̄ys|zt, g, p) = γ0(E( ˙̄ws|zt, g, p)θ0+E( ˙̄cs|zt, g, p)+ġ2sE(e|zt, g, p)) butAt[ġ2s]s=T−1,...,t =

0. Hence we can redefine Zt = At[(E( ˙̄ws|zt, g, p)θ0+E( ˙̄cs|zt, g, p)) E(ẇs|zt, g, p)]s=T−1,...,t and

still have:
⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

= (
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtXt)

−1
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtYt (3.27)

Note that from (3.18):ma

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

=

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

+ (
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtXt)

−1
T−1
∑

t=1

Z
′

t(AtA
′

t)
−AtUt (3.28)

Let Rit = {zt, ut−1, {ujt}j /∈pit , g, p}.

Assumption 5. ∀ i = 1, ..., n, ∀ t = 1, ..., T , 1 ≤ npit ≤ M < ∞, and E(uit|Rit) = 0.
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Assumption 5 is consistent with sequentially exogenous instruments zt, and allows for

arbitrary correlation for the transitory shocks uit within peer groups. However Assumption

5 also imposes serial uncorrelation of the transitory shocks, which was not assumed in the

previous section. This serial uncorrelation of the transitory shocks will allow one to use

asymptotic results for martingale difference sequences.

THIS SECTION TO BE COMPLETED IN FUTURE VERSIONS OF THE DRAFT.

3.2 Extension to Dynamic Peer Group and Teacher Assignment

A test for the strict exogeneity of peer group and teacher assignment could be obtained by

testing the significance of characteristics of future peers and teachers in the model estimated

as in the previous section. Such a test is presented and used in the empirical aplication in

Section 4.

If the covariates in the model are finite dimensional, dynamics in peer group assignment

can easily be accomodated in our framework.

Consider the model:

yit = ci + witθ0 + (γ0 − 1)
1

npit

∑

j∈pit

(cj + wjtθ0) + uit

E(uit|zt, pt) = 0

The same transformation as in the previous sections can be applied:

yit − η0ȳit = ci + witθ0 + üit

E(üit|zt, pt) = 0

Hence, for t = 1, ..., T − 1:

ẏit − η0 ˙̄yit = ẇitθ0 + ˙̈uit

E( ˙̈uit|zt, pt) = 0
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and a consistent locally efficient estimator could be obtained for this model in a similar way

as in the previous section.

Hence we see that with our approach, the dynamics of peer group assignment do not

have to be fully specified to estimate peer effects consistently, unlike with the approach found

in Goldsmith-Pinkham and Imbens (2013) where the form of the dynamics in peer group

formation is assumed to be correctly specified.

If unrestricted teacher effects, in addition to student effects, were included in the model,

there would be to my knowledge no transformation of the data that could yield moment

conditions to estimate η0, θ0 without additional restrictions. Identification and estimation of

the parameters of interest could be achieved under additional restrictions on the dynamics of

teacher assignment for instance, but this is left for future research.

3.3 Extension to a more general model of social interactions

For simplicity here I consider the case of strictly exogenous covariates and peer groups as-

signment, but the same extensions to the presence of feedback as in subsections 3.1 and 3.2

above could be made.

Consider the model:

yt = (I +Gt(θ0))(xtβ0 + c) + ut

E(ut|x,G) = 0

where Gt(θ0) is a function of x,G and governs the magnitude of peer effects.

This model is subject to the same identification issue as the linear-in-means model of the

previous section. Indeed if β0 = 0 and Gt(θ0) = Gs(θ0) for any t, s = 1, ..., T , c could be

redefined to be (I + G1(θ0))c so that a model without peer effects would be observationally

equivalent to a model that has peer effects.
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As long as (I +Gt(θ0)) is invertible, let üt = (I +Gt(θ0))−1ut:

(I +Gt(θ0))
−1yt = xtβ0 + c+ üt

E(üt|x) = 0

Hence, as in the previous section, one can stack the above model across time, let git =

[1[i = j]]j=1,...,n. We have:

Mx,g(I +G(θ0))
−1y = Mx,gü

E(Mx,gü|x,G) = 0

Hence, as long as the above conditions identify θ0, and proper regularity conditions hold, a

consistent, asymptotically normal and locally efficient estimator can be proposed as in Section

3.

Example: Leave-one-out linear in means model (To be included in future versions of the

draft) With endogenous and exogenous effects.

4 Application to estimating the importance of teacher quality

for student achievement

4.1 Why accounting for peer effects matters when evaluating the impor-

tance of teacher quality for student achievement

To be included in future versions of the draft

4.2 Empirical evaluation of the importance of teacher quality in the pres-

ence of peer effects with data from North Carolina

To be included in future versions of the draft
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5 Conclusion
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Appendix

To simplify notation, we will use C as a generic large constant, so that if we can show that a

is less than some arbitrary large constant, we will always write a ≤ C, independently of what

the arbitrary large constant actually is.

A Results for the model with strict exogeneity

Lemma 1 shows that any generalized inverse of g
′

g used to compute Mg yields the same

estimator. Hence we pick the generalized inverse that consists in selecting all teachers such

that the student indicators and selected teacher are linearly independent and taking the

inverse of the resulting cross-product matrix. Let A ⊆ {1, 2, ...,D} be a set of indexes of

teachers such that the matrix [1[i = s]]s=1,...,n
i=1,...,n,t=1,...,T , [1[dit = d]]d∈Ai=1,...,n,t=1,...,T ]has full rank

and all of the vectors in [1[dit = d]]d=1,...,D,d/∈A
i=1,...,n,t=1,...,T are linear functions of the vectors in [1[i =

s]]s=1,...,n
i=1,...,n,t=1,...,T , [1[dit = d]]d∈Ai=1,...,n,t=1,...,T ].

Let g1 = 1[i = s]]s=1,...,n
i=1,...,n,t=1,...,T , g2 = [1[dit = d]]d∈Ai=1,...,n,t=1,...,T , g2it = [1[dit = d]]d∈A and

ḡ2i =
1
T

∑T
s=1 g2is.

We set Mg = I − [g1, g2](

⎡

⎢

⎣

g
′

1g1 g
′

1g2

g
′

2g1 g
′

2g2

⎤

⎥

⎦

)−1

⎡

⎢

⎣

g
′

1

g
′

2

⎤

⎥

⎦

.

By the Frisch and Waugh theorem, Mg = (Mg1 −Mg1g2(g
′

2Mg1g2)
−1g

′

2Mg1).

Hence:

z
′

Mgü =
∑

i=1,...,n

∑

t=1,...,T

(z
′

it − z̄
′

i − an(g
′

2it − ḡ
′

2i))üit (A.1)

where an = z
′

Mg1g2(g
′

2Mg1g2)
−1 and z̄i =

1
T

∑T
s=1 zis.

Define z̃
′

it = z
′

it − z̄
′

i − an(g
′

2it − ḡ
′

2i) so that we can write:

z
′

Mgü =
n
∑

i=1

T
∑

t=1

z̃
′

itüit (A.2)
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and:

z
′

Mgz =
n
∑

i=1

T
∑

t=1

z̃
′

itz̃it (A.3)

Lemma 1. For any two generalized inverses of g
′

g, A and B, let MgA = I − gAg
′

and

MgB = I − gBg
′

, then z
′

MgA = z
′

MgB.

Proof. We can always write z = gδ + e where g
′

e = 0. Then:

z
′

MgA = δ
′

g
′

(I − gAg
′

) + e
′

(I − gAg
′

)

= e
′

= δ
′

g
′

(I − gBg
′

) + e
′

(I − gBg
′

)

= z
′

MgB

Proof of Proposition 2:

a) Proof of consistency of η̂ and θ̂.

a-i) 1
nz

′

Mgü = op(1)

Fix t, since 1
n

∑

i z̃itüit = op(1) implies 1
n

∑T
t=1

∑

i z̃itüit = op(1) for fixed T , and consider

the case where zit is a scalar, since consistency can be shown element by element in the case

3



where zit is a vector. From (...), E( 1n
∑

i z̃itüit) = 0. In addition:

V ar(
1

n

∑

i

z̃itüit) =
1

n2

∑

i

∑

j

E(z̃itz̃jtüitüjt)

=
1

n2

∑

i

∑

j

E(1[pit = pjt]z̃itz̃jtüitüjt)

≤ 1

n2

∑

i

∑

j

P (pit = pjt)
δ

1+δE(|z̃itz̃jtüitüjt|1+δ)
1

1+δ

≤ C
1

n2

∑

i

∑

j

P (pit = pjt)
δ

1+δ

≤ C(
1

n2

∑

i

∑

j

P (pit = pjt))
δ

1+δ

where the second equality follows from Assumption 1, the first inequality follows from Hölder’s

inequality, the second inequality follows from Lemma 3, and the third inequality follows from

Jensen’s inequality.

But since
∑

j 1[pit = pjt] ≤ M by Assumption 1, then
∑

i

∑

j 1[pit = pjt] ≤ Mn, so that:

∑

i

∑

j

P (pit = pjt) ≤ Mn (A.4)

Therefore:

V ar(
1

n

∑

i

z̃itüit) = o(1) (A.5)

so that 1
n

∑

i z̃itüit = op(1), so that z
′

Mgü = op(1) since
∑T

t=1 op(1) = op(1) for T fixed.

a-ii) 1
nz

′

Mg[ȳ, w]− E( 1nz
′

Mgz) = op(1)

From (...):

ȳ = w̄γ0θ0 + γ0ḡ1c+ g2e+ ū (A.6)

4



Hence:

1

n
z
′

Mg[ȳ, w] =
1

n
z
′

Mgz +
1

n
z
′

Mg[γ0ḡ1(c− E(c|x, p)), 0] + 1

n
z
′

Mg[γ0ū, 0] (A.7)

1
nz

′

Mgū = op(1) can be shown as in part a-i) of this proof.

To show 1
nz

′

Mgz − E( 1nz
′

Mgz) = op(1), again fix t and consider the case where zit is a

scalar, since the same reasoning can be applied to any cross-product in the elements of zit

when zit is a vector.

We want to show that 1
n

∑

i(z̃
2
it − E(z̃2it)) = op(1). Let bit = z̃2it − E(z̃2it)

E((
1

n

∑

i

bit)
2) =

1

n2

∑

i

∑

j∈ri

E(bitbjt)

≤ 1

n2

∑

i

∑

j∈ri

C

= C
1

n2

∑

i

nri

= C

∑

r n
2
r

n2

≤ C
max{nr : r = 1, ..., R}

n

where the first inequality follows from Lemma 3.

From Assumption 3, the last quantity on the right hand side is o(1). Hence 1
n

∑

i(z̃
2
it −

E(z̃2it)) = op(1) and with the reasoning extended to multivariate zit we have 1
n

∑

i(z̃
′

itz̃it −

E(z̃
′

itz̃it)) = op(1), hence
1
nz

′

Mgz − E( 1nz
′

Mgz) =
1
n

∑

i

∑T
t=1(z̃

′

itz̃it − E(z̃
′

itz̃it)) = op(1).

Finally we show that 1
nz

′

Mg ḡ1(c−E(c|x, p)) = op(1).
1
nz

′

Mgḡ1(c−E(c|x, p)) = 1
n

∑

i,t z̃
′

it(c̄it−

E(c̄it|x, p)). Fix t, consider the case where zit is a scalar, and let bit = z̃it(c̄it − E(c̄it|x, p)).
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Then:

E((
1

n

∑

i

bit)
2) =

1

n2

∑

i

∑

j∈ri

E(bitbjt)

≤ 1

n2

∑

i

∑

j∈ri

C

sinceE(z̃4+δ
it ) < C is shown in Lemma 3, E(c̄4+δ

it ) < C is shown in Lemma 3, and E(E(c̄it|x, p)4+δ) <

C is implied by Jensen’s inequality and the law of iterated expectations. Hence since we have

already shown that 1
n2

∑

i

∑

j∈ri
C = o(1), we have 1

nz
′

Mg ḡ1(c− E(c|x, p)) = op(1).

Hence we have 1
nz

′

Mg[ȳ, w] − E( 1nz
′

Mgz) = op(1)

a-iii)

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

p→

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

Since z̃
′

it = z
′

it− ang
′

it and by Assumption 2, λmin(
1
n

∑

i

∑

tE((z
′

it − ang
′

it)(zit − gita
′

n))) >

c > 0 ∀n > N , we have λmin(
1
nz

′

Mg[ȳ, w]) > c > 0 w.p.a. one as n → ∞. Hence we have

λmax((
1
nz

′

Mg[ȳ, w])−1) < 1
c < ∞ w.p.a. one, so that ( 1nz

′

Mg[ȳ, w])−1 = Op(1).

Hence combining this result with 1
nz

′

Mgü = op(1), we have

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

= Op(1)op(1) =

op(1).

b) Proof of
√
nV −1/2

n An(

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)
d→ N(0, 1)

b-i) Proof that
√
nΣ

− 1
2

n
1
n

∑

i,t z̃itüit
d→ N(0, I), where Σn = 1

nV ar(
∑

i,t z̃itüit|x, p)

Conditioning on x, p, from Assumption 1, we have independence across students who have

never been in the same classroom. Hence observations could be located on a lattice in RT

by defining an observation’s location as li = {pit}t=1,...,T . We can also define the distance

between two observations as δij = min{pit − pjt}t=1,...,T . We have independence for δij > 0,

and for any observation i, #({j : δij < 1}) ≤ MT , so we have so called increasing domain

6



asymptotics. (Leung 2015 showed that the increasing domain asymptotics framework can

be applied as long as any observation has less than some finite number of neighbors in a

neighborhood of radius δmin > 0, which is a slight relaxation of the assumption in Jenish and

Prucha 2009 that any observation has no neighbor in a neighborhood of radius δmin > 0.

Hence, conditional on x, p, since independence is stronger than α-mixing, we can apply

the central limit theorem found in Jenish and Prucha 2009 as long as:

E(| 1
T

∑

t

z̃itüit|2+δ |x, p) ≤ B

lim infn→∞
1

n
λmin(V ar(

∑

i,t

z̃itüit|x, p)) > 0

where B ∈ (0,+∞) is a function of x, p.

In the proof of Lemma 3 we find:

z̃it ≤ 2B
1

4+δ + 2B
1

4+δ b(MT 2)b

E(ü4+δ
it |x, p)

1
4+δ ≤ B+MB

which satisfies the first condition.

The second condition is proved in Lemma 4.

Hence we have:
√
nΣ

− 1
2

n
1

n

∑

i,t

z̃itüit|x, p
d→ N(0, I) (A.8)

Hence, since fx,p is integrable, we can apply the Lebesgues dominated convergence theorem

to obtain:1

√
nΣ

− 1
2

n

∑

i,t

z̃itüit
d→ N(0, I) (A.9)

1By the dominated convergence theorem, Fn|x, p → Φ implies
´

Fn|x, pfx,pdx, p → Φ if fx,p is integrable
since Fn|x, p ∈ [0, 1].
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b-ii) Proof that
√
n(Vn)

− 1

2An

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−
√
nΣ

− 1
2

n
∑

i,t z̃itüit = op(1)

√
nΣ

− 1
2

n
∑

i,t z̃itüit = Op(1), so that if (Vn)
− 1

2An(
1
nz

′

Mg[ȳ, w])−1Σ
1
2
n − I = op(1) we have

the desired result.

(Vn)
− 1

2An(
1

n
z
′

Mg[ȳ, w])
−1Σ

1
2
n − I = (Vn)

− 1
2Σ

1
2
n − I + (Vn)

− 1
2 (An(

1

n
z
′

Mg[ȳ, w])
−1 − I)Σ

1
2
n

(A.10)

An(
1
nz

′

Mg[ȳ, w])−1 − I = op(1) is shown in part a) of the proof of this proposition.

V
− 1

2
n = O(1) by Assumption 2b), and V

1
2
n = O(1) by Assumption 2c).

Lemma 4 shows Σn − Vn → 0 a.s., so that Σ
1
2
n = Op(1) and (Vn)

− 1
2Σ

1
2
n − I = op(1) by the

continuous mapping theorem.

Hence (Vn)
− 1

2Σ
1
2
n − I = op(1) and (Vn)

− 1
2 (An(

1
nz

′

Mg[ȳ, w])−1 − I)Σ
1
2
n = op(1) and the

desired result follows.

Hence combining part b-i) and b-ii) of this proof, we have:

√
n(Vn)

− 1
2An

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

d→ N(0, I) (A.11)

Proof of Proposition 3:

When uit = vit + (γ0 − 1) 1
npit

∑

j∈pit
vjt, Cov(vit, vjs|x, p) = σ2

v1[i = j, t = s], we have

üit = vit and V ar(ü|x, p) = I. Hence:

Vn =
1

n
E(z

′

Mgz)

= An

so that:

A−1
n VnA

−1
n = E(

1

n
z
′

Mgz)
−1 (A.12)
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and:

Wn = V ar(Z
′

Mgü) = E(Z
′

MgZ) (A.13)

Hence:

D = E(
1

n
Z

′

Mg[ȳ, w])
−1 1

n
V ar(Z

′

Mgü)E(
1

n
Z

′

Mg[ȳ, w])
−1′ − E(

1

n
z
′

Mgz)
−1

= nE(Z
′

Mgz)
−1E(Z

′

MgZ)E(z
′

MgZ)−1 − nE(z
′

Mgz)
−1

= nE(aa
′

)

where a = E(Z
′

Mgz)−1Z
′

Mg − E(z
′

Mgz)−1z
′

Mg, so that D is positive semi-definite.

Proof of Proposition 4:

Part b) of the proof of Proposition 2 shows that
√
nV

− 1

2
n ( 1nz

′

Mg[ȳ, w])(

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

) =

√
nV

− 1
2

n
1
n

∑

i,t z̃
′

itüit
d→ N(0, I).

Hence we simply have to show that (V̂
− 1

2
n V

1
2
n − I) = op(1).

V̂n =
1

n

∑

i,t

∑

js

1[(j, s) ∈ Sit]z̃
′

itz̃js ˆ̈uit ˆ̈ujs

=
1

n

∑

i,t

∑

js

1[(j, s) ∈ Sit]z̃
′

itz̃jsüitüjs

+
1

n

∑

i,t

∑

js

1[(j, s) ∈ Sit]z̃
′

itz̃js[ȳit, wit](

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)[ȳjs, wjs](

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)

First we show that 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃jsüitüjs − Vn = op(1). Since Lemma 4

shows that Σn−Vn → 0 a.s., where Σn = 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃jsE(üitüjs|x, p), we only

have to show 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃jsüitüjs − Σn = op(1). Without loss of generality

consider the case where z̃it is a scalar, since convergence can be shown element by element.

Define Σ̂n = 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃itz̃jsüitüjs.

Define bit =
∑

js 1[(j, s) ∈ Sit]z̃itz̃jsüitüjs =
∑

s z̃itz̃isüitüis+
∑

j 1[j ̸= i, pit = pjt]z̃itz̃jtüitüjt.
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Under Assumption 1, conditional on x, p, bit is independent of bi′ t if pis ̸= pi′s for s = 1, ..., T .

Hence as in part b) of the proof of Proposition, we can locate observations on a lattice in RT

and apply the strong law of large numbers found in Jenish and Prucha 2009 conditional on

x, p as long as:

E(|bit|1+δ|x, p) < B (A.14)

where B < ∞ can be a function of x, p.

By Minkowski’s inequality:

E(|bit|1+δ)
1

1+δ ≤
∑

s

E(|z̃itz̃isüitüis|1+δ|x, p)+
∑

j

1[j ̸= i, pit = pjt]E(|z̃itz̃jtüitüjt|1+δ) (A.15)

The proof of Lemma 3 implies that E(|z̃itz̃isüitüis|1+δ|x, p) ≤ B. Hence, from Assumption

1:

E(|bit|1+δ)
1

1+δ ≤ B(T +MT − 1) ≤ B (A.16)

Hence we have 1
n

∑

i bit → 1
n

∑

i E(bit|x, p) a.s. conditional on x, p, hence we have 1
n

∑

i bit−
1
n

∑

iE(bit|x, p) = op(1) and Σ̂n − Σn = 1
n

∑

i,t bit −
1
n

∑

i,tE(bit|x, p) = op(1) conditional on

x, p.

Hence, since P (|Σ̂n−Σn| > ϵ|x, p) ∈ [0, 1] and fx,p is integrable, we can use the Lebesgues

dominated convergence theorem to obtain Σ̂n − Σn = op(1).

Hence 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃jsüitüjs − Vn = op(1).

Next we show that 1
n

∑

i,t

∑

js 1[(j, s) ∈ Sit]z̃
′

itz̃js[ȳit, wit](

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

)[ȳjs, wjs](

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

) = op(1). Consider one specific summand of [ȳit, wit](

⎡

⎢

⎣

η̂

θ̂

⎤

⎥

⎦

−

⎡

⎢

⎣

η0

θ0

⎤

⎥

⎦

) denoted bit(δ̂ − δ0),

then to prove the last statement we have to prove:

(δ̂ − δ0)
2 1

n

∑

i

∑

js

1[(j, s) ∈ Sit]z̃itz̃jsbitbjs = op(1) (A.17)

where z̃it can be treated as a scalar since we can prove consistency separately for each element
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of the matrix and each time period as previously.

From Proposition 2, (δ̂ − δ0)2 = O( 1n).

In addition, from Assumption 2 and Lemma 3:

| 1
n

∑

i

∑

js

1[(j, s) ∈ Sit]z̃itz̃jsbitbjs| ≤
1

n

∑

i

∑

js

1[(j, s) ∈ Sit]|z̃itz̃jsbitbjs|

≤ B
1

n

∑

i

∑

js

1[(j, s) ∈ Sit]

≤ BMT

where the last inequality follows from Assumption 1. Hence we have 1
n

∑

i

∑

js 1[(j, s) ∈

Sit]z̃itz̃jsbitbjs = Op(1).

Hence we have V̂n−Vn = op(1) and by the continuous mapping theorem we have V̂
− 1

2
n Vn−

I = op(1) which is the result that was needed.

Lemma 2. For any d0 ∈ A, define a = j
′

[g2it + ḡ2i]i=1,...,n,t=1,...,T(g
′

2Mg1g2)
−1[1[dit =

d0]]i=1,...,n,t=1,...,T , where j = [1]i=1,...,n,t=1,...,T , then a ≤ Cb(MT 2)b, where b is defined in

section 3 of the paper.

Proof. We have:

Mg1g2 = [1[dit = d]− 1

T

T
∑

s=1

1[dis = d]]d∈Ai=1,...,n,t=1,...,T (A.18)

so that:

g
′

2Mg1g2 = diag({nd}d∈A)−
1

T
[ndd′ ]

d
′

∈A
d∈A

= diag({n
1
2

d }d∈A)(InT − 1

T
[
ndd′

n
1
2

d n
1
2

d′

]d
′

∈A
d∈A )diag({n

1
2

d }d∈A)

where nd =
∑

i=1,...,n,t=1,...,T 1[dit = d] and ndd′ =
∑

i=1,...,n,t,s=1,...,T 1[dit = d]1[dis = d
′

].

11



Hence:

(g
′

2Mg1g2)
−1 = diag({n− 1

2

d }d∈A)(InT − 1

T
[
ndd′

n
1
2

d n
1
2

d′

]d
′

∈A
d∈A )−1diag({n− 1

2

d }d∈A) (A.19)

Define A = 1
T [

n
dd

′

n
1
2
d
n

1
2

d
′

]d
′

∈A
d∈A .

We also have:

j
′

[g2it + ḡ2i]i=1,...,n,t=1,...,T = j
′

[1[dit = d] +
1

T

T
∑

s=1

1[dis = d]]d∈Ai=1,...,n,t=1,...,T

= 2[nd]
d∈A

and we show a few lines below that all of the elements in (I −A)−1 are positive, so that:

a ≤ 2M
1
2 [1]d∈A(I −A)−1[1[dit = d0]]i,t=1,...,n (A.20)

since n
1

2

d ≤ M
1
2 and n

− 1

2

d ≤ 1. Hence redefine:

a = [1]d∈A(I −A)−1[1[dit = d0]]i,t=1,...,n (A.21)

we just need to show that a ≤ b(MT 2)b.

a) λmax(A) < 1 so that (I −A)−1 =
∑∞

j=0A
j:

Since A is symmetric, the maximum eigenvalue of A is found by maximizing over x ∈

12



R#(A) such that x
′

x = 1:

x
′

Ax =
1

T

∑

d∈A

∑

d′∈A

x[d]x[d
′

]
ndd′

n
1
2

d n
1
2

d′

=
1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

∑

d′∈A

x[d]x[d
′

]
1

n
1

2

d n
1

2

d′

1[dit = d]1[dis = d
′

]

≤ 1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

∑

d′∈A

x[d]2

nd
1[dit = d]1[dis = d

′

]

=
1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

x[d]2

nd
1[dit = d]

∑

d′∈A

1[dis = d
′

]

≤ 1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

x[d]2

nd
1[dit = d]

=
1

T

∑

s=1,...,T

∑

d∈A

x[d]2

nd
nd

=
1

T

∑

s=1,...,T

1

= 1

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality

follows from
∑D

d′=1 1[dis = d
′

] = 1.

Hence λmax(A) ≤ 1. However the definition of A implies that I − A is invertible, which

implies λmax(A) < 1. Hence we have:

(I −A)−1 =
∞
∑

j=0

Aj (A.22)

b) For any d0 ∈ A, d0 is “connected” to some d ∈ Ac, i.e. there is d1, ..., db−1 such that

nd0d1nd1d2 ...ndb−1d > 0:

Pick any d0 ∈ A. There must exist d ∈ {1, ...,D} such that nd0d > 0, since otherwise

[1[dit = d0]]i=1,...,n,t=1,...,T = [1[i = s]]i=1,...,nt=1,...,T where s ∈ {1, 2, ..., n} is such that dst = d0

for some t (and hence all t = 1, ..., T since d0 teaches the same students over time), and d0 ̸∈ A

by the definition of A, leading to a contradiction.
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Case 1: All d ∈ {1, ...,D} such that nd0d > 0 are in Ac, so that the statement above is

true.

Case 2: There is d ∈ A such that nd0d > 0. Then consider x ∈ R#(A) with x[d] =

n
1
2
d

(
∑

d
′
∈A:d

′
↔d0

n
d
′ )

1
2

1[d ↔ d0] for all d ∈ A, where d ↔ d
′

means that there is {d1, ..., db−1} ∈

Ab−1 such that ndd1nd1d2 ...ndb−2db−1
ndb−1d

′ > 0. Then, for any d, d
′ ∈ A, i = 1, ..., n, t, s =

1, ..., T we have:

x[d]
1

n
1
2

d

1[dit = d]1[dis = d
′

] = x[d
′

]
1

n
1
2

d′

1[dit = d]1[dis = d
′

] (A.23)

since 1[d ↔ d0]1[dit = d]1[dis = d
′

] = 1 if and only if 1[d
′ ↔ d0]1[dit = d]1[dis = d

′

] = 1.

Hence the Cauchy-Schwarz inequality holds with equality for this choice of x:

x
′

Ax =
1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

∑

d′∈A

x[d]2

nd
1[dit = d]1[dis = d

′

]

=
1

T

∑

i=1,...,n

∑

t,s=1,...,T

∑

d∈A

∑

d′∈A

1
∑

d′∈A:d′↔d0
nd′

1[d ↔ d0]1[dit = d]1[dis = d
′

]

=

∑

d∈A:d↔d0

∑

d′∈A ndd′
∑

d∈A:d′↔d0

∑

d′=1,...,D ndd′

= 1−
∑

d∈A:d↔d0

∑

d′∈Ac ndd′
∑

d∈A:d′↔d0

∑

d′=1,...,D ndd′

where Ac is defined by Ac = {1, ...,D}\A and the third equality holds because

Tnd =
T
∑

s=1

nd

=
T
∑

s=1

∑

i,t

1[dit = d]

=
T
∑

s=1

∑

i,t

1[dit = d]
D
∑

d′=1

1[dis = d
′

]

=
D
∑

d′=1

ndd′

14



since
∑D

d′=1 1[dis = d
′

] = 1.

Hence λmax(A) ≥ 1−
∑

d∈A:d↔d0

∑
d
′
∈Ac n

dd
′

∑
d∈A:d

′
↔d0

∑
d
′
=1,...,D

n
dd

′
, and for λmax(A) < 1 we need that for any

d0 ∈ A, there is d
′ ∈ Ac and d ∈ A such that d0 ↔ d and ndd′ > 0. So the statement under

b) holds in this case as well.

c) a ≤ b(MT 2)b

By recursion, we can show:

Aj =
1

T j
[

∑

d1,...,dj−1∈A

ndd1(
∏j−2

k=1 ndkdk+1
)ndj−1d

′

n
1
2

d

∏j−1
k=1 ndkn

1
2

d′

]d
′

∈A
d∈A (A.24)

Hence we can write:

a =
∑

d∈A

∞
∑

j=0

1

T j

∑

d1,...,dj−1∈A

ndd1(
∏j−2

k=1 ndkdk+1
)ndj−1d0

n
1
2

d

∏j−1
k=1 ndkn

1
2

d0

(A.25)

From Fatou’s lemma, since all of the summands are positive, we have:

a =
∞
∑

j=0

1

T j

∑

d1,...,dj−1∈A

∑

d∈A

ndd1(
∏j−2

k=1 ndkdk+1
)ndj−1d0

n
1

2

d

∏j−1
k=1 ndkn

1

2

d0

≤ M
1

2

∞
∑

j=0

1

Tnd0

∑

dj−1∈A

ndj−1d0
1

Tndj−1

∑

dj−2∈A

ndj−1dj−2
...

∑

d1∈A

nd2d1
1

Tnd1

∑

d∈A

ndd1

where the inequality simply follows from n
1

2

d0
≤ M

1
2 , nd ≥ 1, and a reordering of the summa-

tion.

Define aj =
1

Tnd0

∑

dj−1∈A
ndj−1d0

1
Tndj−1

∑

dj−2∈A
ndj−1dj−2

...
∑

d1∈A
nd2d1

1
Tnd1

∑

d∈A ndd1 .

From part b) of this proof:

1

Tnd

∑

d1∈A

ndd1
1

Tnd1

∑

d2∈A

nd1d2 ...ndb−1db
1

Tndb−1

∑

db∈A

ndb−1db ≤ 1− 1

(MT 2)b
(A.26)

Indeed, let bd,Ac = min{k : ∃d1, ..., dk−1 ∋ ndd1nd1d2 ...ndk−1d
′ , d

′ ∈ Ac}, from part b) we

have bd,Ac > 0, so that bd,Ac ∈ {1, 2, ..., b}.

15



Suppose bd,Ac = 1, then:

1

Tnd

∑

d1∈A

ndd1
1

Tnd1

∑

d2∈A

nd1d2 ...ndb−1db
1

Tndb−1

∑

db∈A

ndb−1db ≤ 1− 1

(MT 2)
(A.27)

since 1
Tnd1

∑

d2∈A nd1d2 ...ndb−1db
1

Tndb−1

∑

db∈A
ndb−1db ≤ 1 and 1

Tnd

∑

d1∈A ndd1 =
Tnd−n

dd
′

Tnd
≤

1− 1
MT 2 where d

′ ∈ Ac.

If bd,Ac = 2, then:

1

Tnd

∑

d1∈A

ndd1
1

Tnd1

∑

d2∈A

nd1d2 ...ndb−1db
1

Tndb−1

∑

db∈A

ndb−1db ≤ 1− 1

(MT 2)2
(A.28)

since 1
Tnd2

∑

d3∈A
nd2d3 ...ndb−1db

1
Tndb−1

∑

db∈A
ndb−1db ≤ 1 and 1

Tnd

∑

d1∈A
ndd1

1
Tnd1

∑

d2∈A
nd1d2 ≤

Tnd−
1

(MT2)

Tnd
≤ 1− 1

(MT 2)2 .

Hence by recursion we see that:

1

Tnd

∑

d1∈A

ndd1
1

Tnd1

∑

d2∈A

nd1d2 ...ndb−1db
1

Tndb−1

∑

db∈A

ndb−1db ≤ 1− 1

(MT 2)b
(A.29)

Hence:

aj ≤ (1 − 1

(MT 2)b
)⌊

j
b⌋ (A.30)

Hence:

∞
∑

j=0

aj ≤ b
∞
∑

j=0

(1− 1

(MT 2)b
)j

= b(MT 2)b

Lemma 3. Under Assumption 2, E(||z̃it||4+δ) < C < ∞, E(|üit|4+δ) < C < ∞ ∀ i = 1, ..., n,

and E(|c̄it|4+δ) < C < ∞.

Proof. a) Proof that E(||z̃it||4+δ) < C < ∞.

16



By Minkowski’s inequality:

E(||z̃it||4+δ)
1

4+δ ≤ E(||zit||4+δ)
1

4+δ+
1

T

T
∑

s=1

E(||zis||4+δ)
1

4+δ+E(||ang2it||4+δ)
1

4+δ+
1

T

T
∑

s=1

E(||ang2is||4+δ)
1

4+δ

(A.31)

From Assumption 2 and the law of iterated expectations, E(||zit||4+δ) < C < ∞, so we

only have to show that E(||ang2it||4+δ) < C < ∞

From previous derivations in this Appendix, we have:

ang2it = (
∑

j,s

z
′

js(g2js − ḡ2j))(g
′

2Mg1g2)
−1[1[djs = dit]]j=1,...,n,s=1,...,T (A.32)

But we have shown in the proof of Lemma 2 that all of the elements of (g
′

2Mg1g2)
−1 are

positive. Hence, by Minkowski’s inequality:

E(||ang2it||4+δ |p, g)
1

4+δ ≤
∑

j,s

E(||z′

js||4+δ |p, g)
1

4+δ (g2js + ḡ2j))(g
′

2Mg1g2)
−1[1[djs = dit]]j=1,...,n,s=1,...,T

≤ B
1

4+δ

∑

j,s

(g2js + ḡ2j))(g
′

2Mg1g2)
−1[1[djs = dit]]j=1,...,n,s=1,...,T

≤ B
1

4+δ b(MT 2)b

where the second inequality follows from Assumption 2 and the third inequality follows from

Lemma 2.

Hence:

E(||ang2it||4+δ) = E(||ang2it||4+δ |p, g)

≤ E(Bb4+δ(MT 2)(4+δ)b))

≤ C

where the last inequality follows from Assumption 2.

b) Proof that E(ü4+δ
it ) < C < ∞:

17



First note that:

| 1

npit

∑

j

1[pit = pjt]ujt|4+δ ≤ 1

npit

∑

j

1[pit = pjt]|ujt|4+δ

≤
∑

j

1[pit = pjt]|ujt|4+δ

where the first inequality follows from Jensen’s inequality and the second inequality follows

from Assumption 1.

Then:

E(| 1

npit

∑

j

1[pit = pjt]ujt|4+δ |p) ≤
∑

j

1[pit = pjt]E(|ujt|4+δ|p)

≤ B
∑

j

1[pit = pjt]

where the second inequality follows from Assumption 2.

By Assumption 1,
∑

j 1[pit = pjt] ≤ M , so that E(| 1
npit

∑

j 1[pit = pjt]ujt|4+δ|p) ≤ BM ,

and, since E(B) < ∞, by the law of iterated expectations:

E(| 1

npit

∑

j

1[pit = pjt]ujt|4+δ) ≤ C (A.33)

where we wrote ME(B) as C.

Hence, by Minkowski’s inequality:

||üit||4+δ ≤ ||uit||4+δ + C

≤ C

since ||uit||4+δ ≤ C by Assumption 2 and the law of iterated expectations, and where we

abused notation as described at the beginning of this appendix by writing C = 4+δ
√
C and

C = C + C.

c) Proof that E(c̄4+δ
it ) < ∞.
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As in part b) of this proof:

| 1

npit

∑

j

1[pit = pjt]cj |4+δ ≤ 1

npit

∑

j

1[pit = pjt]|cj |4+δ

≤
∑

j

1[pit = pjt]|cj |4+δ

so that, under Assumption 2:

E(|c̄it|4+δ) ≤ E(BM) < C (A.34)

Lemma 4. Under Assumptions 1-3, we have:

lim infn→∞λmin(
1

n
V ar(

∑

i,t

z̃
′

itüit|x, p)) > 0 a.s. (A.35)

Proof. 1
nE(V ar(

∑

i,t z̃
′

itüit|x, p)) = 1
nV ar(

∑

i,t z̃
′

itüit) since E(
∑

i,t z̃
′

itüit|x, p) = 0. In addi-

tion, λmin(
1
nV ar(

∑

i,t z̃
′

itüit)) > c > 0 ∀n > N by Assumption 2. So we simply have to show

that 1
nV ar(

∑

i,t z̃
′

itüit|x, p) − 1
nV ar(

∑

i,t z̃
′

itüit) → 0 a.s. Without loss of generality, consider

the case where z̃it is a scalar, since convergence can be proved element by element.

Under Assumption 3, 1
nV ar(

∑

i,t z̃itüit|x, p) = 1
n

∑R
r=1 V ar(

∑

i∈r,t z̃itüit|xr, pr) = 1
R

∑R
r=1

n
RV ar(

∑

i∈r,t z̃itüit

Under Assumption 1:

V ar(
∑

i∈r,t

z̃itüit|xr, pr) =
∑

i∈r,t

∑

j∈r,s

1[(j, s) ∈ Sit]z̃itz̃jsE(üitüjs|xr, pr) (A.36)
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Hence, under Assumption 2, applying Jensen’s inequality twice:

V ar(
∑

i∈r,t

z̃itüit|xr, pr)1+δ ≤ (
∑

i∈r,t

∑

j∈r,s

1[(j, s) ∈ Sit])
1+δ

∑

i∈r,t

∑

j∈r,s 1[(j, s) ∈ Sit]z̃
1+δ
it z̃1+δ

js E(ü1+δ
it ü1+δ

js |xr, pr)
∑

i∈r,t

∑

j∈r,s 1[(j, s) ∈ Sit]

≤ B(
∑

i∈r,t

∑

j∈r,s

1[(j, s) ∈ Sit])
1+δ

≤ B(MTnr)
1+δ

Hence:

R1+δ

n1+δ
V ar(

∑

i∈r,t

z̃itüit|xr, pr)1+δ ≤ B(MT )1+δR
1+δn1+δ

r

n1+δ

≤ B(MT )1+δ(
Rnr

n
)1+δ

≤ BC

since Rmax{nr}
n = O(1) by Assumption 3.

Hence:

E(
R1+δ

n1+δ
V ar(

∑

i∈r,t

z̃itüit|xr, pr)1+δ) < C (A.37)

Hence Markov’s condition is satisfied, and one can apply the strong law of large numbers

with independent heterogeneously distributed observations to show:

1

n
V ar(

∑

i,t

z̃
′

itüit|x, p)−
1

n
V ar(

∑

i,t

z̃
′

itüit) → 0 a.s. (A.38)

as was to be shown.

B Results for the model with sequential exogeneity

To be included in future versions of the draft.

Proof.
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