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Abstract

This paper formalizes the manner in which statistical disclosure limitation (SDL)
hinders empirical research in economics. We also highlight a hitherto unappreci-
ated advantage of SDL, formal privacy models, and synthetic data systems: they
can serve as a defense against model overfitting and false-discovery bias. More
specifically, a synthetic data validation system can – and we argue should – be
used in conjunction with systems in which researchers register their research de-
sign ahead of analysis. The key insight is that privacy-protected data can be used
for model development while minimizing risk of model overfitting. To demon-
strate these points, we develop a model in which the statistical agency collects
data from a population, but publishes a version in which the data that have been
intentionally distorted by some SDL process. We say the SDL process is ignorable
if inferences based on the published data are indistinguishable from inferences
based on the unprotected data. SDL is rarely ignorable. If the researcher has
knowledge of the SDL model, she can conduct an SDL-aware analysis that ex-
plicitly corrects for the effects of SDL. If, as is often the case, if the SDL model is
unknown, we describe circumstances under which SDL can still be learned.



1 Introduction

Most modern methods for evaluating economic models and public policy rely on
data measured at high levels of disaggregation. The need of data providers to
protect respondent confidentiality often involves the use of methods for statistical
disclosure limitation that compromise the quality of published data. The features
of the data empirical researchers value: details of age, place of residence, earnings,
and so on, are precisely those that require the most protection.

In general, the standard approach of ignoring statistical disclosure limitation
leads to inconsistent estimation and incorrect inference. Despite this, and in part
because details of the methods used to protect the data are not published most
empirical research does not directly confront the effects of statistical disclosure
limitation. This paper endeavors to precisely describe the circumstances under
which SDL can safely be ignored, and what to do when it cannot.

It turns out that the steps taken to protect privacy in published data can have
another, more salubrious, consequence for empirical research. Formal privacy
systems and synthetic data can act as a natural defense against overfitting and
false-discovery bias. We develop this intuition with an application of our model
to regression discontinuity analysis. Researchers can use synthetic, or otherwise
privacy protected data to develop their research design. However, they can only
estimate the model on the true data once. The use of synthetic data thus protects
against false-discovery bias and can therefore serve as the basis of experimental
(and quasiexperimental) registration systems.

We develop a formal model that allows us to define ignorable statistical disclo-
sure limitation. In the model, the statistical agency collects data from a popula-
tion, but published a version of the data that have been intentionally distorted.
Intuitively, SDL is ignorable if inferences based on the published data are indis-
tinguishable from inferences based on the unprotected data. For most questions
of interest to economists, SDL is rarely ignorable.

Finally, we show that the intuition underlying the RD example is true more
generally for differentially private data publication systems. These methods al-
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locate researchers a ‘privacy budget’ which is expended each time the researcher
wants to conduct a new analysis. Under such a system, the privacy budget acts
as a constraint on the amount of specification searching that can be undertaken.
Moreover, the distortions in the published data, while compromising inference,
also serve as a natural barrier to overfitting.

2 Economic Modeling in the Presence of SDL

We formalize the role of SDL in economic analysis using the concept of ignora-
bility. Our approach is a direct extension of the ignorability of missing data de-
veloped by Rubin (1976). We first define the economic process model that the
econometrician is trying to learn about. We then define the inclusion process that
determines which parts of the economic process are actually observed. This gives
rise to the well-known concept of ignorable missing data or, equivalently, ignorable
inclusion. Finally, we formally define the SDL model and define ignorable statistical
disclosure limitation.

2.1 The Economic Process Model

We consider a population of N entities that is described by a complete-data matrix
Y , N ×K, a process-parameter vector θp, P × 1, and two probability distributions:
the data model pY (Y |θp ) and the process-parameter prior distribution pθp (θ).

The econometrician seeks to conduct estimation and inference concerning finite-
population estimands, functions of Y only, and super-population estimands, func-
tions of the parameters θp. We distinguish between these two estimand types
because the statistical agencies that collect and disseminate the data we are dis-
cussing in this paper consider themselves to be engaged in producing finite-population
estimands whereas the economists who analyze these data are primarily conduct-
ing super-population estimation and inference.1

1Many SDL methods, as well as methods from the newer data-privacy literature in com-
puter science, explicitly consider the properties of these methods for finite-population estimands
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2.2 The Data Inclusion Model and Ignorable Inclusion

Next, we define the tools necessary to understand the properties of published
(released) data from conventional surveys, censuses, and administrative record
systems. The population inclusion matrix, R, N ×K, indicates that an entity i has
data for the associated variable, rij = 1, or not, rij = 0. If you think that this is
needlessly complex, remember that we have not said that N is known nor how
the statistician came to observe any element of Y . That is the role of the inclusion
model: the distribution of R given Y is pR|Y (R |Y, θD ). θD, is the design parameter
vector, so named because it characterizes how Y is observed, or the design of
the survey or experiment. The design-parameter prior distribution is pθD|θp (θD |θp )

allows for potential dependence of the design on the process parameters. The
complete-data likelihood function2 is then

£θ (θp, θD |Y,R) = pY (Y |θp ) pR|Y (R |Y, θD ) = pY R (Y,R |θp, θD ) . (1)

The term “complete data” means that this likelihood function applies to estima-
tion and inference on the process and design parameters given a realization of
Y,R from the super-population.

The observed data matrix, in the absence of SDL, is Y (obs), N × P , contains a
data item in y

(obs)
ij , if and only if rij = 1. The complement to the observed data

matrix, in the absence of SDL is Y (mis), which contains the unobserved data items
corresponding to rij = 0. The observed data likelihood function, in the absence of

whereas econometricians tend to focus on parametric (or semi-parametric) modeling focused on
θp. The concept of ignorability was invented to allow a clean characterization of how the data
collection process affects both types of modeling. We are not trying to be overly philosophical, just
to provide a direct link between the way the data collectors think about the methods they use and
the way data analysts trained in economics and econometrics use those data.

2The Rubin formulation includes the notion of fully observed covariates–variables that are
never missing in the population and never have to be collected. In a known-finite population,
these consist of variables on the frames used for sampling. Since these variables are also subjected
to SDL when the data are published, we include them in the population data matrix Y .
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SDL is

£
(obs)
θ

(
θp, θD

∣∣Y (obs), R
)

= pY (obs)R

(
Y (obs), R |θp, θD

)
(2)

=

∫
pY R (Y,R |θp, θD ) dY (mis). (3)

The term “observed data” derives from the application of these modeling con-
cepts to sampling, experimental design, and unintentionally missing data (miss-
ing survey records or responses, unreported administrative records, etc.). In the
standard analysis of ignorability (e.g., Gelman et al. 2013), the published data
would be Y (obs). The notation may seem awkward for the application to SDL, but
it seems better to us to use this conventional notation. Wherever the term Y (obs)

occurs, think: the actual confidential data collected by the statistical agency.
Inference and estimation, in the absence of SDL, are based on the joint poste-

rior distribution of (θp, θD), given the observed data, which we assemble from the
pieces defined above as

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)
∝ pθD|θp (θD |θp ) pθp (θp) pY (obs)R

(
Y (obs), R |θp, θD

)
= pθD|θp (θD |θp ) pθp (θp)£

(obs)
θ

(
θp, θD

∣∣Y (obs), R
)
.(4)

In general, we focus interest on the posterior distribution of θp which, in the ab-
sence of SDL, is

pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
=

∫
pθ|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)
dθD (5)

∝
∫ ∫

pY (Y |θp ) pR|Y (R |Y, θD ) pθD|θp (θD |θp ) pθp (θp) dY
(mis)dθD

The data inclusion model is ignorable if

pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
= pθP |Y (obs)

(
θp
∣∣Y (obs)

)
. (6)

For reasons that will be clear shortly, we call this ignorable inclusion (or ignorable
sampling, or ignorable missing data, if the context of the inclusion model is clear).
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Our definition of ignorability is general enough to cover observational data,
survey designs, experiments, and unintentional missing data models. It says that
inference and estimation about the super-population parameters is ignorable if
it does not depend on the unobserved data, Y (mis). It is not general enough to
cover SDL because Y (obs) undergoes an additional transformation before being
published.

2.3 The SDL Model and Ignorable SDL

We characterize the SDL probabilistically using the same tools as we have used for
the data model, the inclusion model, and their parameters. The published data Z,
N×K, are generated by the SDL model pZ|Y,R (Z |Y,R, θS ) with SDL-parameter vec-
tor θS . The SDL-parameter prior distribution is pθS |θDθp (θS |θD, θp ). The likelihood
function for the published data is

£
(pub)
θ (θp, θD, θS |Z,R) =

∫
pZ|Y R (Z |Y,R, θS ) pY R (Y,R |θp, θD ) dY (7)

=

∫
pZ|Y R (Z |Y,R, θS ) pR|Y (R |Y, θD ) pY (Y |θp ) dY

Once again, estimation and inference are based on the posterior distribution
of the process parameters, which is derived from the joint posterior distribution
of the model, inclusion, and publication parameters given the published data and
the inclusion matrix

pθ|ZR (θp, θD, θS |Z,R) ∝
∫
pZ|Y R (Z |Y,R, θS ) pY R (Y,R |θp, θD ) pθ (θ) dY

= pθ (θ)£
(pub)
θ (θp, θD, θS |Z,R)

where pθ (θ) = pθS |θDθp (θS |θD, θp ) pθD|θp (θD |θp ) pθp (θp). So that the posterior dis-
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tribution of the process parameters is

pθP |ZR (θp |Z,R) =

∫ ∫
pθ|ZR (θp, θD, θS |Z,R) dθDdθS (8)

∝
∫ ∫

pθ (θ)£
(pub)
θ (θp, θD, θS |Z,R) pθDθS (θD, θS) dθDdθS

The relation between equations (5) and (8) is

pθP |ZR (θp |Z,R) =

∫
pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
pY (obs)|ZR

(
Y (obs) |Z,R

)
dY (obs) (9)

That is, the posterior distribution of the process parameters θp given the published
data and inclusion matrix is the expectation of the posterior distribution of the
process parameters given the observed data (the actual confidential data used by
the agency) and inclusion matrix with the expectation taken over the posterior
predictive distribution of the observed data given the published data and inclu-
sion matrix. This formulation assumes that the agency also publishes R, which
is not innocuous but we will usually be analyzing models in which we assume
ignorable inclusion.

We define ignorable statistical disclosure limitation as

pθP |Y (obs)R

(
θp
∣∣Y (obs) = Z,R

)
= pθP |ZR (θp |Z,R) (10)

The definition is subtle, so we repeat it in words. The SDL is ignorable if and
only if analyzing the posterior distribution of the process parameters given the
published data is equivalent to analyzing the posterior distribution of process
parameters given the observed data and assuming that the published data are
identical to the (confidential) observed data.

If the model possesses both ignorable inclusion and ignorable SDL then

pθP |Y (obs)

(
θp
∣∣Y (obs) = Z

)
= pθP |Z (θp |Z ) . (11)

Equation (11) summarizes both the sampling (or inclusion) and SDL assumptions
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that are embodied in any economic analysis that treats the published data as if
they had been produced by an ignorable inclusion process without SDL; that is,
without explicitly modeling the sample design and SDL.

2.4 Example: Ignorable and Nonignorable Coarsening

Heitjan and Rubin (1991) consider the problem of inference when the data con-
tain reporting errors where, for instance, individuals round hours or earnings to
salient, whole numbers. The same model is relevant to those types of microdata
masking that aggregate attributes, including topcoding.

AssumeX is a vector-valued random variable distributed according to f(x|θX),
and the goal of research is to learn something about θX . Rather than observe X ,
the researcher observes Y = M(X,G) where M is the microdata mask and G is a
random variable that determines how the mask will be applied. In the topcoding
example, the mask is a topcode, and G is a binary random variable, conditional
on X , that indicates whether a particular data item is to be topcoded. The ran-
dom variable G is never directly observed, and the effect of the mask on inference
depends, in part, on whether the researcher can infer G from the published data.
The distribution of G is parameterized by θG.

The coarsening is deterministic once the true data X , and the variable G are
both known. The conditional distribution of the published data is degenerate
with point mass on the coarsened data, Y :

py|x,g(y|x, g, θX , θG) =

{
1, if y = M(x, g)

0, if y 6= M(x, g)
(12)

Inference should be based on the likelihood for the published data given the
coarsening rule:

LC(θX , θG|y) =

∫ ∫
py|x,g(y|x, g, θX , θG)pg|x,θGdgpx(x|θX)dx (13)

However, it is common to ignore the stochastic nature of the coarsening process,
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estimating the model on the grouped data from

LG(θX |y) =

∫
py|x,g,θXpx(x|θX)dx. (14)

Heitjan and Rubin (1991) prove that if the data are coarsened at random, then
inference based on (13) is equivalent to inference based on (14). That is, the coars-
ening process is formally ignorable. The data are coarsened at random if the prob-
ability G = 1 is independent of the value of y.

3 Implementing SDL-aware Data Analysis

Since equation (9) is an identity, it is, in principle, possible to do any data analysis
using methods that account for the SDL. In practice, we must confront whether
or not the SDL process is known, and if it is known, whether the components
required to compute pθP |ZR (θp |Z,R) can be assembled. We will define an SDL
method as fully discoverable if pθP |ZR (θp |Z,R) can be computed. If the SDL process
is not fully discoverable, then we will consider some diagnostic methods that can
be used to approximate pθP |ZR (θp |Z,R) or to detect failures of equation (10).

At the heart of the implementation is the computation of pY (obs)|ZR
(
Y (obs) |Z,R

)
,

which is the posterior predictive distribution of the data that would have been
published in the absence of SDL, given the published data and the inclusion ma-
trix. In the absence of any ignorability assumptions the computations can be done
using Markov Chain Monte Carlo sampling from the conditional distributions

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)

pθS |ZRθpθD (θS |Z,R, θp, θD )

pY (obs)|ZRθpθDθS

(
Y (obs) |Z,R, θp, θD, θS

)
starting from arbitrary initial values of Y (obs), and (θp, θD, θS).

In many ways, implementing SDL-aware data analysis is similar to imple-
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menting ignorable and nonignorable missing data models. Since there are many
excellent discussions of missing data issues and in order to focus our contribution
more clearly, we consider next implementing SDL-aware analysis when the inclu-
sion model is provably ignorable. A leading case is the inclusion model in which
data are missing at random in the sense of Rubin (1987); then, inclusion model
can be ignored because

pR|Y (R |Y, θD ) = pR|Y
(
R
∣∣Y (obs), θD

)
and

pθ (θ) = pθS |θpθD (θS |θp, θD ) pθD (θD) pθp (θp)

To further simplify, simple random sampling implies that the inclusion model
does not depend upon any unknown parameters nor on the population data;
hence pR|Y (R |Y, θD ) = pR (R), which allows R and θD to be eliminated altogether
from the analysis of the published data.

It is enlightening to study the SDL-aware data analysis equations under the
assumption that the inclusion model is ignorable and known. Then,

pθP |ZR (θp |Z,R) = pθP |Z (θp |Z )

=

∫
pθP |Y (obs)

(
θp
∣∣Y (obs)

)
pY (obs)|Z

(
Y (obs) |Z

)
dY (obs) (15)

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)

= pθp|Y (obs)

(
θp
∣∣Y (obs)

)
(16)

pθS |ZRθpθD (θS |Z,R, θp, θD ) = pθS |Zθp (θS |Z, θp ) (17)

and

pY (obs)|ZRθpθDθS

(
Y (obs) |Z,R, θp, θD, θS

)
= pY (obs)|ZθpθS

(
Y (obs) |Z, θp, θS

)
(18)

Estimation and inference using the SDL-aware system described by equations
(15)-(18) can be applied to many common SDL methods, including those intro-
duced in the data-privacy literature in CS.
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Although we largely limit our attention in this paper to SDL-aware analyses
that assume that the inclusion model is known and ignorable, we do not mean
to endorse these assumptions universally. In particular, we have chosen examples
where the inclusion model’s properties are well understood or provably ignorable
for most of our examples below.

4 Application: Estimating Proportions with Random-

ized Response

Randomized response (Warner 1965) is a survey technique in which the respon-
dent is presented with one of two questions that can both be answered “yes” or
“no.” The respondent is asked a sensitive question with a certain probability (e.g.
“Have you ever committed a violent crime?”), and a non-sensitive question with
complementary probability (e.g., “Is your birthday in December?”). The survey
records only the binary answer (yes or no) and the contents of the question are
destroyed. Data publication under randomized response is identical to the input
noise infusion SDL procedure in which the published variable is either the ac-
tual response or an unrelated binary random variable with a known distribution.
This form of SDL is provably private, but also provably non-ignorable, as we now
formally demonstrate.

4.1 Formal Model of Randomized Response

Consider the SDL-aware analysis of randomized response assuming that the in-
clusion model is known and ignorable. The data model is

yi ∼ Bin (θ, 1) i.i.d. i = 1, . . . n.

The process-parameter prior distribution is

θ ∼ Beta (α, β) .
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In the absence of SDL, the observed data likelihood function is

£
(obs)
θ

(
θp
∣∣Y (obs)

)
=

n∏
i=1

θyi (1− θ)(1−yi) .

The posterior distribution of the process parameter given Y (obs) is

θ ∼ Beta (α +
∑
yi, β + n−

∑
yi) .

The posterior mean is E
[
θ
∣∣Y (obs)

]
=

α+
∑

yi
α+β+n

. The usual frequentist estimator just
sets α = β = 0. For large n the posterior is dominated by the likelihood compo-
nent; hence, we won’t be concerned with sensitivity analysis of the prior distribu-
tion here.

Now add the SDL model. Let γi be the random variable that controls which
question is asked. Then,

γi ∼ Bin (ρ, 1) i.i.d. i = 1, . . . n,

where ρ is the SDL parameter controlling the probability that the question of in-
terest is asked, event γi = 1. Let δi be the random variable that determines the
correct answer to the innocuous question (or the input noise outcome). Then,

δi ∼ Bin (µ, 1) i.i.d. i = 1, . . . n,

where µ is the SDL parameter that controls the probability that the answer to the
innocuous is “yes” (or the input noise infusion has δi = 1).

The likelihood for the published data Z comes from from the equation

zi = γiyi + (1− γi) δi
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which implies

£
(pub)
θ (θp, θD, θS |Z,R) = £

(pub)
θ (θ, ρ, µ |Z )

=
n∏
i=1

[
{[ρ+ (1− ρ)µ] θ + [(1− ρ)µ] (1− θ)}zi

{1− [ρ+ (1− ρ)µ] θ + [(1− ρ)µ] (1− θ)}(1−zi)

]
(19)

where θ is the only process parameter and the SDL parameters are θS = (ρ, µ).
To finish the specification, we need to put a prior distribution on the SDL pa-

rameters. Continuing the analogy to randomized response for the moment, we
could assume that (ρ, µ) is known, say (ρ0, µ0). This is always the case when ran-
domized response is used in the original survey context; however, as a general
SDL method, only certain features might be public. For example, the data pub-
lisher might say: “A small percentage of the cases (less than 5%) was replaced
with binomial noise where the binomial probability was equal to the estimated
proportion of true yes answers in the confidential sample.” Such a statement is not
ridiculous. It corresponds approximately to the way the Survey of Consumer Fi-
nances applies SDL to certain variables. In this case, a reasonable prior puts µ = θ

and Pr [ρ > 0.05] = 0. In the differential privacy context, (ρ0, µ0) are also known
(and used to determine the level of differential privacy provided). Assuming the
SDL parameters are known implies

pθ|Z (θ, ρ, µ |Z ) ∝pθ (θ)£
(pub)
θ

(
θ
∣∣Z, ρ0, µ0

)
=

n∏
i=1

[
{[ρ0 + (1− ρ0)µ0] θ + [(1− ρ0)µ0] (1− θ)}zi

{1− [ρ0 + (1− ρ0)µ0] θ + [(1− ρ0)µ0] (1− θ)}(1−zi)

]

× Γ (α + β)

Γ (α) Γ (β)
θα (1− θ)β (20)

Because the likelihood function is a mixture of binomials, exact Bayesian analysis
of even this simple case requires MCMC sampling. If we use an improper prior,
then we can perform estimation and inference on just the likelihood component.
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In this case we have

p lim z̄ =
[
ρ0 +

(
1− ρ0

)
µ0
]
θ0 +

[(
1− ρ0

)
µ0
] (

1− θ0
)

where z̄ is the sample mean of zi and θ0 is the mean of the superpopulation. The
implied estimator for θ is the usual randomized response MLE

θ̂MLE =
z̄ − (1− ρ0)µ0

ρ0
.

If the only superpopulation estimand of interest is θ, then the MLE is probably
adequate, since it is also the mode of posterior distribution when n is large.

It has been recognized for many years that the SDL is not ignorable in this
situation. It’s straightforward to confirm by examining

pθ|Y (obs)

(
θ
∣∣Y (obs) = Z

)
=

Γ (α + β + n)

Γ (α +
∑
zi) Γ (β + n−

∑
zi)
θα+
∑

zi (1− θ)β+n−
∑

zi

6=
n∏
i=1

[
{[ρ0 + (1− ρ0)µ0] θ + [(1− ρ0)µ0] (1− θ)}zi

{1− [ρ0 + (1− ρ0)µ0] θ + [(1− ρ0)µ0] (1− θ)}(1−zi)

]

× Γ (α + β)

Γ (α) Γ (β)
θα (1− θ)β

= pθP |Z (θp |Z ) .

Although we did not need the full appartus of equations (15)-(18) to get reason-
able data evidence about θ from the disclosure-limited publication data, that situ-
ation changes when we consider SDL-aware analysis of multivariate relationships
when some of the variables have been subjected to nonignorable SDL with known
parameters.

Consider the simplest multivariate analysis in which we can embed random-
ized response SDL. We continue to assume that the inclusion model is ignorable.
The data model is

yi ∼ Multinomial (θp, 1) i.i.d. i = 1, . . . n
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where the process parameter θ is a vector ofK probabilities. The process-parameter
prior distribution is

θ ∼ Dirichlet (α)

where α is a vector ofK parameters, usually called the prior sample sizes. Passing
directly to the posterior distribution for θ we have

θ ∼ Dirichlet (α +
∑
yi)

where the vector α +
∑
yi is usually called the posterior sample sizes.

Now apply randomized response SDL to each element of yi using the process
parameter vectors ρ and µ, each K × 1 arranged conformably to θp. Marginally,
each publication variable zij can be used for estimation and inference on θi be-
cause the marginal likelihood is in the form given in equation (19) and the poste-
rior distribution of each process parameter θi is in the form given in equation (20).
If the K-way table implied by cross-classifying all of the yij variables is not too
cumbersome, then the multivariate generalization of equation (20) can be used
for SDL-aware analysis. We are not going to analyze that case because economists
generally don’t use multiway contingency table models. Instead, we consider
models that combine discrete and continuous variables in the form of linear prob-
ability models, logististic regression and probit models. These models are very
similar to the regression models considered in the next two sections. We defer to
those sections the analysis of regression-like implementations of these conditional
probabilities.

5 Application to Regression Discontinuity Models

In our analysis of the effect of SDL on regression discontinuity designs, we con-
sider the case in which the following model of SDL was applied to the running
variable.
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5.1 Generalized Randomized Response SDL

The published data are

ωi = w∗i

zi3 sampled from pZ3|Y3 (zi3 |yi3, θS )

zi4 = 1 [zi3 ≥ τ ]

with pZ3|Y3 (zi3 |yi3, θS ) given by the following mixture model, which is a gener-
alization of randomized response. The randomization variable is γi ∼ Bin (ρ, 1).
When γi = 1, zi3 = yi3; otherwise zi3 = yi3 + εi with εi ∼ N

(
0, δ2

)
, (i.e., additive

noise infusion).
These assumptions imply

zi3 = γiyi3 + (1− γi) (yi3 + εi) ,

zi4 =

{
1 [yi3 ≥ τ ] if γi = 1

1 [yi3 + εi ≥ τ ] if γi = 0

and

pZ3Z4|Y3 (zi3, zi4 |yi3, θS ) = ρpY3Y4 (Z3, Z4 |θp ) + (1− ρ) p∗Y3Y4
(
Z3, Z4

∣∣θp, δ2 ) ,
where p∗Y3Y4

(
Z3, Z4

∣∣θp, δ2 ) is the distribution function from the convolution of
pY3Y4 (Y3, Y4 |θp ) and N

(
0, δ2

)
.

5.2 SDL Aware Analysis of the RD Model

Using the posterior predictive distribution for yi3 given zi3 and assuming that the
SDL parameters are fixed at the known values ρ0 and δ0, we have

E [yi3 |zi3, ρ0, δ0 ] = E [zi3 − (1− γi) εi |zi3, ρ0, δ0 ] = zi3
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and

E [yi4 |zi3, ρ0, δ0 ] = E [1 [yi3 ≥ τ ] |zi3, ρ0, δ0 ] (21)

= ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)
where Φ () is the standard normal cumulative distribution function. The SDL-
aware analysis has converted the original sharp RD into a fuzzy RD. To complete
the analysis we should use the posterior distribution of θRD given the published
data Z and the SDL parameters, assumed known or with an informative prior
given agency-provided data.

In the RD literature, functional form assumptions about f1 (yi3), f2 (yi3), and
£

(obs)
θ

(
θp
∣∣Y (obs)

)
are minimized. Respecting this analysis style, without implying

that it is the best way to analyze a finite sample of size n from a superpopulation
with size N , we analyze a few posterior moments, making the assumption that
those exist.

We want to estimate

E [θRD |Z, ρ0, δ0 ] = E

[
lim
yi3↓τ

E [yi2 |yi3 = τ ] |Z, ρ0, δ0
]

(22)

−E

[
lim
yi3↑τ

E [yi1 |yi3 = τ ] |Z, ρ0, δ0
]

(23)

= E

[
lim
yi3↓τ

f2 (yi3) |Z, ρ0, δ0
]
− E

[
lim
yi3↑τ

f1 (yi3) |Z, ρ0, δ0
]

= ρ0

{
E [limzi3↓τ f2 (zi3) |Z, γi = 1, δ0 ]

−E [limzi3↑τ f1 (zi3) |Z, γi = 1, δ0 ]

}

+ (1− ρ0)

{
E [limzi3↓τ f2 (zi3 − εi) |Z, γi = 0, δ0 ]

−E [limzi3↑τ f1 (zi3 − εi) |Z, γi = 0, δ0 ]

}

= ρ0

(
lim
zi3↓τ

f2 (τ)− lim
zi3↑τ

f1 (τ)

)
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and

ρ0 = lim
zi3↓τ

[
ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)]
− lim

zi3↑τ

[
ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)]
The regime where γi = 1 is a conventional RD. The existence of the regime

γi = 0 converts the problem to a fuzzy RD where E [yi4 |zi3, ρ0, δ0 ] = g (zi3) plays
the role of the “compliance status” function. The term

(1− ρ0)
{

E

[
lim
zi3↓τ

f2 (zi3 − εi) |Z, γi = 0, δ0

]
− E

[
lim
zi3↑τ

f1 (zi3 − εi) |Z, γi = 0, δ0

]}
(24)

is zero because εi ∼ N
(
0, δ2

)
implies that in the regime γi = 0, there is no point

mass at εi = 0; hence there is no jump at τ–the continuous function f1 (zi3) transi-
tions smoothly to f2 (zi3) over the support of εi. The SDL noise needn’t be normal,
but it must be drawn from a continuous distribution.

5.2.1 Implications of SDL in the Running Variable for other RD Models

If generalized random response SDL is applied to the running variable, then the
SDL is ignorable for parameter estimation when the true RD design is fuzzy. The
FRD compliance function, augmented with the contribution from SDL, becomes

h(zi) = E [ti |zi, ρ0, δ0 ] (25)

= ρ0pT |R (ti = 1|zi) + (1− ρ0)
∫
pT |R(ti = 1|ri)pR|Z(ri|zi)dr. (26)

It immediately follows

lim
zi↓τ

h (zi)− lim
zi↑τ

h (zi) = ρ0

[
lim
zi↓τ

pT |R (ti = 1|zi)− lim
zi1↑τ

pT |R (ti = 1|zi)
]
.
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The second summand in the expression for h(zi) is zero. When the running vari-
able is distorted with normally distributed noise, there is no point mass anywhere,
and hence no discontinuity in the probability of treatment at τ . The claim that the
SDL is ignorable for consistent estimation of the treatment effect in the fuzzy RD
design follows. Imbens and Lemieux (2008) show that the IV estimator that uses
the RD as an exclusion restriction is formally equivalent to the fuzzy RD estimator,
so the SDL is also ignorable for consistent estimation in this case.

6 Conclusion

In Progress.
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