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Abstract

Women are substantially less likely than men to graduate college with a STEM degree. This
paper investigates whether class composition can help explain why women are disproportion-
ately more likely to fall out of the STEM “pipeline”. Identification comes from a standardized
enrollment process at a large public university that randomly assigns freshmen to different
mandatory introductory chemistry lectures. Using administrative data, I find that women who
are enrolled in a class with higher ability peers are less likely to graduate with a STEM degree,
while men’s persistence in STEM is unaffected by class composition. I also show that the
decline for women is most pronounced for those in the bottom third of the ability distribution.
I rule out the possibility that this is driven solely by grades because both men and women re-
ceive higher grades in classes with higher ability peers. Overall, these results suggest that class
composition as an important factor in determining STEM persistence for women and provide
a novel explanation for part of the STEM gender gap in post-secondary education.
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1 Introduction

Women exit STEM majors at much higher rates than men, which in part contributes to the gender-

wage gap because they miss out on the sizable premiums associated with employment in these

fields.1 To date, little is known regarding why women drop out of the STEM pipeline in col-

lege. Recent research finds that the instructor-student gender match matters somewhat (Carrell,

Page and West (2010) and Hoffmann and Oreopoulos (2009)), and that women’s responsiveness to

grades explains some of the phenomenon as well (Rask and Tiefenthaler (2008) and Ost (2010)),

but much remains unexplained. Gaining a better understanding of the factors that cause women

to leave STEM fields during college is important for developing policy aimed at bolstering this

group’s STEM persistence. This paper examines a novel pathway: To what extent does the compo-

sition of a woman’s introductory university STEM course impact STEM persistence? By and large,

these courses are large and competitive, and to the extent that women are more sensitive to these

environments, a class composition which magnifies these features may induce marginal women to

leave.

I investigate this question using administrative data from a large public research university.

A unique feature of this particular setting is the quasi-experimental way in which students are

assigned to their first chemistry course, which is a mandatory prerequisite for nearly all STEM

majors at most universities, and therefore a significant gateway to success in STEM. Exploiting

this quasi-experimental setting, I show that being in a class with higher ability peers reduces the

probability that women graduate with a STEM degree and has no effect on men. More specifically,

a 15% increase in the number of high ability students in a General Chemistry lecture (one standard

deviation) reduces the probability that the average woman graduates with a STEM degree by 3.1

percentage points (6.8%). As one might expect, I further show that the effect is strongest in the

bottom third of the math ability distribution. I rule out grades in the same course as the underlying

mechanism by showing that there is a positive relationship for both men and women between peer

1Paglin and Rufolo (1990); Murnane, Willett and Levy (1995); Grogger and Eide (1995); Brown and Corcoran
(1997); Weinberger (1999); Weinberger (2001); Murnane, Willett, Duhaldeborde and Tyler (2000); Rose and Betts
(2004)
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ability and grades in the STEM gateway course analyzed. These results are informative for at least

two reasons. One, they are the first to show that classmate influences are an important factor in

determining students’ academic success in higher education, at least for women. Two, in contrast

to most previous work (discussed below), I focus on STEM major completion rather than grades

because STEM completion closely relates to occupation choice, which is an important piece to the

gender wage gap story (Murnane et al. (2000) and Rose and Betts (2004)).

Very little is known regarding post-secondary classroom composition effects because isolating

the causal impact is difficult. Often students, or more indirectly administrators, influence the stu-

dent make-up of a classroom. Several studies at the elementary school level, which for the most

part rely on data from the large scale randomized experiment Project STAR, find a positive rela-

tionship between average classmate ability and achievement (Whitmore (2005), Hanushek, Kain,

Markman and Rivkin (2003), Boozer and Cacciola (2001), and Hoxby (2000)). Whether these

results extend to a higher education setting, however, is an open question.

To date, the most convincing peer effects study in higher education – which estimates small

positive effects on freshman grade point average – relies on the random assignment of students

from the United States Air Force Academy to squadrons; which are essentially cohorts (Carrell,

Fullerton and West (2009)).2 This peer group measure is an improvement over previous studies,

which define dorm-mates as the peer group, because squadrons capture a more comprehensive set

of students’ peer interactions.3 None of these estimates, however, capture the effects that students

within a classroom may have on individual outcomes because dorm-mates and squadron members

do not necessarily attend the same classes.

There are several ways in which being assigned to a college lecture with relatively higher

ability peers could affect students’ outcomes. On one hand, this type of environment could be

2Lyle (2007) uses a similar military dataset (USMA) and cohort approach and finds no evidence of peer effects. A
drawback of both of these studies is that students from military institutions likely are not representative of the general
university population, especially women.

3The following studies use the random assignment of students to dorms to estimate peer effects and find mixed
results. Stinebrickner and Stinebrickner (2006) find small positive peer effects on grades for women. Zimmerman
(2003) and Sacerdote (2001) find small positive peer effects on students’ grades, grade point average, and the take-up
of social networks such as fraternities/sororities. Foster (2006) finds no evidence of peer effects.
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performance enhancing. Students may benefit directly from higher ability classmates through

knowledge spillovers during class, office hours, or out-of-class group study sessions. Additionally,

the average class ability can affect the classroom standard and students may be motivated to work

harder to keep up with their high achieving peers, consequently earning higher grades.

On the other hand, a high achieving classroom environment may be harmful in more subtle

ways by negatively impacting self-perception. The higher the ability of the peers in a classroom,

the harder it is to be ranked highly. This may make the environment more competitive. While

in many situations competition can improve performance, contest theory suggests that large gaps

in skills between competitors can have the perverse effect of reducing effort incentives. As such,

marginal students in this “small fish in a big pond” environment may feel relatively weaker and

either reduce their effort resulting in lower grades in STEM courses or exit the STEM pipeline

altogether. Brown (2011) provides empirical evidence for this theoretical prediction by showing

that the presence of a superstar in a PGA golf tournament is associated with lower performance by

the other competitors. In a related vein, Niederle and Vesterlund (2007) and Garratt, Weinberger

and Johnson (2013) show that women shy away from competition more than men and that the gen-

der performance gap is exacerbated under competition (Gneezy, Niederle and Rustichini (2003)).

These findings suggest that women may be more discouraged by the competitive STEM climate

than men.

At least three aspects of the quasi-experimental nature of this setting make it favorable for

studying class composition effects. First, the unique no-priority registration process at this insti-

tution leaves little room non-random class enrollment (see Section 3.2). Second, the introductory

STEM course General Chemistry is a required prerequisite for most STEM majors and students

cannot circumvent the course by apply Advanced Placement credits eliminating another avenue

for selection. Third, the enrollment of upperclassmen into this introductory course generates sub-

stantial exogenous variation in classroom composition (see Section 3.3)

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3

discusses identification and outlines the empirical strategy. Section 4 reports the results. Section 5
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concludes.

2 Data

All data in this study are drawn from the University of California Santa Barbara (UCSB) admin-

istrative data system. UCSB is a research intensive public university with a large undergraduate

population. These data include all students who are enrolled in the required introductory univer-

sity STEM course, General Chemistry (CHEM1A), in a fall quarter during the years 1997 through

2007, and follows each of them through graduation. General Chemistry is a particularly favorable

setting to study STEM because at UCSB, and at the majority of other universities, this course is

the first prerequisite for most STEM majors4 and tends to be difficult and competitive.5 This gate-

way course is a yearlong sequence consisting of CHEM1A, CHEM1B and CHEM1C.6 Moreover,

STEM majors at UCSB are required to take the course at the university to advance to any follow-on

courses. Students are not able to apply Advanced Placement credits to bypass this prerequisite, a

strategy that is often used to circumvent introductory math and statistics.

The data contain two types of students, on-track (freshman) and late-track (sophomore or

higher). On-track students are defined as taking CHEM1A in the fall quarter of their first year at

the university. Late-track students are upperclassmen taking CHEM1A in a fall quarter other than

their freshman year. Of this sample, roughly 85% of the observations are on-track students. The

other 15% of students are late-track. There are 12,230 on-track students in the sample. Conditional

on being a late-track student, 1,291 are upperclassmen who entered the university as freshmen and

621 are transfers. Anecdotally, there are several reasons to believe that late-track CHEM1A stu-

dents differ on observable and unobservable characteristics from on-track students. First, a portion

of the late-track students are transfers. Transfer students typically come from the local city college

4Appendix Table A1 lists the STEM majors that require CHEM1A.
5One indication of the relative difficulty of the CHEM1A sequence at UCSB, is the large fraction of campus

tutoring services allocated to it. In the academic year 2012-2013, about 25% of all the students that used the Campus
Learning Assistance Services (CLAS) were General Chemistry students.

6CHEM1A is offered in the fall, CHEM1B in the winter and CHEM1C in the spring.
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and, on average, have lower high school grades and socioeconomic characteristics. Second, upper-

classmen enrolled in CHEM1A, even if they are not transfer students, are behind schedule in their

major since CHEM1A is the gateway course for almost all other STEM courses/majors. They are

either behind because they switched to a STEM major at some point after their first year or because

they needed a year of preparatory courses – remedial math and science – before taking CHEM1A.

Table 1 presents evidence that on-track students are on average higher achieving than late-track

students on observable characteristics. Each column is a separate regression where the outcome

is a different predetermined student characteristics. The variable of interest is a 0-1 indicator for

being on-track. Year fixed effects are also included in the specification. As reported in Columns

2 and 4, late-track students appear to have lower high school grade point averages and SAT math

scores; two characteristics that are predictors of STEM success. In fact, late-track students on

average have two-thirds of a letter grade lower high school grade point average (see Figure 1).

One desirable feature of this dataset is that on-track students (freshmen) face a no-priority

registration policy. On the other hand, late-track students have the ability to selectively enroll in

CHEM1A. To alleviate concerns of possible selection issues on this margin, I analyze the outcomes

of on-track students only. The only way in which late-track students enter the analysis is through

the composition variable (the share of on-track students per lecture), which is the regressors of

interest.7

Table 2 presents summary statistics for the main sample, which only includes on-track students.

From 1997-2007 there are 46 CHEM1A lectures taught by 13 different instructors. The average

lecture size is 329 students. On average, on-track students make up 85% of each lecture; the

minimum is 71% and the maximum is 96%.8 The main outcome of interest is STEM completion,

defined as graduating with a STEM major from UCSB within five years. Among entering freshmen

who take CHEM1A, the average STEM completion rate is 53% for men and 45% for women.

Other outcomes used in this analysis are a student’s grade in CHEM1A, whether a student takes

7While late-track students have the ability to selectively enroll, Table 4 shows that the observable characteristics
for this group are orthogonal to class composition. See Section 3.3 for more details.

8If the sample is restricted to exclude CHEM1A lectures with 100 or fewer students, the percent freshmen per
lecture ranges from 75-96%.
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the direct follow-on course (CHEM1B), and a student’s grade in CHEM1B. The average CHEM1A

grade for males is a 2.65 GPA (on a 4 point scale) and a 2.49 for women. Of all freshmen who

take CHEM1A, 85% of men and 80% of women continue on to CHEM1B where the average grade

earned in CHEM1B for men and women is 2.59 and 2.58 respectively.

UCSB administrative data also include several socioeconomic measures: race, sex, high school

grade point average, SAT math and verbal scores, type of high school (public or private), parents’

highest education level, English proficiency and age. Limited information is also available re-

garding instructors and course times. These include an instructor’s sex and a unique instructor

identification number, as well as the year, day, and time of the lecture. These data are linked to

students.

3 Empirical Strategy

3.1 Econometric Specification

The primary specification is the following linear probability model:

Gitnd = α1 +β1Fi +β2lnOtnd +β3Fi ∗ lnOtnd +α2Ctnd +α3Xi +α3Mi +φt +ρn + εitnd (1)

The variable Gitnd denotes STEM major completion for an on-track student i who takes CHEM1A

in year t with instructor n at time of day d; tnd uniquely identifies an individual lecture in a spe-

cific year. F is a female indicator variable and Otnd is the number of on-track students in a specific

lecture. The log transformation allows one to interpret the on-track estimate as a percent change

and takes into account that a one student change is proportionately larger from a small base.9 The

coefficient β2 captures the effect of the number of on-track students per lecture on the outcome for

men. The coefficient on the interaction term F i ∗ lnOtnd is the differential effect of the number of

on-track students per lecture for women. Thus, for women the percentage point change in STEM
9In alternative specifications, I also use percent of on-track students in a lecture as the measure of class composition

and obtain quantitatively similar results. This measure is less desirable because it assumes that the marginal effect is
constant regardless of the base.
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graduation associated with a percent increase in the number of on-track students is β2 +β3. Ctnd

controls for several class level characteristics: the total number of students enrolled in a given

lecture and the percent female. The lecture size variable includes the log of the total number of

on-track and late-track students enrolled in a given lecture. Xi is a vector of student background

characteristics including: race, if a student went to public high school, if English is the only lan-

guage spoken in the home, the highest level of education attainment of the parent with the highest

level of education, high school grade point average, SAT math and verbal scores and age. M indi-

cates that the lecture took place in the morning (starting at 8 a.m. or 9 a.m.). Year fixed effects (φt)

are included to control flexibly for time trends in STEM completion. Since many instructors appear

repeatedly, I include instructor fixed effects (ρn) to control for time-invariant instructor differences.

All standard errors are clustered at the lecture level (instructor/year/time of day).

3.2 The Assignment of Students to Lectures

The aim of this study is to understand the differential impact of the number of on-track students in a

general chemistry lecture relative to late-track students on STEM completion for men and women.

In order to interpret β̂2 and β̂3 as causal, the variation in number and type of on-track students per

lecture must be uncorrelated with unobservable student and instructor characteristics. For example,

student preference for lectures with a certain concentration of on-track students would draw a

causal interpretation into question. For my purposes, a primary concern is that β̂2 and β̂3 will be

biased if on-track students with similar characteristics systematically enroll in lectures that have a

higher (or lower) share of on-track students. To mitigate possible selection issues, only students

in the fall quarter of their first year are included in the sample; Hoffmann and Oreopoulos (2009)

take a similar approach.10 This sample of students combined with UCSB’s no-priority freshman

enrollment process and the Chemistry Department’s strictly enforced “no switching” rule leaves

little room for selective enrollment for freshmen in CHEM1A.
10Freshmen in their first quarter of school have virtually no information about the instructors or classroom compo-

sition since they enroll in their first quarter courses prior to the start of school and they have very little flexibility in
their class schedules to allow them to be strategic in course registration.



9

During my sample period, 95% of all first year students attend a fee-based two-day summer

orientation either in June, July or August where they register for their fall quarter courses.11 Im-

portantly, there is no priority based registration during or before summer orientation. In each

orientation session, a certain percent of the total seats available in a given “first year” course are

made available to that particular orientation session. This equalizes the probability of enrolling

in a certain lecture/course across all orientation sessions and eliminates the issue of students who

attend earlier orientation dates getting all the “good” classes.

At orientation each student is assigned to a group of 15 students.12 With this group, students

attend seminars about university life and register for their first quarter classes under the guidance

of a trained orientation leader. Only one student in an orientation group is able to register at a

time, as there is only one laptop per group. Within each group a registration queue is formed by

random draw (i.e. creating registration position 1- position 15). The student who draws position

1 registers first. Registration opens at the same time for all groups within an orientation session.

According to the Director of Orientation Programs and Parent Services at UCSB, the high demand

for CHEM1A, the limited seats, the random registration order, and student’s general lack of infor-

mation about instructors makes strategic CHEM1A registration essentially impossible. The one

avenue for selection that one might be concerned with is time of day preferences. While there is no

evidence that this is happening in a differential fashion, all specifications include controls for time

of day. Making selection even harder, the Chemistry Department strictly enforces an no switching

policy. A student can only switch lectures during the first week of the quarter and he must find a

student in his desired lecture to replace him in his original one: a one for one switch.13

Balance tests for the main sample (entering freshmen cohorts from 1997-2007) are reported

in Table 3. Each column in this table corresponds to a separate regression where a different pre-

determined student characteristic is regressed on lnOitnd and Fi ∗ lnOitnd . Year fixed effects are

11Each summer 12 freshman orientation dates are offered and students can attend the date of their choice.
12Students are placed into orientation groups by declared major, but groups within major are formed randomly.
13All information regarding freshman orientation and registration comes from an interview with Kim Equinoa

(kim.equinoa@sa.ucsb.edu) who was the director of Orientation Programs and Parent Services at UCSB during the
years in which the data for this analysis are from. Information on the Chemistry Department’s no switching rule comes
from the administrative office within the Chemistry Department.



10

also included. If selection is present, the coefficient on lnOitnd will attain statistical significance.

Furthermore, if gender based selection exists, i.e. all high achieving women enroll in lectures with

a low share of on-track students while high achieving men enroll in lectures with a high share of

on-track students, the interaction term Fi ∗ lnOitnd will be significant. Although the coefficient on

lnOitnd is statistically significant in some cases, the magnitudes are nearly zero. More importantly

for my purposes, there is even less evidence of a gender differential in selection across class com-

position. Fi ∗ lnOitnd is statistically significant in a third of cases but again the magnitudes are

minuscule. For instance, Column 2 shows that SAT math and the interaction term are positively

related, however, the estimated coefficient indicates that an increase in the log of on-track students

in a class of 15% has an additional positive effect for women of 1.7 SAT math points where the

SAT math standard deviation is approximately 80 points. Not only are these estimates econom-

ically insignificant, the direction works against the main findings of this paper (women’s STEM

persistence and the average class ability are negatively related) as they are a downward bias. Based

on the class composition, there is little evidence that students are selecting into lectures.

The one concern related to student selection that I cannot directly rule out is the possibility

that students who attend summer orientation differ from those who do not. Students who do not

attend summer orientation register for their fall classes in mid-September prior to the start of the

quarter but after all orientation goers have registered. On-track student estimates will be biased if

students who do not attend summer orientation are non-representative and systematically register

for lectures based on the ratio of on-track to late-track students. If I could observe CHEM1A

registration dates I could do a balance test on observables between students who attend summer

orientation and those who do not. Since these data are unavailable for my sample period, I have

instead obtained registration data for all freshmen enrolled in CHEM1A in fall 2013. Although

these students are not in my main sample, the registration behavior should be similar, as the general

structure of freshman registration is similar.

For this group of students – all freshmen enrolled in CHEM1A in fall of 2013 – I observe their

CHEM1A registration date and time as well as demographics and CHEM1A instructor charac-
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teristics. Ninety percent of this sample attended a summer orientation/registration (slightly lower

than the main sample). Comparing the observable characteristics of students who attend orienta-

tion and those who do not, the only group who is underrepresented in orientation attendance is

underrepresented minorities; 38% of the orientation attending group are URMs compared to 49%

of the non-orientation attending group. There appears to be no selection into orientation atten-

dance by gender, parent’s education level, whether one has a high school GPA in the top half of

the distribution for the sample, whether one scores in the top half of the SAT math or SAT verbal

distribution for the sample, type of high school one attended, and English language learner status.

Most importantly, the data indicate that there is no statistically significant difference in the share of

on-track students in a lecture or begin time of the lecture for those who attend summer orientation

and those who do not. Appendix Table A2 reports these results.

3.3 Source of Variation in Classmate Ability

The approach used to identify classroom composition effects in this study is similar to that of

Hoxby (2000). She estimates classroom peer effects among elementary age students by exploiting

plausibly random variation in the gender and racial composition within a given grade and school

over time. I exploit exogenous variation in the ability composition across CHEM1A lectures within

a year and over time. Variation in CHEM1A classroom composition is driven by late-track student

enrollment patters. Late-track students register for fall classes the previous spring, before on-track

enrollment. Based on estimated freshmen fall enrollment, the university holds a fraction of the

CHEM1A seats in each lecture for incoming freshmen; in some cases late-track students fill all of

the seats allotted to them in a given lecture and in other cases they do not.

For instance, suppose for simplicity that there are 4 lectures and each has a maximum enroll-

ment of 100. Further suppose that 30 percent of the seats (30 seats in this case) in each lecture in a

given year are made available to late-track students. If in one of the lectures all 30 seats are filled,

in the second only 25 are filled, and in the third and fourth only 20 and 15 respectively are taken,

then variation will arise in the number of late-track students. The second stage of the process is
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that on-track students are assigned (virtually at random) to the remaining seats. Although in theory

late-track students have the ability to select into specific lectures which is why I don’t analyze their

outcomes, the balance test reported in Table 4 show no sign this group is selecting into lectures

based on the composition of the class. There is some evidence that better late-track students select

morning lectures but, importantly for this paper’s empirical approach, time of day is uncorrelated

with the share of on-track students.

4 Results

Results from the main specification (Equation 1) – which estimates the differential impact of the

number of on-track students in a class for men and women – are reported in Table 5. Column

1 of Table 5 reports results for the full sample and shows that increasing the number of on-track

students in a class by 15% reduces the probability that a woman graduates with a STEM major by

3.1 percentage points (see Column 1, panel B). Increasing the number of on-track students by 15%

in the average class is equivalent to adding 44 more on-track students to a class with 281 on-track

students, which is about one standard deviation. To give context to the magnitude of the results,

the average STEM graduation rate for women is 45% and 53% for men. Thus, a 15% increase in

the number of on-tracks student in a lecture decreases the STEM graduation rate for an average

woman from 45% to about 42%, which is a decrease of 6.6%. For men, Column 1 suggests that

there is no statistically significant relationship between the ability of the students in his CHEM1A

lecture and the rate at which he persists in STEM.14

While the aim of this analysis is to understand the total effect of a student’s classmates on

that student’s STEM outcomes, it is worth noting that in theory the total estimated composition

effect can embody three distinct effects; exogenous peer effects (also known as contextual effects),

endogenous peer effects, and correlated effects. Correlated effects are present when individuals

14I re-run Equation 1 using a probit model rather than a linear probability model and obtain similar results. I also
use percent on-track students in the class as well as number of on-track students in the class rather than natural log of
the number of on-track students and obtain similar results.
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in the same group behave similarly because they have similar individual characteristics (Moffitt

et al. (2001)). This is often caused by students self-selecting into a group. The random assignment

of students to lectures ensures that the composition estimates are free of correlated effects. Ex-

ogenous peer effects arise when a student’s classmates’ predetermined observable characteristics

(high school grade point average, SAT scores etc.) affect her outcomes. Endogenous peer effects

are present when a student’s classmates’ outcomes affect her outcome. For instance, although in

practice this seems rather unlikely, if a student’s classmates’ decision to remain in STEM affects

her decision to stay, then the composition estimates in this study will capture not only the the ex-

ogenous effect but also this endogenous effect.15 That said, although in the peer effects literature

it is often the goal of the empiricists to solve the reflection problem which involves isolating the

exogenous effect net of the other two effects, in this this study I am interested in learning how

classmates’ affect a student’s STEM completion. As such, my composition estimates are captur-

ing this total effect and the presence of an endogenous effect does not undermine the empirical

findings.

4.1 Sensitivity and Heterogeneity Analysis

One factor that threatens the causal interpretation of these results is student assignment to lectures

with a particular composition based on characteristics that correlate with student STEM persis-

tence. Although a balance tests reveal that students are statistically similar on observables across

classes (Table 3), lectures added at the last minute to meet a larger than expected CHEM1A de-

mand are a particular concern.16 The data do not allow one to specifically identify whether a class

is added at the last minute, however, the very small lectures (i.e. those with fewer than 100 stu-

dents) are likely to be the added course if one exists. Importantly, these very small lectures also

15If one believes that endogenous effects are present and assuming that both the exogenous and endogenous effects
are negative, my estimate of the “total effect” will overestimate the exogenous effect. That is, the estimate will be
inflated by a social multiplier, which is commonly known as the reflection problem, and be more negative than the true
exogenous effect.

16Although many years the Chemistry Department accurately estimates the demand for CHEM1A, there are cases
where they add an additional lecture the week before the fall term begins.
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appear to be correlated with the percent of on-track students in the class. The average percent of

on-track students for these lectures is 72 compared to 86% for the entire sample. It is also the

case that on-track students assigned to these smaller add-on lectures have the greatest potential

to be non-representative. For instance, the small percent of on-track students who do not attend

a summer orientation/registration session and also enroll in CHEM1A (which is on average 5%

percent of an incoming freshman class) are most likely assigned to an add-on lecture during the

first week of school. One would expect this non-summer orientation attending group of students

to be less advantaged, thereby dampening the estimated on-track student effect found in the main

specification.17 Column 2 of Table 5 reports the estimates for the subsample which excludes lec-

tures with fewer than 100 students; variation in percent on-track student per lecture ranges from

75 to 96%.18 Results for this subsample indicate that potential add-on lectures are not driving the

main findings. In fact, the magnitude of the estimated on-track student effects for women and men

are not statistically different from the estimated effects using the whole sample.

Additionally, understanding which group of students is driving the main result is important for

developing and implementing interventions. Columns 3-5 of Table 6 report results disaggregated

by SAT math score. The effect is strongest for women in the bottom third of the SAT math dis-

tribution. A 15% increase in the number of on-track students in a class reduces the probability

by 5.7 percentage points that a women in this SAT math group completes college with a degree

in STEM, and this effect is statistically different from the estimated effects in the other two SAT

categories (Columns 4 and 5). Consistent with the main finding, the men in all subsamples appear

to be unaffected by the classroom composition. While it is intuitive that women in the lower part

of the math ability distribution are the group most affected by classroom composition since they

are the group most at risk of dropping out of STEM, these results oppose the findings in Carrel et

al. (2010). They find that the group influenced by STEM interventions are women at the top of the

SAT math distribution. In particular, they document that women in the top 25% of the SAT math

17Non-orientation attending students are likely less advantaged because summer orientation is an additional cost.
According to UCSB office of Orientation Programs and Parent Services, the most common reason students do not
attend orientation is due to summer employment.

18A balancing test for the subsample is statistically the same as the balancing test for the main sample.
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distribution with female STEM instructors are more likely to graduate with a STEM major.

One might wonder if the results truly are a gender effect. It is possible that I am capturing

an underrepresented minority effect or merely picking up the fact that all students at the bottom

end of the SAT math distribution are less likely to graduate with a degree in STEM. Columns 1

and 2 of Table 6 report results from the specifications outlined in Equations 2 and 3 respectively.

These models, which are extensions of equation (1), include a triple interaction term allowing one

to disentangle differences in the on-track student effect across gender and race (Column 1), as well

as gender and position in the SAT math distribution (Column 2).

Gitnd = α1 +β1Fi +β2lnOtnd +β3URMi +β4Fi ∗URMi +β5lnOtnd ∗URMi +β6Fi ∗ lnOtnd+ (2)

β7Fi ∗URMi ∗ lnOi +α2Ctnd +α3Xi +α3Mi +φt +ρn + εitnd

Gitnd = α1 +β1Fi +β2lnOtnd +β3Lowi +β4Fi ∗Lowi +β5lnOtnd ∗Lowi +β6Fi ∗ lnOtnd+ (3)

β7Fi ∗Lowi ∗ lnOi +α2Ctnd +α3Xi +α3Mi +φt +ρn + εitnd

URMi denotes whether a student is an underrepresented minority (black, Hispanic, American In-

dian or Filipino) and Lowi indicates whether a student falls in the bottom third of the SAT math

distribution for the sample in a given year. All other variables are as defined in Section 3. Column 1

shows that all women, regardless of race, have STEM persistence rates that are negatively affected

by the number of on-track students in her CHEM1A class. As reported in Column 1 Panel B, URM

and non-URM women experience a 3.0 percentage point decline in STEM persistence as a result

of an increased number of on-track students. Again, there is no detectable class composition effect

for men, URM or non-URM.

Results presented in Table 6 Column 2 further support a gender story. These results show that

only women (and not men) in the bottom third of the SAT math distribution for the sample have

STEM persistence rates that are affected. In fact, women in this group are 4.0 percentage points

less likely to graduate in STEM as a result of a 15% increase in the number of on-track students

in a class. The results for the women are statistically different from zero and statistically different
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from men in this same SAT math group.

Gitnd = α1 +β1Fi +β2lnOtnd +β3Bi +β4Fi ∗Bi +β5lnOtnd ∗Bi +β6Fi ∗ lnOtnd+ (4)

β7Fi ∗Lowi ∗ lnOi +α2Ctnd +α3Xi +α3Mi +φt +ρi + εitnd

Finally, socioeconomic status may also play a role in one’s willingness to leave STEM when

placed in a lecture with a higher share of on-track students. I use a similar triple difference speci-

fication – as outlined in Equation 4 – and examine the differential effect of on-track concentration

on STEM persistence by gender and by parent’s level of education. Bi indicates if a student has at

least one parent with a bachelor’s degree. Results presented in Column 3 of Table 6 show that all

women, regardless of whether her parent is a college graduate, have an increased probability of ex-

iting STEM. Consistent with all other specifications, the persistence rate for men in all subgroups

seems to be statistically unrelated to the composition of the class. Together, these findings provide

strong evidence that women in the bottom third of the math ability distribution are the group most

affected by the ability of their classmates. There is no evidence to support the conjecture that it is

merely reflecting minority status, being in the bottom of the ability distribution, or socioeconomic

status.

4.2 Possible Mechanisms

These reported findings raise the question: Why are women in the bottom third of the math ability

distribution less likely to graduate with a STEM degree if their first experience with STEM is in a

setting with higher ability classmates, and why are men unaffected by this factor? Because little is

known regarding post-secondary classroom composition effects and student outcomes in general,

less is known about the mechanisms at work, and in particular why composition matters more for

women. One relevant study – a project funded by the National Science Foundation and conducted

by the Goodman Research Group – surveyed roughly 25,000 undergraduate women enrolled in

engineering programs across 53 institutions between 1999-2001 with the goal of identifying “..

aspects of women’s educational experiences that are critical to their retention in engineering.”
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Although engineering students comprise only a small part of the greater group of women in STEM,

lessons learned from the engineering study likely have some relevance for other STEM areas since

many early prerequisites are common across STEM majors. This study finds that women who leave

engineering are most likely to leave in their freshman or sophomore year. The top two reasons for

leaving are: (1) they are dissatisfied with their grades and/or the heavy workload, and (2) they

dislike the overall climate of the major, including the competitive nature and discouraging faculty

and peers. Both of these factors may be directly influenced by the class composition.

4.2.1 Grades

First, I investigate grades in the initial course as a possible mechanism. In addition to the study by

the Goodman Research Group, several studies in economics find that women are more responsive

to grades than men, and as a result exit STEM majors.19 If all CHEM1A classes are graded on a

similar curve (i.e. 10 percent of the class earns an A grade, 35 percent earns a B grade etc.), then

students in lectures with more high ability classmates will receive lower grades relative to their

counterpart (those in lectures with fewer on-track students). For instance, suppose that there are

two CHEM1A lectures with equal enrollment in a given fall quarter and one has more on-track

students than the other. Relying on the fact that lectures with more on-track students are overall

higher ability (Table 1), then a student receiving a score of 77% in the lecture with more on-track

students will be assigned a lower final letter grade than if she was in a class with fewer on-track

students.

To explore this possibility, I use a specification similar to Equation 1 with a student’s CHEM1A

grade as the outcome. CHEM1A grade is a variable taking on values from 0 to 4. If grades are

the underlying mechanism, students in classes with more on-track peers should receive lower final

grades. The results presented in column 1 of Table 7, however, show no sign of this. In fact,

both men and women experience a bump in CHEM1A grade as a result of an increase in the

19The average grade in STEM courses is much lower than humanities, social sciences, arts and interdisciplinary
courses. Rask and Tiefenthaler (2008) and Ost (2010) show that women in STEM are more responsive to grades than
men.
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number of on-track students in a class. Columns 2-7 further show that this result is robust to a

variety of subsamples. It appears that all students – male, female, URM, non-URM, the low SAT

math scoring group and high SAT math scoring group – experience a marginal increase in their

grade. These results are also robust to the subsample which excludes lectures with fewer than 100

students. Quantile regression results (available upon request) further reveal that a positive effect

is detectable at all places in the distribution for both men and women which suggests that the

overall grade distribution for classes with a higher share of on-track students is shifted to the right.

Moreover, if grades are driving the result, controlling for CHEM1A grade in the main specification

(Equation 1) should diminish the composition estimates. Table 8 reports such estimates and shows

that the effect remains despite controlling for initial course grade, and the differential effect persists

as well.

It is possible that the grade findings are a result of positive peer effects as it has been shown

that higher ability peer groups elicit higher individual grades (Stinebrickner and Stinebrickner

(2006); Han and Li (2009); Zimmerman (2003); Sacerdote (2001); Carrell et al. (2009)). Given

the structure of the data, however, I cannot rule out that the positive grade effect is merely an

artifact of instructors adjusting their grade scales based on the overall ability of the students. For

instance, positive effects will emerge if instructors increase everyone’s grade in a class because

on-whole they are high achieving; a channel that instructor fixed effects will not capture because

this behavior is time-varying.

4.2.2 Course Climate

General Chemistry is competitive and women, when given the option, are more likely to select out

of competitive environments (Niederle and Vesterlund (2007), Garratt et al. (2013)). The compet-

itive environment in the introductory chemistry course comes from at least three source, (1) the

course is required for most STEM majors and students are required to keep a “C” average in the

introductory sequence to advance to upper division courses, (2) because many STEM majors are

graduate school and medical school prerequisites, students are motivated to maintain a high grade
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point average, and (3) grades are assigned based on a curve. Increasing the share of high ability

students therefore increases competition in an already competitive environment.

Additionally, the composition of the class could affect students’ self-perception about their

immediate and future success in the major. Presumably, all students enter the initial course with an

expectation about how they will do. Throughout the course they learn about their relative standing

and update beliefs about themselves accordingly. Individuals in lectures with relativity higher

ability classmates may adjust these believes differently than those who are not. For example, Pop-

Eleches and Urquiola (2011) show that students who just make it into better high schools receive

a bump in exam scores but also report feeling marginalized and relatively weaker compared to

students who are placed in classes with lower ability classmates. To the extent that women’s self-

perception about their future success is more negatively affected by the ability of those around

them, it could explain their much lower retention rate. Along these lines, if women are more

risk averse, then the marginal women may switch to majors where they perceive having a higher

chance of “making it” while marginal men gamble by staying in STEM. Consistent with this idea,

Kuziemko, Buell, Reich and Norton (2014) show that men are more likely to gamble to avoid low

rank whereas women accept it.20

There are many reasons to believe that women might be turned off by the climate in STEM

while men are not. As a result, marginal women may become discouraged and either exert lower

effort or quit STEM altogether. Some evidence supporting the idea that women become discour-

aged is in the take-up of the direct follow-on course, CHEM1B. Twenty percent of women exit the

general chemistry sequence after the initial course compared to 15% of men and some of this is

attributable to the composition of the introductory course. Table 9 reports results for a linear prob-

ability model similar to Equation 1 where the outcome is equal to one if a student takes CHEM1B

and zero otherwise. This table shows that women’s and men’s CHEM1B take-up is unrelated to

CHEM1A classroom composition for the whole sample (Column 1), but when broken out by SAT

math subgroups the results indicate that CHEM1B take-up for women in the bottom third of the

20Although data for this study comes from the laboratory and manipulates an individual’s rank in the wealth distri-
bution, it is reasonable that the detected behavioral response extends to a classroom ability distribution.
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SAT math distribution – which is the group with STEM major completion most affected by class-

room composition – is negatively related to the number of on-track students in a class (Column

5). The estimated effect is statistically different from zero and statistically different from the effect

for men in this same group, but due to the noisy estimates in the other subsamples, I cannot reject

that the effect for women is the same as the estimated effects for women from the other SAT math

groups (the middle third and the top third). These results are robust to a specification that controls

for CHEM1A grade as well.

Next, I estimate a small negative relationship between number of on-track students and CHEM1B

grade for women and find no statistically significant effect for men (Table 10, Column 1). An in-

crease in the number of on-track students of 15% is related to a reduction in a woman’s CHEM1B

grade of 0.08 grade points which is 27% of a letter grade. Consider this estimate understated (less

negative than one would expect) because some students – particularly those near the bottom of the

ability distribution, see Table 9 – have already exited the pipeline as a result of the introductory

class composition and are no longer in the sample. It is very likely that this follow-on grade find-

ing reflects a student’s overall discouraged feeling – i.e. lack of effort – particularly if she feels

marginalized in the introductory course. It is also possible that learning or mastering the funda-

mental skills needed to successfully complete a STEM degree is lower for women in introductory

classes with higher quality students. However, this later explanation, is not supported in my data,

as I find a positive relationship between the ability composition in a classroom and CHEM1A grade

for women.

Finally, I show that women are responding to the composition of their introductory course by

switching into majors that are relatively less quantitative.21 Table 11, Column 2 reports that in-

creasing the number of on-track students in a class by 15% leads to 3.3 percentage point increase

in the probability that a woman graduates with a humanities, social sciences, art, or interdisci-

plinary major.22 This table shows that women are still graduating (as shown in column 3) but on

21Appendix Table A3 outlines by sex the percent of students in each major category at entry and at graduation.
22I get similar results when I exclude Economics (Econ, Econ-Math, and Econ-Accounting) and Psychology from

this group.



21

average they are graduating in majors that are, lower paying, less quantitative and arguably less

competitive.

Although I can not directly point to the channel by which high ability classmates adversely

affect women’s STEM retention, I can rule out that the effect is operating through grades. There

are, however, various other channels through which the climate may discourage women including

competition, self-perception and risk aversion. Consistent with this notion, I show that women

both directly after the initial course and at other points in their STEM major pursuit give-up on

STEM as a response to the share of high ability classmates, in favor of majors that have a more

female friendly environment.

5 Discussion and Conclusion

It has been well documented that women are less likely than men to persist in STEM majors and

careers. This study targets a unique group of students, those taking General Chemistry in their first

quarter of college, to better understand how one’s first collegiate experience in STEM explains

STEM major graduation rates. Relying on data containing roughly 12,000 first year university stu-

dents from 11 entering cohorts between 1997-2007, I estimate how the ability of one’s classmates,

as measured by the share of on-track students per class, in a required STEM major course affects

a student’s STEM major completion.

In summary, women who are assigned to a STEM lecture with higher ability peers early in their

university career are less likely to persist in STEM. I show that this result is driven by women in

the bottom third of the SAT math distribution. Men in this same SAT bracket (or any subsample

for that matter) do not experience this same negative relationship between classmate ability and

STEM persistence.

I have ruled out the possibility that women earn lower grades in classes with higher achieving

classmates and as such are less likely to persist. The number of on-track students per class and

grades in the initial course are positively related. On the other hand, I cannot rule out the possibility
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that women’s decision to exit is a response to the climate created in classes with higher ability

peers. In fact, I find some evidence consistent with a story that marginal women are deterred

by the climate, become discouraged, and eventually exit to majors with a more female friendly

environment. I show that at least some of these women are leaving the STEM pipeline immediately

after the initial General Chemistry course, as a share of them do not persist to the direct follow-on

as a result of the ability of their classmates in the initial course.

This study is the first to provide an analysis of the relationship between class composition and

STEM degree completion in higher education, and to document the differential response by gender.

Although these estimates do not provide direct policy implications, they do reveal (1) an important

group for policy to target, and (2) suggest that, for women, a behavioral response may be present.

Thus, if the goal of policy is to bolster the participation of women in STEM fields, deepening

our understanding of the channels through which classmates affect a woman’s STEM behavior is

important.
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Figure 1: Differences in High School GPA Between On-Track and Late-Track
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Table 1: On-Tracks are Relatively Higher Achieving than Late-Tracks

On-Track Late-Track Diff. (1) - (2)
(1) (2) (3)

Student Background Characteristics
Women 0.49 0.52 -0.03***

(0.01) (0.01) (0.01)
URM (underrepresented minority) 0.32 0.32 0.01

(0.47) (0.47) (0.01)
High school grade point average 3.75 3.52 0.23***

(0.32) (0.44) (0.01)
SAT math score 612.74 604.34 8.40***

(80.84) (80.95) (2.25)
SAT verbal score 569.58 575.91 -6.34***

(84.59) (83.66) (2.33)
Attended public high school 0.85 0.86 -0.01

(0.36) (0.35) (0.01)
English is only language spoken in home 0.67 0.69 -0.02*

(0.47) (0.46) (0.01)
No parent graduated from college 0.33 0.30 0.03***

(0.47) (0.46) (0.01)
Outcomes
Graduate with STEM major 0.49 0.44 0.06***

(0.50) (0.50) (0.01)
Graduate 0.81 0.82 -0.014

(0.40) (0.38) (0.01)
CHEM1A grade 2.57 2.26 0.31***

(0.93) (1.11) (0.03)
Took follow-on course (CHEM1B) 0.83 0.63 0.20***

(0.38) (0.48) (0.01)
Grade in follow-on course (CHEM1B) 2.58 2.53 0.05*

(0.87) (0.97) (0.03)
Observations 12,230 1,935 14,165

Notes: On-track students are enrolled in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their
freshman year at UCSB from 1997 to 2007. Late-track students are enrolled in CHEM1A during this time frame but are
taking the course as an upperclassman or transfer student. URM stands for underrepresented minorities and includes all
race categories except white, Asian and Indian. Level of significance is indicated as follows: *** p<0.01, ** p<0.05, *
p<0.1. Standard deviations are in parentheses.
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Table 2: Summary Statistics (sample includes on-tracks only)

Women Men
(1) (2)

Classroom Characteristics
% on-track in a lecture 0.85 0.85

(0.05) (0.05)
CHEM1A lecture size 329.37 328.53

(46.73) (47.37)
Student Background Characteristics
URM (underrepresented minority) 0.34 0.31

(0.47) (0.46)
High school grade point average 3.80 3.70

(0.31) (0.33)
SAT math score 587.59 636.41

(78.16) (75.49)
SAT verbal score 564.88 573.97

(82.63) (85.60)
Attended public high school 0.86 0.84

(0.35) (0.37)
English is only language spoken in home 0.69 0.65

(0.46) (0.48)
No parent graduated from college 0.36 0.29

(0.48) (0.46)
Outcomes
Graduate with STEM major 0.45 0.53

(0.50) (0.50)
Graduate 0.82 0.80

(0.39) (0.40)
CHEM1A grade 2.49 2.65

(0.95) (0.91)
Took follow-on course (CHEM1B) 0.80 0.85

(0.40) (0.36)
Grade in follow-on course (CHEM1B) 2.58 2.59

(0.87) (0.87)
Observations 5,942 6,288

Notes: The sample includes only on-track students, those enrolled in the first quarter of
General Chemistry (CHEM1A) in the fall quarter of their freshman year at UCSB between
the years 1997 and 2007. URM stands for underrepresented minorities and includes all race
categories except white, Asian and Indian.
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Table 3: Balance Tests – Are On-Track Students Selectively Enrolling?

URM SAT Math SAT Verbal H.S. GPA Parent is College Grad Public H.S.
(1) (2) (3) (4) (5) (6)

Panel A: Point Estimates
Ln(no. of on-track) -0.076*** -0.043 5.032 0.043** 0.064** 0.001

(0.028) (4.696) (5.040) (0.020) (0.028) (0.021)
Ln(no. of on-track) X Fem. 0.025 12.66** 7.110 -0.011 0.030 -0.053*

(0.039) (6.325) (6.906) (0.027) (0.039) (0.027)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
The differential effect 0.30 1.80** 1.00 0.00 0.40 -1.00*
Women -0.70* 1.80*** 1.70** 0.00 1.00*** -1.00***
Men -1.00*** -0.01 0.70 0.01** 1.00*** 0.00
Observations 12,230 12,142 12,142 12,160 12,230 12,230

Notes: Each column is a separate regression and also includes year fixed effects. On-track students are those enrolled in the first quarter of General Chemistry (CHEM1A) in the fall
quarter of their freshman year at UCSB between the years 1997 and 2007. URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian.
Level of significance is indicated as follows: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses.
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Table 4: Balance Tests – Are Late-Track Students Selectively Enrolling?

URM SAT Math SAT Verbal H.S. GPA Parent is College Grad Public H.S.
(1) (2) (3) (4) (5) (6)

Panel A: Point Estimates
Ln(no. of on-track) -0.003 -4.549 -1.5072 0.041 0.006 -0.045

(0.051) (11.6906) (9.730) (0.043) (0.055) (0.039)
Ln(no. of on-track) X Fem. -0.056 -5.082 -6.653 0.062 0.020 0.068

(0.078) (14.890) (14.680) (0.065) (0.081) (0.056)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
The differential effect -1.00 -0.70 -0.90 0.01 0.00 1.00
Women -1.00 -1.40 -1.10 0.01* 0.00 0.00
Men 0.00 -0.60 -0.20 0.01 0.00 -1.00
Observations 1,935 1,443 1,443 1,896 1,935 1,935

Notes: Each column is a separate regression and also includes year fixed effects. On-track students are those enrolled in the first quarter of General Chemistry (CHEM1A) in the
fall quarter of their freshman year at UCSB between the years 1997 and 2007. URM stands for underrepresented minorities and includes all race categories except white, Asian
and Indian. Level of significance is indicated as follows: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses.
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Table 5: The Effect of the Number of On-Track Students on STEM Major Completion

Full Sample Lectures > 100 Bottom 1/3 of SAT Math Middle 1/3 of SAT Math Top 1/3 of SAT Math
(1) (2) (3) (4) (5)

Panel A: Point Estimates
Ln(no. of on-track) -0.100 -0.037 -0.232 -0.71 -0.057

(0.105) (0.103) (0.171) (0.299) (0.138)
Ln(no. of on-track) X Fem. -0.112*** -0.137*** -0.166** 0.010 -0.055

(0.030) (0.045) (0.067) (0.061) (0.077)
Instructor, Year, Time of day FE X X X X X
Student Characteristics X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -3.10** -2.40* -5.70** -0.90 -1.60
Men -1.50 -0.50 -3.20 -1.00 -0.80
Observations 12,230 12,122 4,206 3,438 4,586

Note: Each column is a separate specification. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student background
characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white is the omitted group), if a
student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of education, high school grade point average,
SAT math and verbal scores and age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture (class). A 15% increase in number of on-track students in a
class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for underrepresented minorities and includes all race categories except white, Asian
and Indian.
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Table 6: Heterogeneity Analysis – STEM Major Completion for Various Subgroups

URM Effect? Low Ability Effect? Low SES Effect?
(1) (2) (3)

Panel A: Point Estimates
Ln(no. of on-track) -0.096 -0.116 -0.143

(0.114) (0.106) (0.119)
Ln(no. of on-track) X Fem. -0.125** 0.802* -0.087

(0.060) (0.472) (0.070)
Ln(no. of on-track) X URM -0.050

(0.070)
Ln(no. of on-track) X Fem. X URM 0.033

(0.101)
Ln(no. of on-track)X bottom 1/3 0.013

(0.064)
Ln(no. of on-track) X Fem. X bottom 1/3 -0.144*

(0.084)
Ln(no. of on-track) X Parent col. grad 0.054

(0.063)
Ln(no. of on-track) X Fem. X Parent col. grad -0.042

(0.087)

Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Non-URM – women -3.10**
Non-URM – men -1.30
URM – women -3.30**
URM – men -2.00
Bottom 1/3 – women -4.00**
Bottom 1/3 – men -1.40
Top 2/3 – women -2.00
Top 2/3 – men -1.60
Col. grad parent – women -3.00**
Col. grad parent – men -1.20
No col. grad parent – women -3.20**
No col. grad parent – men -2.10
Observations 12,230 12,230 12,230

Note: Each column is a separate specification. The Column 1 regression also includes a dummy for URM and an interaction term between URM and woman.
URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. The Column 2 regression also includes a
dummy for being in the bottom 1/3 of the SAT math distribution and the interaction between being in the bottom and a woman. The Column 3 regression
also includes a dummy for having at least one parent with a college degree and the interaction between being that dummy and woman. Additionally, all three
regressions include controls for percent female in a class, class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of
student background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian,
American Indian, Filipino, Indian and white is the omitted group), if a student went to public high school, if English is the only language spoken in the home,
the highest level of education attainment of the parent with the highest level of education, high school grade point average, SAT math and verbal scores and
age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture (class). A 15% increase in number of
on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students).
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Table 7: The Effect of the Number of On-Track Students on CHEM1A Grade

Full Sample Lectures > 100 Non-URMs URMs Bottom 1/3 Middle 1/3 Top 1/3
(1) (2) (3) (4) (5) (6) (7)

Panel A: Point Estimates
Ln(no. of on-track) 0.831* 0.856* 0.799* 1.005* 1.376** 0.893** 0.766*

(0.441) (0.447) (0.431) (0.546) (0.610) (0.416) (0.453)
Ln(no. of on-track) X Fem. 0.029 0.005 0.036 0.010 -0.079 -0.092 0.121

(0.068) (0.125) (0.087) (0.111) (0.092) (0.119) (0.148)
Instructor, Year, Time of day FE X X X X X X X
Student Characteristics X X X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
(0.3 grade points = 1 letter grade)
Women 0.12* 0.12* 0.11* 0.14* 0.18** 0.11** 0.12**
Men 0.12* 0.12* 0.11* 0.14* 0.19** 0.13** 0.11*
Observations 12,230 12,122 8,281 3,949 4,206 3,438 4,586

Note: Each column is a separate specification. “Bottom 1/3” refers to the bottom 1/3 of the SAT math distribution. “Middle 1/3” and “Top 1/3” refer to the middle 1/3 and top 1/3 of the SAT math
distribution for the class respectively. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student
background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white
is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of
education, high school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture
(class). A 15% increase in number of on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for
underrepresented minorities and includes all race categories except white, Asian and Indian.



33

Table 8: STEM Major Completion – Controls for CHEM1A Grade

Full Sample Lectures > 100
(1) (2)

Panel A: Point Estimates
Ln(no. of on-track) -0.256* -0.185

(0.140) (0.139)
Ln(no. of on-track) X Fem. -0.117*** -0.138***

(0.034) (0.053)
CHEM1A Grade 0.169*** 0.169***

(0.005) (0.005)
Instructor, Year, Time of day FE X X
Student Characteristics X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women -5.20*** -4.50**
Men -3.60* -2.60
Observations 12,230 12,122

Note: Each column is a separate specification. Controls include percent female in a class, log
class size, year and instructor fixed effects, whether the lecture was held in the morning, a
vector of student background characteristics, and a student’s declared major at entry. Student
background characteristics include: gender, race (black, Hispanic, Asian, American Indian,
Filipino, Indian and white is the omitted group), if a student went to public high school, if
English is the only language spoken in the home, the highest level of education attainment of
the parent with the highest level of education, high school grade point average, SAT math and
verbal scores and age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05,
* p<0.1. Clusters are by CHEM1A lecture (class). A 15% increase in number of on-track
students in a class is the equivalent of increasing the number of on-track students by about 1
standard deviation (44 students). URM stands for underrepresented minorities and includes all
race categories except white, Asian and Indian.
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Table 9: The Effect of the Number of On-Track Students on CHEM1B Enrollment

Full Sample Lectures > 100 Non-URMs URMs Bottom 1/3 Middle 1/3 Top 1/3
(1) (2) (3) (4) (5) (6) (7)

Panel A: Point Estimates
Ln(no. of on-track) 0.000 0.015 -0.039 0.110 -0.221 0.141 0.125

(0.086) (0.093) (0.065) (0.191) (0.167) (0.160) (0.110)
Ln(no. of on-track) X Fem. -0.045** -0.058* -0.049 -0.025 -0.098* 0.040 -0.035

(0.019) (0.031) (0.037) (0.051) (0.050) (0.044) (0.047)
Instructor, Year, Time of day FE X X X X X X X
Student Characteristics X X X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
(0.3 grade points = 1 letter grade)
Women -0.60 -0.60 -1.10 1.20 -4.50** 2.50 1.30
Men 0.01 0.20 -0.40 1.50 -3.10 2.00 1.60
Observations 12,230 12,122 8,281 3,949 4,206 3,438 4,586

Note: Each column is a separate specification. “Bottom 1/3” refers to the bottom 1/3 of the SAT math distribution. “Middle 1/3” and “Top 1/3” refer to the middle 1/3 and top 1/3 of the SAT math
distribution for the class respectively. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student
background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white
is the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of
education, high school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture
(class). A 15% increase in number of on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for
underrepresented minorities and includes all race categories except white, Asian and Indian.
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Table 10: The Effect of the Number of On-Track Students on CHEM1B Grade

Full Sample Lectures > 100 Non-URMs URMs Bottom 1/3 Middle 1/3 Top 1/3
(1) (2) (3) (4) (5) (6) (7)

Panel A: Point Estimates
Ln(no. of on-track) -0.431 -0.374 -0.288 -0.660** -0.208 -0.625 -0.555*

(0.260) (0.281) (0.320) (0.287) (0.373) (0.585) (0.276)
Ln(no. of on-track) X Fem. -0.130* -0.205** -0.163* -0.156 -0.096 -0.244 0.136

(0.067) (0.099) (0.085) (0.143) (0.131) (0.169) (0.132)
Instructor, Year, Time of day FE X X X X X X X
Student Characteristics X X X X X X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
(0.3 grade points = 1 letter grade)
Women -0.08** -0.08** -0.06 -0.11** -0.04 -0.12 -0.06
Men -0.06 -0.05 -0.04 -0.09** -0.03 -0.09 -0.08**
Observations 10,086 10,003 6,942 3,144 3,187 2,857 4,042

Note: Each column is a separate specification. “Bottom 1/3” refers to the bottom 1/3 of the SAT math distribution. “Middle 1/3” and “Top 1/3” refer to the middle 1/3 and top 1/3 of the SAT math
distribution for the class respectively. Controls include percent female in a class, log class size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student
background characteristics, and a student’s declared major at entry. Student background characteristics include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white is
the omitted group), if a student went to public high school, if English is the only language spoken in the home, the highest level of education attainment of the parent with the highest level of education,
high school grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses , *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture (class). A
15% increase in number of on-track students in a class is the equivalent of increasing the number of on-track students by about 1 standard deviation (44 students). URM stands for underrepresented
minorities and includes all race categories except white, Asian and Indian.
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Table 11: Where are the Women Going?

Graduate in Non-STEM Graduate
(1) (2)

Panel A: Point Estimates
Ln(no. of on-track) 1.22 -0.035

(0.099) (0.113)
Ln(no. of on-track) X Fem. 0.107*** -0.074*

(0.030) (0.038)
Instructor, Year, Time of day FE X X
Student Characteristics X X
Panel B: Estimated effects in
%-pts. associated with a 15%
increase in no. of on-track
Women 3.20** -0.50
Men 1.70 -1.50
Observations 12,230 12,230

Note: Each column is a separate specification. Controls include percent female in a class, log class
size, year and instructor fixed effects, whether the lecture was held in the morning, a vector of student
background characteristics, and a student’s declared major at entry. Student background characteristics
include: gender, race (black, Hispanic, Asian, American Indian, Filipino, Indian and white is the omitted
group), if a student went to public high school, if English is the only language spoken in the home,
the highest level of education attainment of the parent with the highest level of education, high school
grade point average, SAT math and verbal scores and age. Clustered standard errors are in parentheses
, *** p<0.01, ** p<0.05, * p<0.1. Clusters are by CHEM1A lecture (class). A 15% increase in number
of on-track students in a class is the equivalent of increasing the number of on-track students by about
1 standard deviation (44 students). URM stands for underrepresented minorities and includes all race
categories except white, Asian and Indian.
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Appendix

Table A1: STEM Majors

Major Requires CHEM1A STEM Majors
X Biology
X Biochemistry
X Biopsychology
X Chemistry
X Engineering
X Computer Engineering

Computer Science
X Earth Science
X Ecology
X Environmental Science

Mathematics
Statistics

X Geophysics
X Hydrology
X Zoology
X Pharmacology
X Physics
X Physiology
X Physical Geography
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Table A2: Balance Test – Orientation Attendees vs. Non-Attendees

Summer Orientation Group Did Not Attend Orientation Diff. (1) - (2)
(1) (2) (3)

Student Background and Class Characteristics
No. On-track is above median 0.48 0.46 0.02

(0.01) (0.04) (0.04)
Lecture is at 8 or 9 a.m. 0.35 0.39 -0.04

(0.01) (0.04) (0.04)
Female 0.49 0.52 -0.03

(0.01) (0.04) (0.04)
URM (underrepresented minority) 0.38 0.48 -0.10**

(0.01) (0.04) (0.04)
High school GPA is above median 0.51 0.46 -0.05

(0.01) (0.04) (0.04)
SAT math score is above median 0.51 0.51 0.00

(0.01) (0.04) (0.04)
SAT verbal score is above median 0.54 0.48 0.06

(0.01) (0.04) (0.04)
Attended public high school 0.92 0.93 -0.01

(0.01) (0.02) (0.02)
English is only language spoken in home 0.54 0.48 0.06

(0.01) (0.04) (0.04)
No parent graduated from college 0.37 0.43 -0.05

(0.01) (0.04) (0.04)
Observations 1,624 178 1,802

Note: URM stands for underrepresented minorities and includes all race categories except white, Asian and Indian. Column 3 uses an asterisk system to denote whether the differences
in means are significant. Level of significance is indicated as follows: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses. The sample includes only those students
enrolled in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their freshman year at UCSB for the year 2013.
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Table A3: Major Composition by Gender (%)

Women Men
Intended Major at Entry Major at Grad. Intended Major at Entry Major at Grad.

Hard Science 15.07 14.29 49.37 33.77
Bio/Environ. Sci. 51.81 29.88 24.84 17.45
Social Science 3.48 19.27 2.79 15.79
Human./Arts/Interd. 3.08 36.57 2.55 32.97
Undeclared 26.55 0.00 20.45 0.01

Note: See Appendix Table A4 for the majors that fall into each major category: hard science, biology/environmental studies, social sciences, and humani-
ties/arts/interdisciplinary. The sample includes only those students enrolled in the first quarter of General Chemistry (CHEM1A) in the fall quarter of their
freshman year at UCSB between the years 1997 and 2007.



40

Table A4: Majors by Category
Hard Sci. Bio & Env. Studies Social Sci. Human., Arts, & Interdis.
Biochemistry Biochemistry-Molecular Biology Anthropology Art History
Chemistry Biological Sciences Geography Art Studio
Chemical Engineering Biopsychology Geophysics Asian & American Studies
Computer Engineering Physiology Physical Geography Asian Studies
Electrical Engineering Biology Economics-Accounting Black Studies
Earth Science Cell & Develp. Biology Economics-Mathematics Chicana and Chicano Studies
Hydrological Sciences Microbiology Economics Chinese
Mechanical Engineering Environmental Studies Political Science Classics
Pharmacology Psychology Communication Studies
Physics Sociology Comparative Literature
Computer Science Business Economics Creative Studies
Mathematics Dance
Financial Math & Stats Dramatic Art
Statistics English
Zoology Feminist Studies
Aquatic Biology Film & Media Studies
Ecology and Evolution Financial Mathematics & Statistics
Computer Science French

Germanic Languages
Global Studies
History or History of Public Policy
Interdisciplinary Studies
Italian Cultural Studies
Japanese
Language, Culture & Society
Latin Am/Iberian Studies
Law & Society
Linguistics
Medieval Studies
Middle Eastern Studies
Music & Music Composition
Philosophy
Portuguese
Religious Studies
Slavic Languages & Literatures
Spanish
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