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Abstract

Many governments have banned strikes in public transportation. Whether this can be

justified depends on whether strikes endanger public safetyor health. We use time-series

and cross-sectional variation in powerful registry data toquantify the effects of public tran-

sit strikes on urban populations in Germany. Due to higher traffic volumes and longer

travel times, total car hours operated increase by 11% to 13%during strikes. This effect

is accompanied by a 14% increase in vehicle crashes, a 20% increase in accident-related

injuries, a 14% increase in particle pollution, and an 11% increase in hospital admissions

for respiratory diseases among young children.
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“The right to strike may be restricted or prohibited [...] inessential ser-
vices [...] (that is, services the interruption of which would endanger the life,
personal safety or health of the whole or part of the population). The follow-
ing do[es] not constitute [an] essential service[...]: transport generally.”

– International Labour Organization (2006, para. 576 and para. 587)

“Many public services are considered essential: police officers and fire-
fighters, for example. Strikes are prohibited for this very reason. They are
critical for the public on a day-to-day basis. The reliability of public transit
should be no different.”

– Robert S. Huff, California State Senate Republican Leader(January 13, 2014)

1. Introduction

In 1951, the International Labour Organization (ILO) set upthe Committee on Freedom of As-

sociation (CFA). Shortly after its inception, the CFA declared strike action to be a fundamental

right of organized labor (Gernigonet al., 1998; Gross, 1999). Yet, where workers providing

essential public services are concerned, the right to strike is often limited or even denied by

national laws or regulations. The most common restriction is a ban on strikes by armed forces,

policemen and firefighters, for the legitimate reason that those walkouts would endanger the

life, personal safety or health of the whole or parts of the population.1 But is that true of strikes

by public transit workers? Two extreme positions shape answers to this question. According

to the ILO, public transportation does not constitute an essential public service (ILO, 2006,

para. 587). Thus, some commentators argue that strikes by transit workers mainly pose an eco-

nomic threat, which—being the very essence of industrial action—does not justify a strike ban

(Swearengen, 2010). Policy-makers, by contrast, commonlyregard mass transit as an essential

public service, which segues into the wider concern that major cities and their inhabitants are

highly vulnerable to transit strikes.2 This is exemplified by attempts in numerous countries to

also exclude transit workers from the right to strike.

New York City’s Taylor Law, which was put into effect in response to a transit strike in

1966, represents an example of a particularly draconian measure. Under Section 210, the law

1As the first quote above illustrates, the ILO recognizes thatstrikes may be restricted or prohibited in essential
services, which are defined to include: the hospital sector,electricity services, water supply services, the telephone
service, the police and armed forces, the fire-fighting services, public and private prison services, and air traffic
control (ILO, 2006, para. 585).

2Thus, the second quote above from a California politician, which was made following a strike by workers of
the Bay Area Rapid Transit (BART) system in 2013. The position expressed in this statement received bipartisan
support. Indeed, in the aftermath of the same strike, California State Senate Democratic candidate Steve Glazer
expressed his “[...] support [for] state legislation to prohibit transportation workers from striking”. For more, see
http://calwatchdog.com/2014/01/24/democrats-crash-transit-strike-ban/ (accessed December 8, 2014).
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prohibits any strike or other concerted stoppage of work or slowdown by public employees

(NYS Department of State, 2009). Instead, it prescribes binding arbitration by a state agency to

resolve bargaining deadlocks between unions and employers. Violations against the prohibition

on strikes are punishable with hefty penalties. The fine for an individual worker is twice the

striking employee’s salary for each day the strike lasts. Inaddition, union leaders face impris-

onment. Since its inception in 1967, theTaylor Lawhas generated a lot of controversy. To

proponents, it was successful in averting several potential transit strikes that would have im-

posed significant costs on the city and its inhabitants (OECD, 2007a). Indeed, New York City

has only seen two transit strikes over the past four decades—in 1980 and in 2005. In both

cases, harsh monetary penalties were imposed on workers andunions. The 2005 transit strike

additionally led to the imprisonment of a union leader, and saw the Transport Workers Union

(TWU) filing a formal complaint with the International Labour Organization (ILO). Since then,

the ILO has urged the United States government to restore theright of transit workers to strike,

arguing that they do not provide essential services justifying a strike ban (ILO, 2011, p. 775).

So far, theTaylor Lawhas not been amended in this direction.

This paper aims to answer two questions that are at the heart of theTaylor Lawcontroversy

and similar debates elsewhere: Do strikes in the public transportation sector cause disruptions

that endanger the safety and health of urban populations? And how large are the costs of transit

strikes to non-involved third parties? To get at these questions, our analysis uses time series and

cross-sectional variation in powerful registry data to quantify the effects of public transit strikes

in five domains: traffic volumes, travel times, accident risk, pollution emissions, and health (see

Figure 1). The context for our study are the five largest cities in Germany, which provides us

with an ideal setting. In particular, in contrast to countries that have imposedde jurerestrictions

on public transit strikes, German courtsde factoprotect the right to strike in this sector. As a

consequence, Germany regularly faces strikes by transit workers.

Our analysis exploits 71 one-day strikes in public transportation over the period from 2002

to 2011. We identify the daily effects of these strikes usingboth time series and cross-sectional

variation in our data. In a first step, we estimate the impact on the total length of time that

cars are in operation (henceforth, total car hours operated). To do so, we make use of two data

sources. First, we use hourly information from official traffic monitors to estimate the effect of

transit strikes on traffic volumes. Second, we use congestion data based on GPS speed mea-

surements fromTomTom, a global supplier of navigation and location products and services, to

estimate the effect on travel times. Combining the two estimates allows us to compute the effect

on total car hours operated. In a second step, we explore likely knock-on consequences by ex-

panding the analysis in three directions. First, we assess the impact of strikes on the incidence
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FIGURE 1: The Impact of Public Transit Strikes on Urban Populations

71 Public Transit
Strikes (2002-2011)

Berlin, Hamburg,
Munich, Cologne,

Frankfurt

(data set based on
newspaper reports and
official notifications)

Total Car Hours
Operated

(i) Traffic Volumes

(hourly data from 43
traffic monitors)

(ii) Travel Times

(GPS speed
measurements from a
supplier of in-car

navigation)

Opportunity Cost

(official statistics on
employment and gross
domestic product)

Accidents

(register data based on
police records)

Air Pollution

(hourly data from 30 air
monitors)

Health

(register data based on
hospital medical records)

and severity of car accidents using detailed register data which includes all vehicle crashes

recorded by the German police. Second, to investigate the effect on atmospheric pollution, we

draw on hourly data from official air monitors. Third, we explore the effect on human health

using register data which includes information about all patients admitted to all German hos-

pitals. Our identification strategy is based on a generalized difference-in-differences approach.

It flexibly captures daytime and day-of-week patterns, seasonality effects, and long-run time

trends, which are all allowed to vary by city.

What emerges is a picture of remarkable consistency. Duringthe morning peak of a strike

day, total car hours operated increase by 11% to 13%. This increase can be decomposed into

two separate effects: a 2.5% to 4.3% increase in the number ofcars on roads and a 8.4% increase

in travel times. In addition, our results suggest that transit strikes pose a non-negligible threat

to public safety and public health. We find a 14% increase in the number of vehicle crashes,

which is accompanied by a 20% increase in accident-related personal injuries. Moreover, we

observe that transit strikes have sizeable effects on ambient air pollution. Emissions of partic-

ulate matter increase by 14%, while nitrogen dioxide concentrations in ambient air increase by

4%. Finally, analyzing health outcomes related to air pollution, we find that young children

are subject to negative health effects. Among this subgroup, hospital admissions for respiratory

diseases increase by 11% on strike days.

The costs of strikes—both to the parties directly involved in a dispute and to the public at

large—have been the subject of extensive research since themid-20th century. Until the 1990s,
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the main conclusion of the literature was that strikes impose significant financial costs on the

workers and the firm directly involved in walkouts, but only negligible costs in most cases on

non-involved third parties (Kaufmann, 1992). Our study firmly rejects this conclusion: based

on our estimates, the increase in aggregate travel time caused by a single strike corresponds

to 1,550 full-time equivalent work weeks. This translates into third-party congestion costs of

e 3.2 million per strike ore 228.9 million for all 71 strikes in our sample.

To the best of our knowledge, this study is the first to examinewhether strikes in the trans-

portation sector can put public safety and health at risk. There are, however, a few impressive

empirical studies of strike impacts in other areas of the public sector. Focusing on the hospital

sector, Gruber and Kleiner (2012) investigate the effects of a nurse strike on patient outcomes.

After controlling for time and hospital specific heterogeneity, they observe increased mortality

and readmission rates and conclude that strikes in hospitals kill. This result contradicts earlier

studies that did not as rigorously control for unobserved factors (see, e.g., Cunninghamet al.,

2008; Pantell and Irwin, 1979). Another study by Mustard et al. (1995) highlights that there are

fewer caesarian births during strike periods, which is suggestive of behavioral effects in hospi-

tals. Examining walkouts in the education sector, Belot andWebbink (2010) and Baker (2013)

find that teacher strikes had negative effects on student achievement in Belgium and Canada.

Finally, there are a few interesting studies of strike impact in the private sector. Krueger and

Mas (2004) show that strikes in tire production facilities decreased the quality of tires resulting

in an increase of fatal accidents. In a similar vein, Mas (2008) finds that strikes atCaterpillar

led to lower product quality.

Our paper is also related to a growing literature in economics that examines the role of mass

transit in mitigating agglomeration diseconomies such as traffic congestion, accident risk and

pollution emissions. In an influential study, Duranton and Turner (2011) coined the notion of

the “fundamental law of road congestion”. Theoretically, the idea is that the provision of public

transit is unlikely to relieve the overall level of congestion in a city since it only results in addi-

tional traffic that continues to rise until peak congestion returns to its natural level. The authors

provide empirical evidence in support of this mechanism. There are, however, a few notable

papers which point in the opposite direction. Anderson (2014) exploits a 35-day strike in 2003

by Los Angeles transit workers to evaluate the net benefits ofurban mass transportation. Using

a regression-discontinuity design, he estimates the totalcongestion relief benefit of operating

the Los Angeles transit system to lie between $1.2 billion to$4.1 billion per year. Nelsonet al.

(2007) provide structural estimates suggesting that the rail transit system in Washington, D.C.,

generates congestion-reduction benefits that exceed rail subsidies. Finally, Chen and Whalley

(2012) quantify the effects of urban rail transit on air quality using the sharp discontinuity in
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ridership on the opening day of a new rail transit system in Taipei. Their findings suggest that

the opening of the rail transit system caused a 5 to 15 percentreduction in carbon monox-

ide emissions.3 Our study, which exploits strikes of one day in length or less, contributes to

this literature by showing that even short-term disruptions of mass transit services can have far

reaching consequences for urban populations in terms of time lost to travel, accident risk, air

pollution and health.

The remainder of the paper is organized as follows. Section 2provides the institutional

setting and discusses how transit strikes might affect cities and their inhabitants. Section 3

describes the data. Section 4 outlines the empirical strategy, followed by the results in Section

5. Section 6 discusses the size of the effects by monetizing the third party costs of transit strikes

and comparing them to the private costs of struck employers.

2. Background

2.1.The Role of Public Transit and the Regulation of Labor Relations

The five largest German cities, home to roughly 8.2 million people, are characterized by an in-

tensive use of public transportation. In 2013, Berlin, Hamburg, Munich, Cologne and Frankfurt

together accounted for a total number of 3.4 billion public transit users in their metropolitan

areas.4 This corresponds to an average 9.3 million passengers a day.In Berlin, the German cap-

ital, roughly 43% of commuters use public transit, while about 38% travel by car (Wingerter,

2014). Public transportation networks are extensive in allsample cities. In Hamburg, for ex-

ample, the transportation network comprises 91 subway stations, 68 suburban train stations

(S-Bahn), more than 1,300 bus stops connecting a network of nearly 1,200 km in a city with

less than 2 million inhabitants. The importance of public transportation in major German cities

is comparable to the role it plays in the largest city in the United States. New York City has a

population of roughly 8.4 million people. In 2014, its Metropolitan Transportation Authority

moved about 9 million riders per day or 3.3 billion passengers a year on subways, buses and

railroads.5 Approximately 56 percent of commuters in New York City use public transit, while

3Relatedly, Laliveet al. (2013) analyze a railway reform in Germany which substantially increased the fre-
quency of regional passenger services. Their results suggest that the reform reduced the number of severe road
traffic accidents, carbon monoxide, nitrogen monoxide, nitrogen dioxide pollution and infant mortality.

41,321 million passengers in Berlin (see http://www.vbb.de/de/article/verkehrsverbund/der-
verbund-in-zahlen/12552.html), 855 million passengers in Hamburg (see
http://www.hvv.de/pdf/aktuelles/publikationen/hvv_zahlenspiegel_2013.pdf), 663 million passengers in Mu-
nich (see http://www.mvv-muenchen.de/de/der-mvv/mvv-in-zahlen/), 277 million passengers in Cologne (see
http://www.kvb-koeln.de/newsfiles/310b105c8ee08bf447f1df1f89cd3a87.pdf) and 203 million passengers in
Frankfurt (see http://www.traffiq.de/1483.de.presse_informationen.html?_pi=126798).

5See http://www.apta.com/resources/statistics/Documents/Ridership/2014-q2-ridership-APTA.pdf.
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about 27 percent travel by car.6

While the use of mass transit in New York City and major Germancities is comparable, the

regulation of labor relations in the public transportationsector differs markedly. As mentioned

above, New York City’sTaylor Lawprohibits strikes by transit workers under the threat of harsh

penalties. Other cities in the United States with no-transit-strike laws include Chicago, Boston

and Washington, D.C. For a German, it must come as a surprise that many countries imposede

jure restrictions on strikes in the public transportation sector. Indeed, in Germany, the right to

strike is a fundamental right based on the Freedom of Association (Koalitionsfreiheit) as laid

out in Article 9(3) of the constitution (Grundgesetz). Only civil servants, judges and soldiers

are excluded from the right to strike. Until the 1990s, the big infrastructure industries—i.e.,

telecommunications, postal and public transportation services—were state monopolies. Work-

ers in these industries had civil servant status and thus were not allowed to strike. However,

when these industries were gradually privatized during the1990s, newly hired workers were no

longer given civil servant status and therefore gained the right to strike. Today, public transit

workers, whether employed by Germany’s rail operatorDeutsche Bahnor local public transport

providers, are allowed to engage in industrial action. The only de factorestriction on transit

workers’ right to strike is that the parties of an industrialconflict are responsible for the pro-

vision of a minimum service (Klaßet al., 2008). This is intended to act as a balance of their

interests with those of non-involved third parties.7

In Germany, industrial action by transit workers is typically announced one day ahead of a

strike. However, at that time, there is still substantial uncertainty as to exactly which services

will be affected and to what degree. Thus, the actual extent of a strike cannot be clearly assessed

prior to the start of a strike. Although public transit strikes generally do not shut down public

transportation networks completely, there are significantdistortions. As a rule of thumb, at

least one third and up to two thirds of all connections in affected cities are canceled or severely

delayed on strike days. After the official end of a strike, it usually takes some hours until service

is back to normal.

Having described the context and setting of our study, we nowgo on to discuss how urban

populations might be affected by public transit strikes.

6See U.S. Census Bureau, 2009-2013 American Community Survey 5-Year Estimates, Tables GCT0802,
GCT0803 and GCT0804.

7Another restriction implicit in the German constitution isthe so-called principle ofultima ratio. This principle
represents the application of the general constitutional principle of proportionality (Verhältnismäßigkeit) in the
field of labor law. According to this principle, a strike is only legal if it is necessary and the ultimate measure to
solve an industrial conflict. Labor courts are empowered to assess the proportionality of industrial action and can,
if necessary, sanction illegal strikes (Klaßet al., 2008).
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2.2.Public Transit Strikes and Car Traffic

Given the intensive use of public transportation in major German cities, we expect strikes by

transit workers to have profound short-run effects on the mode of transport of commuters. Some

might feel forced to use their private car or motorbike or a taxi on strike days. Others might

switch to their bike or just walk. Again others might postpone their journey. Van Exel and

Rietveld (2001) summarize the existing evidence as follows: public transit strikes induce most

public transit users to switch to the car (either as driver orpassenger) and as a result traffic den-

sity as well as road congestion increases. A similar conclusion is reached by Anderson (2014),

who analyzes freeway traffic during a 35-day strike by transit workers in Los Angeles. His esti-

mations reveal an increase in delays during peak periods by almost 50 percent due to increased

car traffic.8 Finally, Adler and van Ommeren (2015) exploit transit strikes in Rotterdam and also

find positive effects of transit shutdowns on congestion. Based on these findings we formulate

our first testable prediction:

PREDICTION 1. Public transit strikes increase the number of cars on roads,especially during

peak periods. Travel times increase due to rising traffic congestion.

2.3.Car Traffic and Accidents

The frequency and severity of road accidents depends on several traffic characteristics that may

be affected by public transit strikes. Examples we have in mind include the number of cars in

road systems, driving skills, driver behavior and speed. First, an often-used specification by

transport economists suggests that the expected number of road accidents rises with the number

of potential accidents which, in turn, is an increasing function of the number of cars in the sys-

tem (Shefer and Rietveld, 1997). Edlin and Karaca-Mandic (2006) confirm this prediction by

showing that traffic density increases accident costs substantially. Second, the expected number

of road accidents is a function of the behavior and skills of drivers. In this regard, we would

expect that public transit strikes reduce average driving skills since marginal drivers with less

experience appear on road systems. This channel works to increase the frequency of road ac-

cidents. In addition, it is well understood that driving in high-density traffic can contribute to

stress and therefore lead to behavioral patterns—e.g., tailgaiting, aggressive driving, breaking

abruptly—that increase accident risk (OECD, 2007b). More accidents are likely to result in

additional personal injuries (Shefer and Rietveld, 1997).However, the same logic does not nec-

essarily apply to accidents involving severe injuries or fatalities: with an increase in congestion

stemming from more cars in the system, average travel speed decreases, thus potentially causing

8Lo and Hall (2006) analyze the same strike using a simple before-after comparison, which has some method-
ological shortcomings as noted by Anderson (2014).
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a reduction in the number of severe accidents. Evidence fromthe United States indeed suggests

a substantial reduction in the number of fatal road accidents during morning peak hours, periods

in which traffic density is the highest (Farmer and Williams,2005). But there is also evidence,

emerging from the United Kingdom, that the picture is more differentiated. In particular, con-

gestion as a mitigator of crash severity is less likely to occur in urban conditions, but may still

be a factor on higher speed roads and highways (Noland and Quddus, 2005). Our focus will

be on accidents in urban conditions. Thus, it remainsa priori unclear whether an increase in

congestion stemming from public transit strikes affects the incidence of severe accidents, and if

so in what direction. Against this background, our second testable prediction is:

PREDICTION 2. Public transit strikes increase the frequency of car accidents which, in turn,

leads to a rise in accident-related injuries. The effect on accidents involving severe injuries or

fatalities is a priori unclear.

2.4.Car Traffic and Air Pollution

Car traffic is associated with air pollution mainly due to engine exhaust. The chemical processes

in fuel burning thus determine the expected effect of trafficon air pollution. Internal combustion

engines powering the vast majority of cars in developed countries emit oxides of nitrogen,

carbon monoxide, unburned or partially burned organic compounds and particulate matter with

the amounts depending amongst other things on operating conditions (Heywood, 1988). In

particular, it is well understood that congested stop-and-go traffic is associated with higher

emissions than free-flow traffic. There are three reasons forthis. First, the efficiency of internal

combustion engines, which depends on revolutions per minute (rpm), is highest at medium

speed (Davis and Diegel, 2007). Acceleration and deceleration episodes decrease the time

operated in the optimalrpmrange, which in turn increases emissions per minute driven.Second,

congestion increases travel times, and so leads to a rise in fuel consumption and emissions per

distance driven. Third, particulate matter emissions not only stem from fuel burning process,

but also from break wear and tire wear on tarmac—both high in congested traffic. From an

empirical viewpoint, several studies suggest that high traffic volumes and congestion are causes

of ambient air pollution (see, e.g., Currie and Walker, 2011; Knittel et al., 2011). A pollutant

which is not caused by car traffic, and therefore can be used for a placebo test, is sulfur dioxide.

Indeed, sulfur dioxide emissions from cars are close to non-existent since modern gasoline no

longer contains significant amounts of sulfur. From these arguments our third testable prediction

arises:

PREDICTION 3. Public transit strikes increase road-traffic related air pollution. A pollutant

expected to be unaffected is sulfur dioxide.
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2.5.Air Pollution and Health

The exact pathophysiological effects of most air pollutants are not yet fully understood. How-

ever, a large body of research across many different disciplines suggests that exposure to air

pollution can impair human health, even at pollution levelswell below the limits set in devel-

oped countries (Beelenet al., 2014). The identified effects range from respiratory symptoms

and illness, impaired lung function, hospitalization for respiratory and cardiac disease to in-

creases in mortality. The most harmful of the air pollutantsstemming from car traffic is thought

to be particulate matter. It is also widely accepted that infants and children are the subgroup

of the population most susceptible to the effects of air pollution. This is mainly due to their

ongoing respiratory development, smaller average lung size, and higher activity levels (Beatty

and Shimshack, 2014). Furthermore, elderly people are at increased risk due to more frequent

unfavorable health preconditions.

Much of what we know about pollution-related health problems is based on annual fre-

quency data (see, e.g., Chay and Greenstone, 2003; Currie and Neidell, 2005; Currieet al.,

2009). In contrast, our empirical analysis explores the daily, contemporaneous effect of public

transit strikes on pollution-related health outcomes. This reduced-form is based on the idea

that public transit strikes cause daily pollution shocks due to increased car traffic and conges-

tion. Should we expect a short-term effect of air pollution on health? The existing evidence,

while still relatively scarce, points towards an affirmative answer. Schlenker and Walker (2011)

show that daily variation in ground level airport congestion due to network delays significantly

increases both carbon monoxide emissions as well as hospital admissions for respiratory prob-

lems and heart disease. Their findings also suggest that infants and the elderly have a higher

sensitivity to pollution fluctuations. In a similar vein, Atkinsonet al. (1999) show that there is

a positive association between daily emissions of particulate matter and daily visits to accident

and emergency departments in London for respiratory complaints.9 Ransom and Pope (1992)

exploit monthly variation in particulate matter emissionsinduced by the closure of a steel mill

in Utah Valley, and find large effects on school absenteeism—a proxy for children’s health.

With this evidence in mind, we formulate our final testable prediction:

PREDICTION 4. Public transit strikes increase pollution-related healthproblems, especially

among young children and the elderly.

9Relatedly, Schwartz and Dockery (1992) find that daily mortality in Philadelphia is positively associated with
daily particulate matter pollution.
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3. The Data

Our main sample spans the period from 2002 to 2011 and covers the five largest cities in Ger-

many: Berlin, Hamburg, Munich, Cologne, and Frankfurt on the Main. We exploit six sources

of data to analyze the extent to which the inhabitants of these cities are affected by public transit

strikes.10

3.1.Strike Data

Our data on public transit strikes is self-collected and comes from newspaper archives, press re-

leases of unions and official notifications of public transitoperators. In order to ensure an accu-

rate identification of strike activity, we employed a double-check procedure in the information-

gathering process. In particular, we only coded a day as a strike day if congruent information

from at least two independent sources indicated an episode of industrial action. During the

sample period, from 2002 to 2011, unions calling strikes rarely resorted to lengthy campaigns

of industrial action. Instead, the tactical use of one-day strikes was the norm.11 We therefore

only include public transit strikes of one day or less in our main sample, which leaves us with

71 incidences of strike activity across all cities.12 The observed strikes either affect a city’s lo-

cal suburban train connections (S-Bahn) or its subway-tram-bus network.13 Figure 2 illustrates

the distribution of strike activity across time and space. We observe 12 strikes in Berlin, 13

in Frankfurt-on-the-Main and Hamburg, 16 in Cologne, and 17in Munich. At least one strike

occurred in each year of the study period, and there were pronounced spikes in strike activity

in 2007 and 2011. All strikes took place on weekdays, while weekends were unaffected. We

observe strikes in all months of the year except in June and November. Finally, in our period

of observation, unions rarely called strikes affecting allfive cities simultaneously. Quite to the

contrary, 20 strikes only affected a single city. In addition, 3 strikes affected two cities, 1 strike

affected three cities, 3 strikes affected four cities, and on 6 occasions all five cities were si-

multaneously hit by a strike. Thus, we are able to exploit both time series and cross-sectional

variation in our data. Table A1 of the Online Appendix provides detailed dates of all public

10The description of the data in the main body conveys core information only. In Online Appendix Table A2 we
present detailed summary statistics.

11In the data collection process, one specific reason for this tactic became apparent: strikes by German transit
workers typically cause a great deal of initial disruption,but within a day or two of lengthier strikes many transit
providers manage to implement effective emergency schedules which considerably dampen the impact of strikes.

12We also identified 17 public transit strikes with a duration of more than a day. The days affected by these
lengthier strikes—amounting to a total of 74 city-day observations—are dropped from our main sample. In Section
5.7, we present regressions based on a sample including all strikes.

13In German cities, suburban train connections are run by Germany’s rail operatorDeutsche Bahn, while
subway-tram-bus networks are operated by local transit providers. Workers respectively employed byDeutsche
Bahnand local transit providers are represented by different unions, who usually do not call strikes simultaneously.
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transit strikes in the sample period.

Our empirical analysis focuses on workweek days since this is when congestion occurs.

Furthermore, there was no strike activity on weekends during the study period, as described

above. Thus, we exclude weekends and public holidays14 from our data set.

3.2.Traffic Data

We obtained data on traffic volumes from the Federal Highway Research Institute (Bunde-

sanstalt für Straßenwesen, BASt). Automated monitors operated byBAStcollect hourly data

on the number of passing vehicles on all freeways (Autobahnen) and non-freeway federal roads

(Bundesstraßen) across Germany. The monitors are technically equipped to distinguish between

car and truck traffic. Thus, we are able to execute a clean empirical test of the prediction that

public transit strikes lead to an increase in car traffic. We include a total of 43 traffic monitors

in our sample, all selected based on their locations on commuter routes into the cities of interest

and their proximity to the respective city centers. In Figures A1-A5 in Online Appendix, we

use the geocodes of the monitors to display their exact locations on city maps. As can be seen

from the figures, 27 monitors are located on freeways, while 16 monitors are located on federal

roads. The empirical analysis is based on hourly traffic datafor the period January 1, 2002, to

December 31, 2011. Due to maintenance work and upgrading, nodata are available for Berlin

from 2006 to 2010. Similarly, values are missing for Frankfurt-on-the-Main in 2004 and 2005.

Figure A6 in Online Appendix shows how passenger vehicle flows change over the course of

24 hours for an average workweek day. There are two peak periods for car traffic. The first is

between 6 a.m. and 10 a.m. in the morning when car traffic is nearly 85% higher as compared

to the average hour. The second peak is between 3 p.m. and 7 p.m. in the afternoon. Based on

these patterns, we define the morning peak (respectively, evening peak) to last from 6 a.m. to

10 a.m. (respectively, from 3 p.m. to 7 p.m.).

3.3.Congestion Data

We obtained data on traffic congestion fromTomTom, a global supplier of location and navi-

gation products and services. Since 2008,TomTomhas been collecting anonymous GPS speed

measurements from navigation users across cities around the globe.15 In a map-matching pro-

cess, the GPS measurements are matched to digital city maps and assigned to road segments

14Public holidays also include the carnival days from Fat Thursday (Weiberfastnacht) to Shrove Tuesday
(Faschingsdienstag), which can be regarded asde factoholidays.

15As of 2014, the GPS speed database contained 6 trillion measurements and grew by 6 billion measurements a
day.
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which vary in length between 2 meters and 2 km, depending on the complexity of the road sit-

uation. For our sample cities, speed measurements exist forroad segments that add up to 3,637

km in Berlin, 2,263 km in Hamburg, 2,041 km in Munich, 1,988 kmin Cologne, and 662 km

in Frankfurt. When the map-matching process is complete, anaggregated geographic database

(geobase) of measured road speeds is produced. These geobases are updated regularly for each

map of each city to take into account the growing GPS speed database as well as changes in

the road network (map). Each digital city map with attached speed information can be used to

compute an average congestion index (CI) at daily frequencies. This index is defined as:

CI =
T
T0

.

It compares actual travel times on all road segments in a cityduring the course of a day (T) to the

free-flow travel times on these road segments (T0). The difference is expressed as a percentage

increase in travel time. Thus, a CI value of 1 implies that traffic was flowing freely throughout

a day, while a value of 1.2 indicates that journeys took on average 20 percent longer than under

non-congested conditions. In addition to the daily CI, we have access to daytime-specific CIs

for the morning and the evening peak periods,16 as well as separate CIs for freeways and city

streets. The CI data we obtained covers each city in our sample and spans the period from

January 1, 2010 through to December 31, 2011. The average daily CI value is 1.3, which drops

to 1.25 for highways and increases to 1.36 for city streets. As one would expect, the average CI

values for the morning peak period, 1.47, and the evening peak period, 1.49, are higher than the

average daily value.

3.4.Accident Data

Our information on accidents is based on register data whichincludesall vehicle crashes

recorded by the German police. The police records are collected and made available by the sta-

tistical offices of the German states (Statistische Landesämter).17 Each police record includes a

wide variety of information about the accident (such as time, date, location) together with a de-

16The congestion indices from the data provider are pre-defined variables that are aggregated at the city-day
level. Peak morning congestion times are 8 a.m. to 9 a.m. on workweek days. Peak evening congestion times are
5 p.m. to 6 p.m. from Monday to Thursday for Hamburg, Munich, Cologne and Frankfurt and 4 p.m. to 5 p.m. for
Berlin. On Fridays they are 3 p.m. to 4 p.m. for Berlin, Hamburg and Cologne and 5 p.m. to 6 p.m. for Munich
and Frankfurt.

17The police does not forward records on minor accidents to thestatistical offices, which are therefore not present
in our database. Minor accidents are those in which (i) crashed vehicles remain in a roadworthy condition and (ii)
all persons involved remain uninjured. In addition, the statistical offices do not provide access to information on
vehicles crashes in which drivers were under influence of alcohol. Thus, alcohol-related accidents are not included
in our database. Finally, our database does not include accidents in which the parties involved reached private
agreements without involving the police.

13



scription of the number and types of injuries sustained in the accident. For the five cities in our

sample, the police records available for the period 2002-2011 cover just over 354,400 vehicle

crashes. We aggregate the police records to the city-day level while distinguishing between the

morning and the evening peak hours. This procedure leaves uswith a data set containing daily

observations for the a.m. and p.m. peak period on (i) the number of vehicle crashes, (ii) the

number of slightly injured persons, and (iii) the number of seriously or fatally injured persons.

3.5.Pollution Data

For the period 2002-2011, we obtained hourly data on atmospheric pollution from the Federal

Environment Agency (Umweltbundesamt, UBA), which operates numerous air monitors across

Germany. We include a total of 30 monitors in our sample, all selected based on their locations

on streets within the five cities’ boundaries.18 Figures A1-A5 of the Online Appendix show the

locations of the monitors on city maps. We focus on two types of pollutants: inhalable coarse

particles smaller than 10 micrometers in diameter (PM10) and nitrogen dioxide (NO2).19 In

addition, we use sulfur dioxide (SO2) as a placebo pollutantin a falsification test. Figure A7

in Online Appendix shows how air pollution varies over the course of 24 hours for an average

day of the workweek. For both PM10 and NO2, there are emissionpeaks during the morning

and evening hours, respectively. We create pollution measures for the morning peak period

(respectively, evening peak period) by taking the averagesof all hourly readings between 6 a.m.

and 10 a.m. (respectively, between 3 p.m. and 7 p.m.).

3.6.Hospitalizations: Diagnostic Data

We use data from the German hospitalization statistic for the years 2002-2010. The dataset

provides information aboutall inpatients inall German hospitals. In particular, the following

characteristics are collected for each patient: main diagnosis (3-digit ICD-10 code)20, day of

admission and discharge (day, month, year), place of residence (zip code, community), month

and year of birth as well as gender. In order to examine pollution-related health problems, we

focus on hospital admissions for diseases of the respiratory system (ICD-10 codes J00-J99)

and abnormalities of breathing (ICD-10 code R06). For each type of diagnosis, we aggregate

the number of hospitalizations by day of admission and patients’ city of residence. Hence, we

18We exclude monitors that are situated around industrial areas, since these monitors capture air quality contam-
inant concentrations that relate to the industrial operators in the area.

19In an earlier version of this paper, we also examined carbon monoxide (CO) and found little evidence for a
strike effect on this pollutant.

20The ICD-10 classification (“International Statistical Classification of Diseases and Related Health Problems”)
categorizes diseases and other health problems recorded onmany types of health and vital records.
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obtain daily counts of hospitalizations, which we examine both for the entire population as well

as for the population subgroups of those over 64 years of age and under 5 years of age.

3.7.Weather and Holiday Data

We obtained city-specific weather data at daily frequenciesfrom the German Weather Agency

(Deutscher Wetterdienst). In particular, we use daily measures of temperature, precipitation,

wind speed, and a binary variable indicating snow cover to control for the direct effects of

weather on the five outcomes of interest.21 To control for the direct effects of school holidays,

we construct city-day dummy variables equal to unity when school holidays are in effect and

zero otherwise. Our holiday data comes from the Standing Conference of the Ministers of

Education and Cultural Affairs of the German states (Kultusministerkonferenz).

4. Empirical Strategy

Our identification strategy is based on a generalized difference-in-differences (DID) model

which essentially compares outcomes in affected and non-affected cities before, during and after

strike episodes. We now present our approach for regressions involving data at the monitor-hour

level (car traffic). In this case, we estimate our basic specification as follows:

Ymchdwy=α +β (STRIKEcdwy)+ γh+δd + γh×δd+ηw+θy+ϑm+µXcdwy+ εmchdwy. (1)

whereYmchdwy is the number of cars passing monitorm in city c during hourh on dayd in

weekw of yeary. STRIKEcdwy is a binary variable equal to unity when a strike is in effect and

zero otherwise. We control for a full set of time fixed effectsfor each hour-of-day (γh), day-

of-week (δd), week-of-year (ηw) and year (θy). Thus, we flexibly capture daytime and day-of-

week patterns, seasonal effects, and long-run time trends.The interactions between hour-of-day

and day-of-week take into account that hourly traffic patterns might differ between days. By

additionally including fixed effects for all monitorsm, we account for time-constant differences

between monitoring stations. The vectorXcdwy includes holiday and weather controls. In our

preferred specification, we additionally allow for city-specific time fixed effects by including

interactions of city indicators with hour-of-day, day-of-week, hour-of-day×day-of-week, week-

of-year and year. Moreover, our preferred specification also controls for city-specific weather

effects by interacting city indicators with all weather variables. When outcome variables are

observed at the monitor-level with more than one station percity, we weight regressions by the

21Few missing observations for wind speed cause our number of observations to drop slightly when including
controls.
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inverse of the number of observations in each city. This weighting procedure ensures that each

city is given the same weight in the regressions. For regressions involving data aggregated to

the monitor-day level (air pollution), we drop hour-of-dayfixed effects and their interactions.

For data aggregated to the city-day level (congestion, accidents, health), we additionally replace

monitor fixed effects with city fixed effects.

In our setting, standard errors might be biased due to serialcorrelation. We therefore follow

Bertrandet al. (2004) in clustering standard errors at the city level, the highest aggregation

level where correlation may occur. In order to account for the small number of clusters, the

Wald test uses a conservativeT(G− 1) distribution to compute p-values, withG being the

number of clusters. Since the ad-hoc corrections for few clusters might still understate the true

size of the standard errors, we also check whether our results hold using wild cluster bootstrap

t-procedures (Cameronet al., 2008). To do so, we create pseudo-samples applying cluster-

specific Rademacher weights (+1 and -1 with equal probabilities) to the residuals of the original

regression under the null hypothesis of no strike effect. Wethen estimate the strike effect on

the pseudo-samples holding the vector of controls constant. Thus, we receive a distribution

of t-values, which is finally used for statistical inference. In the results section, we will focus

on models using clustered standard errors to draw statistical inference. However, virtually all

findings are confirmed if we instead use wild cluster bootstrap t-procedures.

We assume that conditional on the covariates, the location and timing of strike activity is

orthogonal to traffic volumes, travel times, accident risk,pollution emissions, and health. A

potential threat to identification arises if public transitstrikes are planned to cause maximum

disruption. If this is the case, one might expect the timing of strikes to coincide with hours of the

day and/or days of the week during which traffic density is thehighest. Note, however, that we

control for this type of confounding variation by includinghour-of-day and day-of-week fixed

effects as well as the interaction between them. Union leaders may also choose to initiate strikes

at location-time combinations where they are likely to cause maximum disruption. In our most

extensive specification, we account for this possibility byincluding a full set of city-specific

time fixed effects in addition to the monitor or city fixed effects. There are other occasions

where the impact of strikes is conceivably high: at the beginning of holidays or during periods

of bad weather. Again, these candidate confounders are controlled for. In addition to suitable

conditioning, we conduct a number of sensitivity checks to support our design and identifying

assumption. In particular, we examine whether the estimated effects of interest are robust to the

inclusion of additional city-specific time-varying covariates (e.g., mass events). Moreover, we

provide evidence from regressions involving both placebo strikes as well as placebo outcomes.
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5. Results

5.1.Car Traffic

Table 1 reports the results for passenger vehicle flows. The first panel presents regression esti-

mates involving only morning peak period data for freeways.The morning peak is defined to

last from 6 a.m. to 10 a.m. Column (1) estimates Equation (1) conditioning only on monitor

fixed effects and the full set of time fixed effects. In the morning peak hours of strike-free days,

the average hourly traffic flow on freeways amounts to 5,239 passenger vehicles per monitor.

During a strike, vehicle flows in the morning increase by 161 cars per hour and monitor, an

effect significant at the 1% level. Column (2) shows the result to be robust to including controls

for local weather conditions and school holidays. In Column(3), we interact the full set of time

fixed effects with city indicators. Controlling for city-specific time effects in this way leaves the

estimated strike effect largely unchanged. In Column (4) weadditionally interact the full set

of weather controls with city indicators. The strike coefficient remains virtually unaffected and

highly significant. The estimate from our preferred specification in Column (4) suggests that

public transit strikes lead to an increase in car traffic during the a.m. peak period by 2.5%. The

second panel repeats the exercise for federal roads. The estimate from our preferred specifica-

tion suggests a 4.3% increase in car traffic on federal roads during the a.m. peak of a strike day

(Column (4)). The last two panels of Table 1 shows the strike effects in the evening peak hours

from 3 p.m. to 7 p.m. Throughout all specifications, the strike effect turns out positive and

significant for freeways. Moreover, in our preferred specification, the strike effect also gains

statistical significance for federal roads. We observe thatthe estimates are somewhat smaller

in size during the p.m. peak period than during the a.m. peak period, suggesting an increase in

traffic flows by slightly less than 2% both on freeways and federal roads.

Our data also allows us to provide a picture of strike impact over the course of a day. In

Figure 3, we plot the results of a regression interacting ourstrike indicator withall hours of

the day. For periods outside the morning and evening peak, strikes in public transportation

leave traffic volumes virtually unaffected. For freeway traffic (Panel (a)), significant hourly

strike effects arise between 5 a.m. and 10 a.m. as well as between 1 p.m. and 7 p.m. The

most pronounced effect arises in the morning between 6 a.m. and 7 a.m., when traffic volumes

increase by 7.7%.22 Compared to the a.m. peak effect of strikes, the p.m. peak effect is smaller

but spreads out over a longer period. This might occur because commuters usually have more

flexibility in decisions over departure time in the evening than in the morning commute. For

traffic on federal roads (Panel (b)), the most pronounced strike effect also arises between 6 a.m.

22The effect size is 344 cars and the average number of cars during that hour is 4,477.
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and 7 a.m., when traffic volumes increase by 9.4%.23 Moreover, the a.m. peak effects are again

more pronounced than the p.m. peak effects.

Despite our flexible estimation approach, it is important toacknowledge the possibility that

traffic is unusually high on strike days for reasons other than strikes being in effect. We now

conduct a falsification test in order to rule out such confounding bias in our design. Recall

that most strikes in our sample did not affect all five cities simultaneously. This allows us to

geographically shiftSTRIKEcdwy from cities affected by strikes to non-affected cities. If our

design is valid, then there should be no significant effects on car traffic in these non-affected

cities.24

For graphical inspection, we first compute the residuals of aregression of the number of

cars per hour on the most extensive set of control variables under the null hypothesis of no

strike effect. We then plot the residuals of the number of cars per hour against hours, where

6 a.m. of a strike day is normalized to zero.25 Thus, data points represent hourly averages of

unexplained variations in vehicle flows. Based on these datapoints, we apply local polynomial

smoothing techniques.26 As is evident from the first panel of Figure 4, there is no jump in car

traffic on freeways in non-affected cities when strikes begin elsewhere. Indeed, the unexplained

variations in vehicle flows run absolutely smoothly across the placebo strike threshold. For

affected cities, by contrast, there is a significant upward jump in car traffic when strikes begin,

as can be seen in the second panel. Apart from this jump at the strike threshold, unexplained

variations in vehicle flows are remarkably flat within a period of three weeks before and three

after a strike episode. The last two panels of Figure 4 repeatthe exercise for federal roads and

return qualitatively identical results. Table 2 presents the placebo analog of Table 1. Across all

specifications, and for both morning and evening peak hours,the placebo effect of public transit

strikes on vehicle flows on both freeways and federal roads isstatistically insignificant27 and

small in magnitude, fluctuating around zero.

5.2.Travel Times

Table 3 presents regressions estimating the effect of transit strikes on travel times. The depen-

dent variables are congestion indices (CIs) based onTomTom’s GPS speed database. The first

panel reports results using the CI for the morning peak period. The estimate from our preferred

23The effect size is 140 cars and the average number of cars in during that hour is 1,484.
24Observations from struck cities are excluded from the placebo sample in order to exclude bias on the placebo

control dates.
25For presentational reasons, we exclude data points left andright of the discontinuity that were also strike days.
26We follow Lee and Lemieux (2010) and use a rectangular kernelfor the smoothing function with first order

polynomials and a bandwidth of 48 hours.
27One exception is the estimate in the minimum specification for federal roads during the morning peak.
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specification indicates that the CI for the morning peak period increases by 0.123, which im-

plies that average morning travel times increase by 8.4%. Ascan be seen across Columns (1) to

(4), the sign, magnitude and significance of the coefficient on our strike indicator is very robust

across the four specifications. The second panel presents analogous estimates for the evening

peak period, which are smaller in magnitude than the effectsduring the morning hours. Evalu-

ated against the average evening CI of 1.49, the results suggest that average travel times in the

evening increase between 3.7% and 4.3%, although the coefficient reported in Column (4) loses

statistical significance. In the third panel, results for the average peak period hour are depicted.

The preferred specification in Column (4) implies a significant increase of travel times by 6.3%.

The fourth panel reports results of regressions using the CIaveraged over the day as the depen-

dent variable. The results suggest that strikes increase average travel times between 3.8% to

4.3% over the course of a day. All estimates turn out to be statistically significant. In the last

two panels, we use daily CIs for inner-city streets and highways, respectively. While the effects

for city streets are more precisely estimated than for highways, the point estimates are almost

identical and, depending on the specification, suggest increases in average travel times between

3.4% and 4.4%. Thus, strike-induced congestion spreads over all types of streets within cities

and is not exclusive to freeways or inner-city streets.

5.3.Total Car Hours Operated

In what follows, we will further investigate the effects of public transit strikes on accident risk

and pollution emissions. Both outcomes are likely to dependon total car hours operated, which

in turn are determined by the number of vehicles on roads and average travel time:

[total car hours operated] = [# cars on roads]× [∅ travel time in hours].

Our results so far suggest that strikes by transit workers affect both terms on the right hand side

of this equation, with the effects being strongest during the morning peak period. Indeed, during

that period, strikes increase the number of passenger vehicles on roads by 2.5% (freeways) to

4.3% (federal roads) and raise travel times by 8.4%. Both effects combine according to:

% ∆[total car hours operated] =

[(

1+
% ∆[# cars on roads]

100

)(

1+
% ∆[∅ travel time in hours]

100

)

−1

]

×100.

During the a.m. peak period, public transit strikes therefore lead to a 11% to 13% increase

in total car hours operated. This is the benchmark against which we will evaluate subsequent

results on accident risk and pollution emissions.
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5.4.Vehicle Crashes and Accident-Related Injuries

Table 4 reports the effects of public transit strikes on vehicle crashes and accident-related in-

juries. The first panel uses the number of vehicle crashes during the a.m. peak period as the

dependent variable. In the morning peak hours of strike-free days, there are on average 4.28

vehicle crashes per city. During a strike, the number of vehicle crashes in the morning hours

increases by 0.607, or 14.2% of the strike-free level (Column (4)). This increase is statistically

significant and remains very stable regardless of the specification. The second panel reports the

results for the number of persons sustaining slight injuries in vehicle crashes. Focusing on our

preferred specification (Column (4)), we find that strikes significantly increase the number of

slightly injured persons by 0.790. Compared to the 3.94 personal injuries we observe during

the morning hours of strike-fee days, this corresponds to a 20.1% increase. The fact that the

increase in personal injuries exceeds the increase in the number of vehicles crashes suggests

that cars are occupied by more passengers on strike days. This is consistent with evidence sug-

gesting that strikes induce public transit users to switch to the car either as driveror passenger

(Van Exel and Rietveld, 2001). Finally, there is no significant effect on the number of seriously

or fatally injured persons, as is evident from the results reported in the third panel. In the last

three panels of Table 4, we repeat the exercise using accident data for the p.m. peak period. All

evening estimates on vehicles crashes and accident-related injuries are statistically insignificant.

5.5.Air Pollution

Table 5 contains two central results on air pollution. The estimates in the first panel indicate

that public transit strikes have a statistically significant and positive effect on morning peak

emissions from particulate matter, a major traffic-relatedpollutant. In particular, the results in

Columns (1) to (4) imply that particle pollution increases by 13.3% to 14.8% during the a.m.

peak hours of a strike day. The results in the second panel suggest that public transit strikes also

have positive effects on morning peak emissions of nitrogendioxide. For example, our preferred

specification (Column (4)) yields a statistically significant increase of NO2 by 3.31µg/m3, or

4.3% of the strike-free level. In the last two panels of Table5, we repeat the exercise using

pollution data for the p.m. peak period. All evening estimates on air pollution are statistically

insignificant.

A potential threat to identification is that air pollution onstrike days might be higher than

usual for reasons other than strikes being in effect. Although we control for an extensive set of

time fixed effects and local weather conditions, there may beunobserved time-varying factors

that are correlated with strikes and at the same time determine the occurrence and durability

of pollutants in ambient air. To empirically analyze the relevance of these concerns, we now
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conduct another falsification test. In particular, we investigate the effect of public transit strikes

on SO2. As mentioned above, sulfur dioxide is no longer a major tailpipe pollutant. However,

it nevertheless depends on environmental conditions like many other pollutants. Table 6 reports

the results. Across all specifications, and for both morningand evening peak hours, the effect

of public transit strikes on SO2 is statistically insignificant, which corroborates the validity of

our empirical design.

5.6.Hospitalizations

Table 7 reports the results for pollution-related health problems. The first panel presents re-

gression estimates involving data on hospitalizations fordiseases of the respiratory system. On

an average strike-free day, we observe 61 hospital admissions for respiratory illnesses per city,

roughly 8 of which occur among children under 5 years of age. On a strike day, the number of

children diagnosed with respiratory illnesses increases by 0.879, or 11% of the strike-free level

(Column (2)). The estimate is statistically significant. Atthe same time, there is no evidence

for an increase in respiratory illnesses in the total population or in the subgroup of the elderly

(Columns (1) and (3)). The second panel uses hospitalizations for abnormalities of breathing

as the dependent variable. On an average strike day, the total number of patients admitted to

hospitals due to breathing problems increases by 13% (Column (1)), an estimate significant at

the 5% level. As before, the effect appears to be driven by thesubgroup of young children,

for whom we find a precisely estimated 34% increase in hospital admissions for abnormalities

of breathing (Column (2)). The strike dummy variable for theelderly patient subgroup has a

positive but not statistically significant coefficient. We also examined hospital admissions for

diseases of the circulatory system (ICD-10 codes I00-I99).We found no evidence for a strike

effect on circulatory illnesses.

5.7.Robustness

Mass Events. Our estimates in the previous section would be biased if there were omitted

variables that are correlated with the occurrence of strikes and the outcomes of interest. For

example, suppose that strikes by transit workers tend to coincide with mass events (e.g., trade

fairs, sporting events, festivals). If mass events result in an increase (respectively, decrease) in

traffic volumes, then omitting controls for such events results in an upward (respectively, down-

ward) biased estimate of the true effect of public transit strikes. To mitigate this omitted variable

bias, we now extensively control for mass events at the city-day level. In particular, we add the

binary variable(MassEventcdwy) to Equation (1), which equals unity for events such as the Beer

Festival (Oktoberfest) and Security Conference in Munich, the Harbor Festival (Hafenfest) in
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Hamburg, the Museum Embankment Festival (Museumsuferfest) in Frankfurt on the Main, the

Christopher Street Day Parade in Cologne, or the Carnival ofCultures (Karneval der Kulturen),

the Fan Park during the 2006 Soccer World Championship in Berlin and a number of trade

fairs.28 The results reported in Table 8 show that the mass event coefficients turn out to be small

throughout all specifications and mostly insignificant. More importantly, the coefficients on

our strike dummy variable remain virtually unchanged compared to the benchmark estimates in

Table 1.

Multi-Day Strikes. We have so far exploited 71 one-day strikes in public transportation over

the period from 2002 to 2011. During that period, there were also 17 strikes with a duration

of more than one day across the five cities. We now add all workweek days affected by these

multi-day strikes—amounting to a total of 74 city-day observations—to our sample. Then, we

re-estimate Equation (1) using both a one-day strike dummy and a multi-day strike dummy as

independent variables. Table 9 presents the results of thisextended specification for passen-

ger vehicle flows.29 The estimates suggest that the effect of multi-day strikes on car traffic is

generally smaller than the effect of one-day strikes. One possible explanation for this result

is one that we already mentioned: strikes by transit workersin Germany cause a great deal of

initial disruption, but within a day or two of lengthier strikes transit provider typically manage

to implement effective emergency schedules which dampen the impact of strikes.

Standard Errors. Since reliable inference is a concern when there are few clusters, we

checked whether our results also hold using wild cluster bootstrap t-procedures instead of clus-

tering standard errors. As mentioned above, all our findingswere very robust to using the stan-

dard 2-point wild cluster bootstrap suggested by Cameronet al.(2008). However, Webb (2014)

argues that this procedure may be noisy with a small number ofclusters because the estimated

p-values are intervals rather than point estimates. In order to receive more precise p-values,

he suggests expanding the standard 2-point wild cluster bootstrap to a multi-point wild cluster

bootstrap. We followed this suggestion and substituted theRademacher weights (+1 and -1 with

equal probabilities) by randomly drawing the weights from anormal distribution with a mean

of zero and a standard deviation of one. The p-values obtained from this alternative bootstrap

procedure suggest that the estimated strike effects gain rather than lose statistical significance.

28The extended model controls for a total of 55 mass events across the five cities, attracting crowds of more
than 150,000 people per day on average. The days affected by these events amount to a total of 1,091 city-day
observations.

29The resulting sample for freeways includes 64 one-day strikes and 12 multi-day strikes, which cover 41 city-
day observations. In the sample for federal roads, we observe 45 one-day strikes and 10 multi-day strikes, which
cover 37 city-day observations.
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Measurement Error. Our strike indicator is based on self-collected data and might therefore

be prone to measurement error. Indeed, we cannot entirely rule out that we (i) missed days that

were affected by strikes or (ii) erroneously coded a day as a strike day even though no strike

took place. Note, however, that both types of measurement error would result in a downward

bias in the estimated effects of public transit strikes. If we missed days that were affected by

strikes and hence erroneously coded them as non-strike days, then car traffic on non-strike days

would be higher, which in turn reduces the estimated effect of strikes. If we erroneously coded a

day as a strike day, car traffic on strike days would be lower, which again reduces the estimated

effect of strikes.

6. Discussion and Conclusions

How large are the costs of transit strikes to non-involved third parties? The lion’s share of third-

party costs stems from the increase in travel time due to congestion. From the 2003 wave of

the German Socio-Economic Panel (SOEP)30, we obtain information on commuter incidence,

modes of transport, and travel times. In the five cities of oursample, 47% of the working pop-

ulation commute to their work place using a car, while 43% rely on public transit. Combining

this information with local employment data,31 the average number of car commuters per city

amounts to 486,000, while there are on average 445,000 commuters using mass transit. Accord-

ing to the SOEP, average one-way travel-to-work time is 27 minutes for car commuters and 37

minutes for commuters relying on public transit. The estimates in Table 3 imply that travel times

for car commuters increase by 6.3% the during the peak periods. We assume that mass-transit

commuters experience the same percentage increase in travel times as car commuters, irrespec-

tive of whether they switch to the car or continue to use public transport on strike days. In the

average city, a single one-day strike therefore implies an increase in aggregate travel time by

roughly 62,000 hours, or 1,550 full-time equivalent work weeks. Valuing time at average GDP

per hour worked,e 52,32 we estimate congestion costs ofe 3.2 million per strike ore 228.9

million for all 71 strikes in our main sample.

If these costs are not internalized in the collective bargaining process, the level of strike

activity resulting from failed negotiations will be inefficiently high. In this regard, it might be

interesting to set the third-party congestion costs in relation to the costs of struck employers.

30Socio-Economic Panel (SOEP), Data from 1984-2012, DOI: 10.5684/soep.v29.1. We use the SOEPremote
version to identify the cities of our sample.

31Average number of employed individuals per city is 1,043,000. See Statistical Offices of Federal State and
States (2011), working population, http://aketr.de/tl_files/aketr/DATA/Tabellen/KR_ET.pdf, as of 03/26/2014.

32See Statistical Offices of Federal State and States (2011), http://www.vgrdl.de/Arbeitskreis_VGR/tbls/R2B1.zip
and http://aketr.de/tl_files/aketr/DATA/Tabellen/KR_AV.pdf, as of 03/26/2014.
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For transit providers, the withdrawal of striking workers means a partial shutdown of services,

and with it a loss of revenues from ticket sales. In the average city, transit providers generate

revenues from ticket sales ofe 445.8 million annually. Assuming that struck transit providers

are unable to raise any revenue from their users, this corresponds to a revenue loss ofe 1.2

million per strike day, or roughly one-third of the daily congestion costs to non-involved third

parties.

Our most interesting and novel finding is that strikes in public transportation not only cause

congestion costs, but also pose a non-negligible threat forpublic safety and public health. We

have shown that public transit strikes cause daily pollution shocks accompanied by an increase

in pollution-related health problems. For children under 5years of age, hospital admissions

for respiratory diseases and abnormalities of breathing increase by 11% and 34%, respectively.

With 71 transit strikes in our sample, 68 more young childrenhad to be admitted to hospitals

than would have been if there had been no strikes. Moreover, our estimates suggest that transit

strikes increase the risk of being injured in a motor vehiclecrash by 20%. According to the

International Labour Organization (ILO), governments canban strikes in “essential services”,

defined as a service whose stoppage poses a clear and imminentthreat to the life, personal

safety or health of the whole or part of the population. Public transportation does not fall under

the ILO’s definition of an essential service. Taken at face value, our results seem to provide

strong evidence in support of the opposite position: that mass transit—just as the police or

firefighters—is critical to public safety and health on a day-to-day basis.

It is important to keep a few caveats in mind. Our analysis leaves open the question of

whether laws banning public transportation strikes are welfare-enhancing. Tracing the total

welfare consequences of strikes is complex. Our analysis shows that strike-induced disruptions

of mass transit services have adverse effects on urban populations in the short-run. However,

it misses any longer-run impacts of public transit strikes.For example, it stands to reason that

these strikes may provide offsetting long-term benefits forurban populations if they result in

agreements that improve organizational performance in urban mass transit. Further research

is therefore warranted to develop a comprehensive approachfor establishing a measure of the

welfare effects of strikes in public transportation.

Another issue is external validity. It seems reasonable to assume that the size of the impact

of transit strikes on the studied outcomes depends on several mediating factors. The following

examples spring to mind: the capacity of highways and roads to absorb additional drivers;

the average age of cars on roads; environmental laws regulating car emissions; posted speed

limits; or prominent weather features that affect the accumulation of pollution. These mediating

factors are likely to vary across jurisdictions. Thus, the estimated strike effects in German cities
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might be different from similar strikes in, say, US cities, which we have cited as a points of

comparison. In order to gauge the external applicability ofour results, future research should

therefore attempt to document how the impact of public transit strikes varies along mediating

factors.
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FIGURE 2: Distribution of Strikes Across Time and Space
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FIGURE 3: The Hourly Effect of Strikes on Car Traffic

(a) Freeways
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NOTES: The grey bars show the hourly mean of the number of cars passing monitoring stations from Monday to Friday. The black whiskers indicate the 95% confidence
interval of the hourly strike effects which are added to the hourly mean numbers of cars. The strike effects are estimatedin a regression controlling for monitor fixed
effects and the full set of time fixed effects. Additional controls are the amount of precipitation (and its square), dayssince last rainfall, atmospheric temperature (and
its square), wind speed (and its square), and a snow cover dummy, and interactions of the full set of time fixed effects and the weather variables with city indicators.
Standard errors are clustered at the city level.
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FIGURE 4: Placebo Strikes Versus Actual Strikes

(a) Placebo Strike Effect in Non-Affected Cities (Freeways)
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(c) Placebo Strike Effect in Non-Affected Cities (Federal Roads)
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TABLE 1: The Effect of Strikes on Car Traffic

Dependent Variable: Hourly Passenger Vehicle Flows per Monitor

(1) (2) (3) (4)

1. Freeways – Morning Peak

Strike 160.7∗∗∗ 136.8∗∗∗ 128.3∗∗∗ 131.6∗∗∗

[5,239] (26.81) (10.81) (13.79) (12.07)

N 213,160 212,896 212,896 212,896
R2 0.899 0.903 0.921 0.922

2. Federal Roads – Morning Peak

Strike 62.93∗∗ 57.38∗∗ 72.40∗∗∗ 77.72∗∗∗

[1,790] (12.82) (15.33) (7.99) (9.49)

N 102,704 102,540 102,540 102,540
R2 0.921 0.924 0.961 0.962

3. Freeways – Evening Peak

Strike 125.4∗∗ 103.3∗∗∗ 88.35∗∗ 91.50∗∗∗

[5,785] (28.61) (21.24) (19.72) (17.89)

N 213,160 212,896 212,896 212,896
R2 0.937 0.939 0.950 0.950

4. Federal Roads – Evening Peak

Strike 21.44 13.71 26.29 37.88∗∗

[2,121] (17.38) (18.12) (14.29) (10.18)

N 102,704 102,540 102,540 102,540
R2 0.960 0.962 0.972 0.973

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 64 forfreeways, 45 for federal roads. Mean
of the dependent variable on strike-free days reported in square brackets. All regressions include monitor fixed
effects. Time FE include hour-of-day, day-of-week, hour-of-day×day-of-week, week-of-year, and year. Controls
include a dummy for school holidays and the following weather variables: atmospheric temperature, amount
of precipitation, wind speed, and a snow cover dummy. City×Time are interactions of city indicators with all
Time FE. City×Weather are interactions of city indicators with all weather variables. Weights are the number of
observations per station over the number of observations per city. Cluster-robust standard errors in parentheses.∗

10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 2: The Effect of Placebo Strikes on Car Traffic

Dependent Variable: Hourly Passenger Vehicle Flows per Monitor

(1) (2) (3) (4)

1. Freeways – Morning Peak

Placebo Strike -17.52 -28.42 -22.12 -16.21
[5,239] (24.47) (41.47) (36.84) (35.33)

N 211,836 211,572 211,572 211,572
R2 0.899 0.903 0.921 0.922

2. Federal Roads – Morning Peak

Placebo Strike 14.70∗ 7.171 -7.729 -6.846
[1,790] (5.563) (5.947) (12.91) (10.66)

N 102,124 101,960 101,960 101,960
R2 0.921 0.924 0.961 0.962

3. Freeways – Evening Peak

Placebo Strike -17.07 -15.83 -11.85 -4.038
[5,785] (10.72) (18.24) (22.23) (20.04)

N 211,836 211,572 211,572 211,572
R2 0.937 0.939 0.950 0.950

4. Federal Roads – Evening Peak

Placebo Strike -8.00 -10.86 -21.52 -17.56
[2,121] (5.867) (11.28) (18.75) (16.15)

N 102,124 101,960 101,960 101,960
R2 0.960 0.962 0.972 0.973

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day placebo strikes used in estimation sample: 74 for freeways, 61 for federal roads.
Mean of the dependent variable on strike-free days reportedin square brackets. All regressions include monitor
fixed effects. Time FE include hour-of-day, day-of-week, hour-of-day×day-of-week, week-of-year, and year.
Controls include a dummy for school holidays and the following weather variables: atmospheric temperature,
amount of precipitation, wind speed, and a snow cover dummy.City×Time are interactions of city indicators with
all Time FE. City×Weather are interactions of city indicators with all weather variables. Weights are the number
of observations per station over the number of observationsper city. Cluster-robust standard errors in parentheses.
∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 3: The Effect of Strikes on Travel Times

Dependent Variable: Actual Travel Time Divided by Free-Flow Travel Time (Congestion Index)

(1) (2) (3) (4)

1. Morning Peak

Strike 0.117∗ 0.134∗∗ 0.123∗ 0.123∗

[1.47] (0.052) (0.042) (0.049) (0.051)

N 2,454 2,454 2,454 2,454
R2 0.392 0.539 0.621 0.630

2. Evening Peak

Strike 0.056∗∗ 0.065∗ 0.064∗ 0.062
[1.49] (0.020) (0.024) (0.027) (0.030)

N 2,454 2,454 2,454 2,454
R2 0.291 0.351 0.473 0.482

3. All Peaks

Strike 0.086∗∗ 0.099∗∗ 0.094∗∗ 0.093∗

[1.48] (0.031) (0.028) (0.033) (0.036)

N 2,454 2,454 2,454 2,454
R2 0.329 0.474 0.583 0.594

4. All Day

Strike 0.050∗∗ 0.056∗∗ 0.051∗∗ 0.050∗∗

[1.30] (0.013) (0.013) (0.016) (0.017)

N 2,454 2,454 2,454 2,454
R2 0.306 0.397 0.533 0.547

5. City Streets – All Day

Strike 0.047∗∗∗ 0.054∗∗∗ 0.048∗∗∗ 0.048∗∗∗

[1.36] (0.007) (0.011) (0.009) (0.010)

N 2,454 2,454 2,454 2,454
R2 0.350 0.478 0.591 0.601

6. Freeways – All Day

Strike 0.050∗ 0.055∗∗ 0.051∗ 0.049
[1.25] (0.020) (0.019) (0.022) (0.024)

N 2,454 2,454 2,454 2,454
R2 0.252 0.308 0.503 0.522

City FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 26. Mean of the dependent variable on strike-free
days reported in square brackets. All regressions include city fixed effects. Time FE include day-of-week, week-
of-year, and year. Controls include a dummy for school holidays and the following weather variables: atmospheric
temperature, amount of precipitation, wind speed, and a snow cover dummy. City×Time are interactions of city
indicators with all Time FE. City×Weather are interactions of city indicators with all weather variables. Weights
are the number of observations per station over the number ofobservations per city. Cluster-robust standard errors
in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 4: The Effect of Strikes on Vehicle Crashes and Accident-Related Injuries

Dependent Variables: Number of Vehicle Crashes and Accident-Related Injuries

(1) (2) (3) (4)

1. Vehicle Crashes – Morning Peak

Strike 0.616∗ 0.618∗ 0.616∗ 0.607∗

[4.280] (0.254) (0.273) (0.259) (0.250)

N 12,253 12,238 12,238 12,238
R2 0.405 0.428 0.472 0.478

2. Slightly Injured Persons – Morning Peak

Strike 0.761∗∗∗ 0.765∗∗ 0.793∗∗ 0.790∗∗

[3.940] (0.151) (0.181) (0.201) (0.192)

N 12,253 12,238 12,238 12,238
R2 0.388 0.408 0.449 0.455

3. Seriously or Fatally Injured Persons – Morning Peak

Strike -0.011 -0.014 -0.012 -0.013
[0.354] (0.059) (0.057) (0.055) (0.055)

N 12,253 12,238 12,238 12,238
R2 0.096 0.101 0.124 0.127

4. Vehicle Crashes – Evening Peak

Strike 0.269 0.284 0.080 0.0836
[6.962] (0.418) (0.481) (0.476) (0.475)

N 12,253 12,238 12,238 12,238
R2 0.540 0.561 0.599 0.607

5. Slightly Injured Persons – Evening Peak

Strike 0.546 0.561 0.357 0.388
[6.786] (0.463) (0.517) (0.533) (0.527)

N 12,253 12,238 12,238 12,238
R2 0.497 0.514 0.552 0.558

6. Seriously or Fatally Injured Persons – Evening Peak

Strike -0.106 -0.101 -0.090 -0.093
[0.648] (0.055) (0.056) (0.053) (0.055)

N 12,253 12,238 12,238 12,238
R2 0.155 0.162 0.187 0.192

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 71. Mean of the dependent variable on strike-free
days reported in square brackets. All regressions include city fixed effects. Time FE include day-of-week, week-
of-year, and year. Controls include a dummy for school holidays and the following weather variables: atmospheric
temperature, amount of precipitation, wind speed, and a snow cover dummy. City×Time are interactions of city
indicators with all Time FE. City×Weather are interactions of city indicators with all weather variables. Weights
are the number of observations per station over the number ofobservations per city. Cluster-robust standard errors
in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 5: The Effect of Strikes on Particle Pollution and Nitrogen Dioxide Emissions

Dependent Variable: Mean Hourly Pollution Emissions inµg/m3

(1) (2) (3) (4)

1. PM10 – Morning Peak

Strike 5.150∗∗ 5.013∗∗ 5.566∗∗ 5.334∗∗

[37.64] (1.328) (1.600) (1.607) (1.653)

N 33,049 33,007 33,007 33,007
R2 0.184 0.313 0.342 0.351

2. NO2 – Morning Peak

Strike 2.749 2.840 3.277∗ 3.314∗

[76.85] (1.433) (1.460) (1.417) (1.427)

N 38,586 38,525 38,525 38,525
R2 0.398 0.490 0.510 0.519

3. PM10 – Evening Peak

Strike 1.085 0.547 0.464 0.292
[35.30] (2.394) (2.677) (2.942) (2.940)

N 33,778 33,737 33,737 33,737
R2 0.196 0.305 0.338 0.350

4. Mean NO2 – Evening Peak

Strike -0.487 -0.464 -0.973 -1.063
[77.20] (2.473) (3.073) (3.298) (3.436)

N 39,528 39,468 39,468 39,468
R2 0.347 0.436 0.463 0.478

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 68. Mean of the dependent variable on strike-free
days reported in square brackets. All regressions include monitor fixed effects. Time FE include day-of-week,
week-of-year, and year. Controls include a dummy for schoolholidays and the following weather variables: atmo-
spheric temperature, amount of precipitation, wind speed,and a snow cover dummy. City×Time are interactions
of city indicators with all Time FE. City×Weather are interactions of city indicators with all weather variables.
Weights are the number of observations per station over the number of observations per city. Cluster-robust stan-
dard errors in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 6: The Effect of Strikes on Placebo Air Pollution

Dependent Variable: Mean Hourly Pollution Emissions inµg/m3

(1) (2) (3) (4)

1. SO2 – Morning Peak

Strike 0.361 0.234 0.089 0.186
[6.47] (0.385) (0.380) (0.255) (0.190)

N 14,068 14,038 14,038 14,038
R2 0.187 0.227 0.272 0.297

2. SO2 – Evening Peak

Strike -0.040 -0.275 -0.238 -0.184
[5.03] (0.220) (0.297) (0.222) (0.235)

N 14,377 14,349 14,349 14,349
R2 0.259 0.300 0.361 0.371

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 45. Mean of the dependent variable on strike-free
days reported in square brackets. All regressions include monitor fixed effects. Time FE include day-of-week,
week-of-year, and year. Controls include a dummy for schoolholidays and the following weather variables: atmo-
spheric temperature, amount of precipitation, wind speed,and a snow cover dummy. City×Time are interactions
of city indicators with all Time FE. City×Weather are interactions of city indicators with all weather variables.
Weights are the number of observations per station over the number of observations per city. Cluster-robust stan-
dard errors in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 7: The Effect of Strikes on Hospitalizations

Dependent Variable: Number of Hospitalized Patients per Day

(1) (2) (3)
Full sample Ages below 5 Ages 65 and above

1. Respiratory Diseases (ICD-10 codes J00-J99)

Strike 0.963 0.879∗∗ 0.145
(1.746) (0.208) (0.829)

N 11,000 11,000 11,000
R2 0.924 0.692 0.861

[Mean] [61.09] [7.82] [22.09]

2. Abnormalities of Breathing (ICD-10 code R06)

Strike 0.160∗∗ 0.074∗∗ 0.049
(0.048) (0.018) (0.096)

N 11,000 11,000 11,000
R2 0.182 0.098 0.089

[Mean] [1.27] [0.22] [0.39]

City FE Yes Yes Yes
Time FE Yes Yes Yes
Controls Yes Yes Yes
City ×Time Yes Yes Yes
City×Weather Yes Yes Yes

NOTES: Number of one-day strikes used in estimation sample: 57. Mean of the dependent
variable on strike-free days reported in square brackets. All regressions include city fixed
effects. Time FE include day-of-week, week-of-year, and year. Controls include a dummy
for school holidays and the following weather variables: atmospheric temperature, amount
of precipitation, wind speed, and a snow cover dummy. City×Time are interactions of
city indicators with all Time FE. City×Weather are interactions of city indicators with all
weather variables. Weights are the number of observations per station over the number of
observations per city. Cluster-robust standard errors in parentheses.∗ 10%,∗∗5%, ∗∗∗ 1%
confidence level.
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TABLE 8: The Effect of Public Transit Strikes on Car Traffic – Controlling for Mass Events

Dependent Variable: Hourly Passenger Vehicle Flows per Monitor

(1) (2) (3) (4)

1. Freeways – Morning Peak

Strike 160.5∗∗∗ 136.5∗∗∗ 128.4∗∗∗ 131.6∗∗∗

[5,239] (26.47) (10.75) (13.79) (12.09)

Mass event -29.86 -40.48∗ -6.275 -0.234
(26.40) (15.41) (11.72) (10.09)

N 213,160 212,896 212,896 212,896
R2 0.899 0.903 0.921 0.922

2. Federal Roads – Morning Peak

Strike 63.05∗∗ 57.29∗∗ 72.42∗∗∗ 77.67∗∗∗

[1,790] (12.77) (15.27) (8.021) (9.383)

Mass event 4.891 -3.430 2.691 -4.469
(15.19) (4.688) (3.764) (6.443)

N 102,704 102,540 102,540 102,540
R2 0.921 0.924 0.961 0.962

3. Freeways – Evening Peak

Strike 125.2∗∗ 103.2∗∗∗ 88.39∗∗ 91.51∗∗∗

[5,785] (28.54) (21.37) (19.79) (17.91)

Mass event -20.25 -25.85 -10.23 -3.999
(24.90) (17.89) (7.039) (7.196)

N 213,160 212,896 212,896 212,896
R2 0.937 0.939 0.950 0.950

4. Federal Roads – Evening Peak

Strike 21.81 13.95 26.28 37.82∗∗

[2,121] (17.22) (18.02) (14.31) (10.27)

Mass event 14.82 9.474 -0.917 -5.533
(20.05) (12.21) (3.856) (5.104)

N 102,704 102,540 102,540 102,540
R2 0.960 0.962 0.972 0.973

Monitor FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Controls Yes Yes Yes
City×Time Yes Yes
City×Weather Yes

NOTES: Number of one-day strikes used in estimation sample: 64 forfreeways, 45 for federal roads. Mean
of the dependent variable on strike-free days reported in square brackets. All regressions include monitor fixed
effects. Time FE include hour-of-day, day-of-week, hour-of-day×day-of-week, week-of-year, year and holiday
fixed effects. Controls include a dummy for school holidays and the following weather variables: atmospheric
temperature, amount of precipitation, wind speed, and a snow cover dummy. City×Time are interactions of city
indicators with all Time FE. City×Weather are interactions of city indicators with all weather variables. Weights
are the number of observations per station over the number ofobservations per city. Cluster-robust standard errors
in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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TABLE 9: The Effect of One-Day and Multi-Day Strikes on Car Traffic

Dependent Variable: Hourly Passenger Vehicle Flows per Monitor

(1) (2) (3) (4)
Freeways Federal Roads Freeways Federal Roads

(morning peak) (morning peak) (evening peak) (evening peak)

One-day strike 131.6∗∗∗ 77.77∗∗∗ 91.35∗∗ 37.83∗∗

(12.12) (9.528) (17.98) (10.14)

Multi-day strike 113.7∗∗ 54.24∗∗ 94.35∗∗ -0.619
(33.57) (12.58) (23.62) (27.36)

N 213,892 103,128 213,892 103,128
R2 0.922 0.962 0.950 0.973

[Mean] [5,239] [1,790] [5,785] [2,121]

Time FE Yes Yes Yes Yes
Weather Yes Yes Yes Yes
City×Time Yes Yes Yes Yes
City×Weather Yes Yes Yes Yes

NOTES: Number of one-day strikes used in estimation sample: 64 forfreeways, 45 for federal roads. Multi-day
strikes used in estimation sample include 12 events covering 41 city-day observations for freeways and 10 events
covering 37 city-day observations for federal roads. Mean of the dependent variable on strike-free days reported in
square brackets. All regressions include monitor fixed effects. Time FE include hour-of-day, day-of-week, hour-
of-day×day-of-week, week-of-year, year and holiday fixed effects.Controls include a dummy for school holidays
and the following weather variables: atmospheric temperature, amount of precipitation, wind speed, and a snow
cover dummy. City×Time are interactions of city indicators with all Time FE. City×Weather are interactions of
city indicators with all weather variables. Weights are thenumber of observations per station over the number of
observations per city. Cluster-robust standard errors in parentheses.∗ 10%,∗∗5%,∗∗∗ 1% confidence level.
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Appendix for Online Publication

FIGURE A1: Location of Traffic and Air Monitors – Berlin

NOTES: Triangles indicate traffic monitors on freeways, diamondsindicate traffic monitors on federal roads, stars
indication air monitors. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreeMap, under CC BY
SA. Scale 1:250,000.



FIGURE A2: Location of Traffic and Air Monitors – Hamburg

NOTES: Triangles indicate traffic monitors on freeways, diamondsindicate traffic monitors on federal roads, stars
indication air monitors. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreeMap, under CC BY
SA. Scale 1:200,000.



FIGURE A3: Location of Traffic and Air Monitors – Munich

NOTES: Triangles indicate traffic monitors on freeways, diamondsindicate traffic monitors on federal roads, stars
indication air monitors. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreeMap, under CC BY
SA. Scale 1:200,000.



FIGURE A4: Location of Traffic and Air Monitors – Cologne

NOTES: Triangles indicate traffic monitors on freeways, diamondsindicate traffic monitors on federal roads, stars
indication air monitors. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreeMap, under CC BY
SA. Scale 1:200,000.



FIGURE A5: Location of Traffic and Air Monitors – Frankfurt

NOTES: Triangles indicate traffic monitors on freeways, diamondsindicate traffic monitors on federal roads, stars
indication air monitors. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreeMap, under CC BY
SA. Scale 1:200,000.



FIGURE A6: Passenger Vehicle Flows over the Course of an Average Weekday

(a) Freeways
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(b) Federal roads
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FIGURE A7: Air Pollution over the Course of an Average Weekday

(a) PM10
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(b) NO2
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TABLE A1: Public Transit Strikes of One Day or Less (2002-2011)

Year Berlin Cologne Frankfurt Hamburg Munich

2002

05/27/2002 05/27/2002
(4:00-8:00) (4:00- 8:00)

12/17/2002 12/16/2002
(4:00-7:30) (all day)

2003 03/06/2003 03/06/2003 03/06/2003 03/06/2003
(6:00-6:45) (6:00-6:45) (6:00-6:45) (6:00-6:45)

2004

04/21/2004
(7:00-8:00)

04/23/2004
(18:00-20:00)

2005 05/24/2005 09/15/2005
(3:30-10:00) (all day)

2006 09/29/2006
(4:00-6:00)

2007

07/03/2007 07/03/2007 07/03/2007 07/03/2007 07/03/2007
(5:00-9:00) (5:00- 9:00) (5:00-9:00) (5:00-9:00) (5:00- 9:00)

07/10/2007 07/10/2007 07/10/2007 07/10/2007
(8:00-10:15) (8:00-10:15) (8:00-10:15) (8:00-10:15)

08/09/2007 08/09/2007
(8:00-10:00) (8:00-10:00)

10/05/2007 10/05/2007 10/05/2007 10/05/2007 10/05/2007
(8:00-11:00) (8:00- 11:00) (8:00-11:00) (8:00-11:00) (8:00-11:00)

10/12/2007 10/12/2007 10/12/2007 10/12/2007 10/12/2007
(all day) (all day) (all day) (all day) (all day)

10/18/2007 10/18/2007 10/18/2007 10/18/2007 10/18/2007
(2:00-11:00) (2:00-11:00) (2:00-11:00) (2:00-11:00) (2:00-11:00)

2008 02/22/2008 02/22/2008
(4:00-12:00) (3:00-7:30)

2009

01/29/2009 02/25/2009 02/03/2009
(6:30-9:00) (all day) (3:30-15:30)

02/27/2009
(all day)

2010

02/09/2010 02/04/2010 02/01/2010 01/20/2010 09/10/2010
(3:00-14:00) (3:00-6:30) (all day) (all day) (4:00-10:00)

10/26/2010 02/05/2010 01/29/2010 09/15/2010
(4:00-9:00) (all day) (all day) (all day)

10/26/2010 02/18/2010 10/26/2010
(5:00-8:30) (3:00-15:00) (4:00-19:00)

2011

02/22/2011 02/22/2011 02/22/2011 02/22/2011 02/22/2011
(6:00-8:00) (6:00-8:00) (6:00-8:00) (6:00-8:00) (6:00-8:00)

03/10/2011 02/25/2011 02/25/2011 02/25/2011 02/25/2011
(4:00-10:00) (8:30-11:30) (8:30-11:30) (8:30-11:30) (8:30-11:30)

03/10/2011 03/10/2011 03/10/2011 03/10/2011
(4:00-10:00) (4:00-10:00) (4:00-10:00) (4:00-10:00)

NOTES: Table lists dates and duration of one-day strikes in publictransportation during the period 2002-2011. One-day strikes
labeled “all day” affected the entire operating hours of theservices in question.



TABLE A2: Summary Statistics

N Mean Std dev Min Max

Panel A: Car Traffic
# Freeway cars per hour (morning peak) 213,160 5,240 2,291 113 12,911
# Freeway cars per hour (evening peak) 213,160 5,786 2,253 0 13,142
# Federal road cars per hour (morning peak) 102,704 1,789 97961 5,039
# Federal road cars per hour (evening peak) 102,704 2,120 1,069 307 5,463

Panel B: Congestion
Congestion Index (morning peak) 2,454 1.47 0.20 1.04 3.03
Congestion Index (evening peak) 2,454 1.49 0.20 1.13 3.36
Congestion Index (all peaks) 2,454 1.48 0.16 1.09 2.63
Congestion Index (all day) 2,454 1.31 0.09 1.09 2.04
Congestion Index (city streets - all day) 2,454 1.36 0.07 1.18 2.01
Congestion Index (highways - all day) 2,454 1.25 0.11 1.04 2.11

Panel C: Accidents
# Vehicle crashes (morning peak) 12,253 4.28 3.28 0 27
# Vehicle crashes (evening peak) 12,253 6.96 4.82 0 39
# Slightly injured (morning peak) 12,253 3.94 3.47 0 26
# Slightly injured (evening peak) 12,253 6.78 5.27 0 41
# Seriously or fatally injured (morning peak) 12,253 0.35 0.66 0 6
# Seriously or fatally injured (evening peak) 12,253 0.65 0.95 0 8

Panel D: Pollution
Mean PM10 inµg/m3 (morning peak) 33,049 37.68 21.28 2 463
Mean PM10µg/m3 (evening peak) 33,778 35.32 20.30 1 273
Mean NO2 inµg/m3 (morning peak) 38,586 76.87 29.72 2 257
Mean NO2 inµg/m3 (evening peak) 39,528 77.22 31.79 5 350
Mean SO2 inµg/m3 (morning peak) 14,068 6.46 6.41 0 101
Mean SO2 inµg/m3 (evening peak) 14,377 5.03 4.58 0 70

Panel E: Hospitalizations
# Respiratory (all patients) 11,015 61.08 36.02 3 250
# Respiratory (ages below 5) 11,015 7.82 5.76 0 45
# Respiratory (ages 65 and above) 11,015 22.08 15.05 0 112
# Breathing (all patients) 11,015 1.27 1.23 0 8
# Breathing (ages below 5) 11,015 0.22 0.49 0 5
# Breathing (ages 65 and above) 11,015 0.39 0.65 0 4

Panel F: Control Variables
Mean Temperature (◦C) 12,253 10.42 7.58 -15 30
Precipitation (mm) 12,238 3.41 1.58 0 14
Wind speed (m/s) 12,253 1.96 4.61 0 130
Snow cover 12,253 0.07 0.25 0 1
School vacations 12,253 0.26 0.44 0 1

NOTES: Table lists descriptive statistics (number of observations, mean, standard deviation,
minimum, and maximum) of all variables in the data set. The data summarized in Panel A are
based on monitor-hour observations. The data summarized inPanel B are based on monitor-day
observations. The data summarized in Panels B, C, E, F are based on city-day observations.


